inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of CdSO4(H2O): a redetermination

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand, and bDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 31 August 2015; accepted 9 September 2015; online 17 September 2015)

The crystal structure of the title compound, cadmium sulfate monohydrate or poly[(μ2-aqua)(μ4-sulfato)­cadmium], was redetermined based on modern CMOS (complementary metal oxide silicon) data. In comparison with the previous study [Bregeault & Herpin (1970[Bregeault, J. M. & Herpin, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 37-42.]). Bull. Soc. Fr. Mineral. Cristallogr. 93, 37–42], all non-H atoms were refined with anisotropic displacement parameters and the hydrogen-bonding pattern unambiguously established due to location of the hydrogen atoms. In addition, a significant improvement in terms of precision and accuracy was achieved. In the crystal, the Cd2+ cation is coordinated by four O atoms of four sulfate anions and two O atoms of water mol­ecules, forming a distorted octa­hedral trans-[CdO6] polyhedron. Each sulfate anion bridges four Cd2+ cations and each water mol­ecule bridges two Cd2+ cations, leading to the formation of a three-dimensional framework, with Cd⋯Cd separations in the range 4.0757 (2)–6.4462 (3) Å. O—H⋯O hydrogen-bonding inter­actions of medium strength between the coordinating water mol­ecules and sulfate anions consolidate the crystal packing.

1. Related literature

For the previous report on the structure of the title compound, see: Bregeault & Herpin (1970[Bregeault, J. M. & Herpin, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 37-42.]).

2. Experimental

2.1. Crystal data

  • CdSO4(H2O)

  • Mr = 226.48

  • Monoclinic, P 21 /c

  • a = 7.6195 (3) Å

  • b = 7.4517 (3) Å

  • c = 8.1457 (3) Å

  • β = 122.244 (1)°

  • V = 391.17 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.01 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.22 mm

2.2. Data collection

  • Bruker APEXII D8 QUEST CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.746

  • 17459 measured reflections

  • 1004 independent reflections

  • 958 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.012

  • wR(F2) = 0.026

  • S = 1.18

  • 1004 reflections

  • 72 parameters

  • 2 restraints

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.82 (2) 1.88 (2) 2.6958 (17) 170 (3)
O5—H5B⋯O2ii 0.86 (2) 1.90 (2) 2.7530 (17) 173 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Table 2
Comparison of bond lengths (Å) in the current and the previous (Bregeault & Herpin, 1970[Bregeault, J. M. & Herpin, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 37-42.]) refinement of cadmium sulfate monohydrate

For the previous refinement: a = 7.607, b = 7.541, c = 8.186 Å, β = 121.86° and reliability index R = 0.12.

Bond Current refinement Previous refinement
Cd1—O1i 2.2417 (12) 2.21 (5)
Cd1—O2ii 2.2530 (13) 2.27 (3)
Cd1—O3 2.2421 (12) 2.36 (5)
Cd1—O4iii 2.3112 (12) 2.33 (3)
Cd1—O5i 2.3210 (12) 2.24 (3)
Cd1—O5 2.4024 (12) 2.33 (3)
S1—O1 1.4703 (12) 1.50 (4)
S1—O2 1.4845 (12) 1.62 (6)
S1—O3 1.4831 (12) 1.45 (3)
S1—O4 1.4584 (12) 1.42 (4)
Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) −x, −y + 1, −z; (iii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; method used to solve structure: coordinates taken from previous refinement; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The title compound was obtained serendipitously. CdSO4·8/3H2O (0.256 g, 1 mmol) and 3,6-di-2-pyridyl-1,2,4,5-tetra­zine (0.236 g, 1 mmol) dissolved in water (5 ml) were added to a 23 ml Teflon-lined autoclave and heated at 356 K for 5 days. The product was collected by filtration, washed with water and air-dried. Colourless block-shaped crystals of the title compound suitable for X-ray analysis were isolated.

Refinement top

The same cell setting and atom numbering scheme as in the previous refinement (Bregeault & Herpin, 1970) were used. Starting coordinates for the atoms were also taken from the previous model. Hydrogen atoms of the water molecules were located from difference Fourier maps and were refined with an O—H distance restraint of 0.85 (2) Å.

Related literature top

For the previous report on the structure of the title compound, see: Bregeault & Herpin (1970).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: coordinates taken from previous refinement; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The coordination sphere around the Cd2+ cation with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x, 1/2 – y, 1/2 + z; (ii) –x, 1 – y, –z; (iii) 1 – x, -1/2 + y, 1/2 – z].
[Figure 2] Fig. 2. The three-dimensional framework structure of the title compound in a view along the b axis. Dashed lines indicate intermolecular O—H···O hydrogen-bonding interactions.
Poly[(µ2-aqua)(µ4-sulfato)cadmium] top
Crystal data top
CdSO4(H2O)F(000) = 424
Mr = 226.48Dx = 3.846 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6195 (3) ÅCell parameters from 9894 reflections
b = 7.4517 (3) Åθ = 3.2–30.5°
c = 8.1457 (3) ŵ = 6.01 mm1
β = 122.244 (1)°T = 296 K
V = 391.17 (3) Å3Block, colourless
Z = 40.26 × 0.22 × 0.22 mm
Data collection top
Bruker APEXII D8 QUEST CMOS
diffractometer
1004 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus958 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.023
Detector resolution: 10.5 pixels mm-1θmax = 28.7°, θmin = 3.2°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.701, Tmax = 0.746l = 1010
17459 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012All H-atom parameters refined
wR(F2) = 0.026 w = 1/[σ2(Fo2) + (0.0107P)2 + 0.2955P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
1004 reflectionsΔρmax = 0.28 e Å3
72 parametersΔρmin = 0.33 e Å3
2 restraints
Crystal data top
CdSO4(H2O)V = 391.17 (3) Å3
Mr = 226.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6195 (3) ŵ = 6.01 mm1
b = 7.4517 (3) ÅT = 296 K
c = 8.1457 (3) Å0.26 × 0.22 × 0.22 mm
β = 122.244 (1)°
Data collection top
Bruker APEXII D8 QUEST CMOS
diffractometer
1004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
958 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.023
17459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0122 restraints
wR(F2) = 0.026All H-atom parameters refined
S = 1.18Δρmax = 0.28 e Å3
1004 reflectionsΔρmin = 0.33 e Å3
72 parameters
Special details top

Experimental. SADABS was used for absorption correction. wR2(int) was 0.0449 before and 0.0357 after correction. The Ratio of minimum to maximum transmission is 0.9396. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.21887 (2)0.26013 (2)0.26053 (2)0.01330 (5)
S10.25524 (6)0.61729 (5)0.01217 (5)0.01018 (8)
O10.13754 (18)0.50022 (16)0.15811 (17)0.0183 (2)
O20.1103 (2)0.75977 (15)0.00480 (19)0.0169 (3)
O30.32756 (18)0.51255 (16)0.19211 (17)0.0168 (2)
O40.43393 (18)0.69973 (18)0.02148 (18)0.0184 (2)
O50.27603 (19)0.09752 (16)0.03844 (17)0.0140 (2)
H5A0.400 (3)0.074 (4)0.110 (3)0.038 (7)*
H5B0.216 (3)0.005 (2)0.016 (3)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01176 (7)0.01373 (7)0.01200 (7)0.00165 (4)0.00472 (5)0.00087 (4)
S10.00809 (16)0.00898 (17)0.01063 (17)0.00001 (13)0.00310 (14)0.00041 (13)
O10.0156 (6)0.0170 (6)0.0158 (6)0.0004 (5)0.0041 (5)0.0054 (5)
O20.0122 (6)0.0134 (6)0.0206 (6)0.0027 (4)0.0058 (5)0.0018 (4)
O30.0155 (6)0.0153 (6)0.0147 (5)0.0019 (5)0.0048 (5)0.0046 (4)
O40.0101 (5)0.0224 (6)0.0198 (6)0.0022 (5)0.0061 (5)0.0047 (5)
O50.0120 (5)0.0133 (5)0.0145 (5)0.0008 (4)0.0055 (5)0.0001 (4)
Geometric parameters (Å, º) top
Cd1—O1i2.2417 (12)S1—O31.4831 (12)
Cd1—O2ii2.2530 (13)S1—O41.4584 (12)
Cd1—O32.2421 (12)O1—Cd1iv2.2417 (12)
Cd1—O4iii2.3112 (12)O2—Cd1ii2.2530 (13)
Cd1—O5i2.3210 (12)O4—Cd1v2.3112 (12)
Cd1—O52.4024 (12)O5—Cd1iv2.3211 (12)
S1—O11.4703 (12)O5—H5A0.822 (17)
S1—O21.4845 (12)O5—H5B0.859 (16)
O1i—Cd1—O2ii82.50 (4)O1—S1—O3109.76 (7)
O1i—Cd1—O3175.24 (4)O3—S1—O2109.52 (8)
O1i—Cd1—O4iii89.31 (5)O4—S1—O1112.43 (8)
O1i—Cd1—O5i92.57 (4)O4—S1—O2109.35 (7)
O1i—Cd1—O588.62 (4)O4—S1—O3109.03 (7)
O2ii—Cd1—O4iii161.94 (4)S1—O1—Cd1iv131.81 (7)
O2ii—Cd1—O580.22 (4)S1—O2—Cd1ii116.42 (7)
O2ii—Cd1—O5i117.97 (4)S1—O3—Cd1134.06 (7)
O3—Cd1—O2ii101.65 (4)S1—O4—Cd1v140.91 (8)
O3—Cd1—O4iii86.05 (4)Cd1iv—O5—Cd1119.27 (5)
O3—Cd1—O589.80 (4)Cd1iv—O5—H5A109.7 (18)
O3—Cd1—O5i87.54 (4)Cd1—O5—H5A99.9 (18)
O4iii—Cd1—O5i78.31 (4)Cd1iv—O5—H5B113.3 (14)
O4iii—Cd1—O583.53 (4)Cd1—O5—H5B108.6 (14)
O5i—Cd1—O5161.78 (6)H5A—O5—H5B104 (2)
O1—S1—O2106.70 (7)
O1—S1—O2—Cd1ii2.46 (10)O3—S1—O1—Cd1iv54.81 (11)
O1—S1—O3—Cd123.82 (12)O3—S1—O2—Cd1ii116.29 (8)
O1—S1—O4—Cd1v135.57 (12)O3—S1—O4—Cd1v13.61 (15)
O2—S1—O1—Cd1iv173.39 (9)O4—S1—O1—Cd1iv66.74 (12)
O2—S1—O3—Cd193.01 (11)O4—S1—O2—Cd1ii124.30 (8)
O2—S1—O4—Cd1v106.10 (13)O4—S1—O3—Cd1147.38 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3iii0.82 (2)1.88 (2)2.6958 (17)170 (3)
O5—H5B···O2vi0.86 (2)1.90 (2)2.7530 (17)173 (2)
Symmetry codes: (iii) x+1, y1/2, z+1/2; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.822 (17)1.883 (17)2.6958 (17)170 (3)
O5—H5B···O2ii0.859 (16)1.899 (17)2.7530 (17)173 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z.
Comparison of bond lengths (Å) in the current and the previous (Bregeault & Herpin, 1970) refinement of cadmium sulfate monohydrate top
For the previous refinement: a = 7.607, b = 7.541, c = 8.186 Å, β = 121.86° and reliability index R = 0.12.
BondCurrent refinementPrevious refinement
Cd1—O1i2.2417 (12)2.21 (5)
Cd1—O2ii2.2530 (13)2.27 (3)
Cd1—O32.2421 (12)2.36 (5)
Cd1—O4iii2.3112 (12)2.33 (3)
Cd1—O5i2.3210 (12)2.24 (3)
Cd1—O52.4024 (12)2.33 (3)
S1—O11.4703 (12)1.50 (4)
S1—O21.4845 (12)1.62 (6)
S1—O31.4831 (12)1.45 (3)
S1—O41.4584 (12)1.42 (4)
Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x, -y+1, -z; (iii) -x+1, y-1/2, -z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU Research Scholar.

References

First citationBregeault, J. M. & Herpin, P. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 37–42.  CAS Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds