

OGRAPHIC OPEN d ACCESS

Crystal structure of 1-fluoro-1,3-dihydrobenzo[c]thiophene 2,2-dioxide

Ying Zou, Zibin Qiu, Renming Tang, Kaixu Yuan and Ya Li*

Department of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China. *Correspondence e-mail: ya.li@sues.edu.cn

Received 14 August 2015; accepted 2 September 2015

Edited by M. Weil, Vienna University of Technology, Austria

In the title compound, $C_8H_7FO_2S$, the thiophene ring has an envelope conformation, with the S atom bearing the two O atoms being the flap. In the crystal, molecules are linked by $C-H\cdots O$ and $C-H\cdots F$ interactions, generating a three-dimensional network structure.

Keywords: crystal structure; sulfone; fluorine; dihydrobenzothiophene; C—H···O and C—H···F interactions.

CCDC reference: 1421889

1. Related literature

For the use of of α -fluoro sulfones in organic synthesis, see: Fukuzumi *et al.* (2006); Li *et al.* (2006); Prakash *et al.* (2003); Zhao *et al.* (2013). For their synthesis, see: Jiang *et al.* (2014); Ni *et al.* (2008).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_8 H_7 FO_2 S \\ M_r = 186.20 \\ \text{Monoclinic, } P2_1/c \\ a = 5.7772 \ (5) \ \text{\AA} \\ b = 8.3886 \ (6) \ \text{\AA} \\ c = 16.8717 \ (12) \ \text{\AA} \\ \beta = 99.742 \ (6)^\circ \end{array}$

 $V = 805.86 (11) \text{ Å}^{3}$ Z = 4Cu K\alpha radiation $\mu = 3.38 \text{ mm}^{-1}$ T = 296 K $0.05 \times 0.03 \times 0.02 \text{ mm}$ 2.2. Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
T_{min} = 0.418, T_{max} = 0.753
```

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.068$

 $wR(F^2) = 0.205$ S = 1.13 1475 reflections $R_{\rm int} = 0.080$

6724 measured reflections

1475 independent reflections

1206 reflections with $I > 2\sigma(I)$

109 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.58$ e Å⁻³ $\Delta \rho_{\rm min} = -0.98$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···O1 ⁱ	0.93	2.95	3.687 (6)	138
$C1 - H1 \cdots O1^{ii}$	0.98	2.47	3.266 (5)	139
$C1 - H1 \cdots O2^{ii}$	0.98	3.48	4.331 (6)	147
$C4 - H4 \cdots O2^{iii}$	0.93	2.54	3.371 (5)	148
$C5-H5\cdots F1^{iv}$	0.93	2.81	3.640 (5)	150
$C8 - H8B \cdots O2^{v}$	0.97	2.50	3.406 (5)	156

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 2; (iii) $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae, 2006); software used to prepare material for publication: *OLEX2*.

Acknowledgements

Financial support by the Innovation Program of Shanghai University Students (cx1404008 and cs1404015) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5205).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fukuzumi, T., Shibata, N., Sugiura, M., Yasui, H., Nakamura, S. & Toru, T. (2006). Angew. Chem. Int. Ed. 45, 4973–4977.
- Jiang, F., Zhao, Y. & Hu, J. (2014). Org. Chem. Front. 1, 625-629.
- Li, Y., Ni, C., Liu, J., Zhang, L., Zheng, J., Zhu, L. & Hu, J. (2006). Org. Lett. 8, 1693–1696.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Ni, C., Zhang, L. & Hu, J. (2008). J. Org. Chem. 73, 5699-5713.
- Prakash, G. K. S., Hu, J., Mathew, T. & Olah, G. A. (2003). Angew. Chem. Int. Ed. 42, 5216–5219.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Zhao, Y., Ni, C., Jiang, F., Gao, B., Shen, X. & Hu, J. (2013). ACS Catal. 3, 631–634.

supporting information

Acta Cryst. (2015). E71, o749 [doi:10.1107/S2056989015016357]

Crystal structure of 1-fluoro-1,3-dihydrobenzo[c]thiophene 2,2-dioxide

Ying Zou, Zibin Qiu, Renming Tang, Kaixu Yuan and Ya Li

S1. Synthesis and crystallization

Lithium bis(trimethylsilyl)amide (LiHMDS; 2.2 ml, 1.0 M in THF, 2.2 mmol, 2.2 equiv) and anhydrous ZnCl₂ (341 mg, 2.5 mmol, 2.5 equiv) were dissolved in 12 ml THF. 10 minutes later, 1,3-dihydrobenzo[c]thiophene-2,2-dioxide (168 mg, 1.0 mmol, 1.0 equiv) was added into the mixture under N₂ atmosphere. The reaction was stirred for one hour. Then *N*-fluorobenzenesulfonimide (NFSI; 2.0 equiv, 632 mg, 2.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for half an hour and quenched by addition of H₂O. After extraction with ethyl acetate, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with ethyl acetate/hexane (1:3) to provide the title compound (97 mg, 52%). The obtained powder was recrystallized from dichloromethane/hexane (1:10) solution to give colourless crystals.

¹H NMR (400 MHz, CDCl₃) δ = 7.64-7.66 (d, *J* = 8.0 Hz, 1H), 7.56-7.59 (m, 1H), 7.48-7.52 (m, 1H), 7.36-7.38 (d, *J* = 8.0 Hz, 1H), 6.03 (d, *J* = 56.4 Hz, 1H), 4.40 (dd, *J* = 60.0, 16.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ = -153.70 (d, *J* = 56.4 Hz). ¹³C NMR (101 MHz, CDCl₃) δ = 128.6 (d, *J* = 4.0 Hz), 126.1, 125.5 (d, *J* = 4.0 Hz), 124.8, 122.5, 122.1, 94.2 (d, *J* = 86.4 Hz), 49.9. MS (EI) m/z: 168 [M + H - 19]⁺. HRMS (EI) m/z: calcd for C₈H₈O₂S [M + H - 19]⁺ 168.0245, found 168.0251.

S2. Refinement

All H atoms of the phenyl groups were placed at calculated positions and treated as riding on their parent atoms, with C -H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The methylene H atoms were found from a difference map. Their positions were refined with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

S3. Results and discussion

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing of the molecules in the unit cell in a view approximately along [010].

1-Fluoro-1,3-dihydrobenzo[c]thiophene 2,2-dioxide

Crystal data	
$C_8H_7FO_2S$	F(000) = 384
$M_r = 186.20$	$D_{\rm x} = 1.535 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
a = 5.7772 (5) Å	Cell parameters from 1262 reflections
b = 8.3886 (6) Å	$\theta = 5.3-66.3^{\circ}$
c = 16.8717 (12) Å	$\mu = 3.38 \text{ mm}^{-1}$
$\beta = 99.742 \ (6)^{\circ}$	T = 296 K
$V = 805.86 (11) \text{ Å}^3$	Block, colourless
Z = 4	$0.05 \times 0.03 \times 0.02 \text{ mm}$

Data collection

Dura concerion	
Bruker APEXII CCD diffractometer	1475 independent reflections 1206 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.080$
φ and ω scans	$\theta_{\rm max} = 69.6^\circ, \theta_{\rm min} = 5.3^\circ$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Bruker, 2009)	$k = -10 \rightarrow 9$
$T_{\min} = 0.418, T_{\max} = 0.753$	$l = -19 \rightarrow 17$
6724 measured reflections	
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.205$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
1475 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1242P)^2 + 0.3031P]$
109 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.98 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.58177 (16)	0.76462 (12)	0.95887 (5)	0.0438 (4)	
F1	0.1554 (5)	0.6784 (4)	0.96561 (16)	0.0686 (8)	
01	0.6976 (5)	0.9083 (4)	0.94354 (18)	0.0593 (9)	
O2	0.6325 (6)	0.6952 (5)	1.03759 (17)	0.0675 (10)	
C1	0.2672 (7)	0.7960 (5)	0.9290 (2)	0.0442 (9)	
H1	0.2194	0.9030	0.9431	0.053*	
C2	0.2387 (7)	0.7727 (4)	0.8397 (2)	0.0381 (8)	
C3	0.0537 (8)	0.8364 (5)	0.7852 (3)	0.0521 (10)	
H3	-0.0632	0.8964	0.8027	0.063*	
C4	0.0492 (10)	0.8075 (6)	0.7037 (3)	0.0633 (13)	
H4	-0.0734	0.8477	0.6661	0.076*	
C5	0.2237 (10)	0.7203 (6)	0.6781 (3)	0.0638 (13)	
H5	0.2178	0.7029	0.6233	0.077*	
C6	0.4093 (8)	0.6576 (5)	0.7325 (2)	0.0512 (10)	
H6	0.5276	0.5994	0.7147	0.061*	
C7	0.4136 (6)	0.6840 (4)	0.8142 (2)	0.0373 (8)	
C8	0.6028 (7)	0.6252 (5)	0.8808 (2)	0.0442 (9)	
H8A	0.7564	0.6286	0.8649	0.053*	
H8B	0.5711	0.5175	0.8969	0.053*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0448 (6)	0.0535 (7)	0.0294 (6)	-0.0075 (4)	-0.0046 (4)	-0.0040 (3)
F1	0.0590 (15)	0.098 (2)	0.0493 (15)	-0.0118 (15)	0.0102 (11)	0.0065 (13)
01	0.0623 (18)	0.0629 (19)	0.0519 (16)	-0.0229 (15)	0.0075 (13)	-0.0147 (14)
O2	0.068 (2)	0.095 (2)	0.0328 (16)	-0.0078 (18)	-0.0109 (14)	0.0109 (15)
C1	0.047 (2)	0.054 (2)	0.0302 (19)	-0.0005 (17)	0.0026 (14)	-0.0082 (15)
C2	0.045 (2)	0.0384 (19)	0.0283 (18)	-0.0040 (15)	-0.0003 (14)	-0.0037 (13)
C3	0.053 (2)	0.051 (2)	0.047 (2)	0.0017 (18)	-0.0075 (17)	0.0000 (17)
C4	0.078 (3)	0.063 (3)	0.038 (2)	-0.013 (2)	-0.019 (2)	0.0103 (19)
C5	0.092 (4)	0.069 (3)	0.027 (2)	-0.021 (3)	-0.001(2)	-0.0043 (18)
C6	0.068 (3)	0.052 (2)	0.0358 (19)	-0.0143 (19)	0.0140 (17)	-0.0135 (16)
C7	0.0453 (19)	0.0335 (18)	0.0313 (17)	-0.0072 (14)	0.0011 (14)	-0.0070 (13)
C8	0.0427 (19)	0.043 (2)	0.045 (2)	0.0018 (16)	0.0020 (15)	-0.0037 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	1.423 (3)	C3—C4	1.392 (6)
S1—O2	1.434 (3)	C4—H4	0.9300
S1—C1	1.821 (4)	C4—C5	1.373 (8)
S1—C8	1.781 (4)	С5—Н5	0.9300
F1—C1	1.381 (5)	C5—C6	1.391 (7)
C1—H1	0.9800	С6—Н6	0.9300
C1—C2	1.502 (5)	C6—C7	1.392 (5)
C2—C3	1.393 (5)	С7—С8	1.512 (5)
C2—C7	1.381 (5)	C8—H8A	0.9700
С3—Н3	0.9300	C8—H8B	0.9700
O1—S1—O2	118.9 (2)	C3—C4—H4	119.6
O1—S1—C1	107.8 (2)	C5—C4—C3	120.7 (4)
O1—S1—C8	109.19 (19)	C5—C4—H4	119.6
O2—S1—C1	110.6 (2)	С4—С5—Н5	119.4
O2—S1—C8	112.9 (2)	C4—C5—C6	121.3 (4)
C8—S1—C1	94.61 (18)	С6—С5—Н5	119.4
S1—C1—H1	112.0	С5—С6—Н6	120.8
F1—C1—S1	107.1 (3)	C5—C6—C7	118.4 (4)
F1—C1—H1	112.0	С7—С6—Н6	120.8
F1—C1—C2	112.1 (3)	C2—C7—C6	120.2 (4)
C2—C1—S1	101.1 (3)	C2—C7—C8	114.8 (3)
C2—C1—H1	112.0	C6—C7—C8	125.0 (4)
C3—C2—C1	123.6 (4)	S1—C8—H8A	111.4
C7—C2—C1	114.9 (3)	S1—C8—H8B	111.4
C7—C2—C3	121.4 (4)	C7—C8—S1	101.8 (2)
С2—С3—Н3	121.0	С7—С8—Н8А	111.4
C4—C3—C2	118.0 (4)	С7—С8—Н8В	111.4
С4—С3—Н3	121.0	H8A—C8—H8B	109.3

S1—C1—C2—C3	-156.5 (3)	C1—C2—C7—C8	0.2 (5)
S1—C1—C2—C7	22.5 (4)	C2—C3—C4—C5	-0.7 (7)
F1—C1—C2—C3	89.7 (5)	C2C7C8S1	-23.5 (4)
F1-C1-C2-C7	-91.2 (4)	C3—C2—C7—C6	0.7 (6)
O1—S1—C1—F1	-162.2 (2)	C3—C2—C7—C8	179.3 (4)
O1—S1—C1—C2	80.4 (3)	C3—C4—C5—C6	0.3 (8)
O1—S1—C8—C7	-79.0 (3)	C4—C5—C6—C7	0.6 (7)
O2—S1—C1—F1	-30.6 (3)	C5—C6—C7—C2	-1.0 (6)
O2—S1—C1—C2	-148.1 (3)	C5—C6—C7—C8	-179.6 (4)
O2—S1—C8—C7	146.3 (3)	C6—C7—C8—S1	155.1 (3)
C1—S1—C8—C7	31.6 (3)	C7—C2—C3—C4	0.2 (6)
C1—C2—C3—C4	179.3 (4)	C8—S1—C1—F1	86.0 (3)
C1—C2—C7—C6	-178.4 (3)	C8—S1—C1—C2	-31.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…O1 ⁱ	0.93	2.95	3.687 (6)	138
C1—H1···O1 ⁱⁱ	0.98	2.47	3.266 (5)	139
C1—H1···O2 ⁱⁱ	0.98	3.48	4.331 (6)	147
C4—H4···O2 ⁱⁱⁱ	0.93	2.54	3.371 (5)	148
C5—H5…F1 ^{iv}	0.93	2.81	3.640 (5)	150
$C8$ — $H8B$ ···· $O2^{v}$	0.97	2.50	3.406 (5)	156

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+2; (iii) x-1, -y+3/2, z-1/2; (iv) x, -y+3/2, z-1/2; (v) -x+1, -y+1, -z+2.