organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-methyl-2-methyl­amino-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: raja.13nap@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 September 2015; accepted 29 September 2015; online 7 October 2015)

In the title compound, C14H13N3O4, the pyran ring adopts an envelope conformation with the methine C atom as the flap. The dihedral angle between the benzene and hydro­pyridine rings is 29.33 (3)°. The methyl­amine C atom deviates from the plane of its attached ring by 0.380 (5) Å and an intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distances vary from 3.6529 (10) to 3.6872 (10) Å] link the mol­ecules, generating a three-dimensional network.

1. Related literature

For the uses and biological importance of chromenes, see: Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]); Khan et al. (2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Raj et al. (2010[Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H13N3O4

  • Mr = 287.27

  • Orthorhombic, F d d 2

  • a = 24.0182 (13) Å

  • b = 26.8445 (14) Å

  • c = 7.9140 (4) Å

  • V = 5102.6 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.972

  • 12952 measured reflections

  • 2261 independent reflections

  • 2096 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.04

  • 2261 reflections

  • 192 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.83 2.543 (2) 139
C5—H5A⋯O2i 0.96 2.46 3.376 (3) 159
C5—H5C⋯O3ii 0.96 2.51 3.416 (3) 157
C6—H6A⋯O3ii 0.96 2.55 3.429 (2) 152
C9—H9⋯O3i 0.93 2.60 3.455 (2) 154
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{3\over 4}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer etc. (Khan et al., 2010; Raj et al., 2010). Against this backround, X-ray analysis of the title compound has been carried out to study its structural aspects.

The molecular structure of the title molecule is shown in Fig. 1. The pyran ring (C1-C7-O4-C8-C13-C14) adopts a envelope conformation with the deviation of atoms O4 and C14 from the mean plane through atoms (C1-C7-C8-C13) being 0.475 and -0.095Å, respectively. The smallest displacement asymmetry parameters q2 and q3 are 0.421 (17) and -0.219 (17)Å. The ring parameters Q and phase angle θ are 0.475 (16)Å and 117.5 (2)°, respectively. The dihedral angle between the mean planes of the chromeno ring system (fusion of benzene and pyran rings) and the pyridine ring is 29.37 (7)°. The pyridine ring mean planes forms a dihedral angle of 31.22 (8)° with phenyl ring (C8-C13). The atoms O3 deviates by -0.295Å from the chromeno ring mean plane (O4/C1-C7).

An intramolecular N—H···O and N—H···N interaction occurs. In the crystal, molecules are linked by C—H···O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The molecules are linked via C—H···O hydrogen bonds, forming ribbons along [110] dirction. There are a number of ππ interactions present linking the ribbons and forming a three dimensional structure [ Cg2-Cg3i =3.6529 (10)Å, Cg2-Cg3ii = 3.6871 (10)Å and Cg3-Cg2iii = 3.6528 (10)Å; where Cg2 and Cg3 are the centroids of the N3/C4/C3/C2/C1/C7 and C8/C13 rings, respectively; symmetry codes: (i) -x,-y,-z; (ii) 1/4+x,1/4-y, 1/4+z; (iii) -1/4+x,1/4-y,-1/4+z].

Related literature top

For the uses and biological importance of chromenes, see: Ercole et al. (2009); Geen et al. (1996); Khan et al. (2010); Raj et al. (2010).

Experimental top

A mixture of 3-formylchromone (1 mmol), N,N'-dimethyl-2-nitroethene-1, 1-diamine (1 mmol) in ethanol (3 ml) and a catalytic amount (0.050 mmol) of In(OTf)3 was added and refluxed for about 30 minutes. The product was purified by column chromatography (5/95 % Ethylacetate/petether) to afford the pure product in 94 % yield. The purified compound was recrystalised from DMSO-D6 by using slow evaporation method to yield colourless blocks.

Refinement top

N and C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer etc. (Khan et al., 2010; Raj et al., 2010). Against this backround, X-ray analysis of the title compound has been carried out to study its structural aspects.

The molecular structure of the title molecule is shown in Fig. 1. The pyran ring (C1-C7-O4-C8-C13-C14) adopts a envelope conformation with the deviation of atoms O4 and C14 from the mean plane through atoms (C1-C7-C8-C13) being 0.475 and -0.095Å, respectively. The smallest displacement asymmetry parameters q2 and q3 are 0.421 (17) and -0.219 (17)Å. The ring parameters Q and phase angle θ are 0.475 (16)Å and 117.5 (2)°, respectively. The dihedral angle between the mean planes of the chromeno ring system (fusion of benzene and pyran rings) and the pyridine ring is 29.37 (7)°. The pyridine ring mean planes forms a dihedral angle of 31.22 (8)° with phenyl ring (C8-C13). The atoms O3 deviates by -0.295Å from the chromeno ring mean plane (O4/C1-C7).

An intramolecular N—H···O and N—H···N interaction occurs. In the crystal, molecules are linked by C—H···O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The molecules are linked via C—H···O hydrogen bonds, forming ribbons along [110] dirction. There are a number of ππ interactions present linking the ribbons and forming a three dimensional structure [ Cg2-Cg3i =3.6529 (10)Å, Cg2-Cg3ii = 3.6871 (10)Å and Cg3-Cg2iii = 3.6528 (10)Å; where Cg2 and Cg3 are the centroids of the N3/C4/C3/C2/C1/C7 and C8/C13 rings, respectively; symmetry codes: (i) -x,-y,-z; (ii) 1/4+x,1/4-y, 1/4+z; (iii) -1/4+x,1/4-y,-1/4+z].

For the uses and biological importance of chromenes, see: Ercole et al. (2009); Geen et al. (1996); Khan et al. (2010); Raj et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Viewed down the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details)
1-Methyl-2-methylamino-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one top
Crystal data top
C14H13N3O4F(000) = 2400
Mr = 287.27Dx = 1.496 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2096 reflections
a = 24.0182 (13) Åθ = 2.3–25.0°
b = 26.8445 (14) ŵ = 0.11 mm1
c = 7.9140 (4) ÅT = 293 K
V = 5102.6 (5) Å3Block, colourless
Z = 160.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2261 independent reflections
Radiation source: fine-focus sealed tube2096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2728
Tmin = 0.962, Tmax = 0.972k = 3131
12952 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0468P)2 + 1.3678P]
where P = (Fo2 + 2Fc2)/3
2261 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C14H13N3O4V = 5102.6 (5) Å3
Mr = 287.27Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 24.0182 (13) ŵ = 0.11 mm1
b = 26.8445 (14) ÅT = 293 K
c = 7.9140 (4) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2261 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2096 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.972Rint = 0.021
12952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.11 e Å3
2261 reflectionsΔρmin = 0.14 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03152 (7)0.07119 (6)0.5103 (2)0.0316 (4)
C20.07422 (7)0.05817 (6)0.6093 (2)0.0348 (4)
H20.06730.04830.72000.042*
C30.12950 (7)0.05908 (6)0.5492 (2)0.0348 (4)
C40.14101 (7)0.07284 (6)0.3758 (2)0.0323 (4)
C50.21801 (8)0.07230 (9)0.1521 (3)0.0562 (6)
H5A0.19370.05650.07230.084*
H5B0.25310.05510.15430.084*
H5C0.22390.10630.11930.084*
C60.10471 (8)0.10996 (8)0.1107 (2)0.0514 (5)
H6A0.13780.13000.10950.077*
H6B0.07310.13050.08530.077*
H6C0.10780.08410.02750.077*
C70.04068 (6)0.08867 (6)0.33547 (19)0.0305 (4)
H70.02730.12310.32730.037*
C80.04681 (7)0.05675 (6)0.2547 (2)0.0315 (4)
C90.08276 (7)0.04527 (7)0.1229 (2)0.0400 (4)
H90.06920.03890.01490.048*
C100.13915 (8)0.04360 (7)0.1563 (3)0.0439 (5)
H100.16370.03610.06910.053*
C110.16010 (8)0.05281 (7)0.3162 (3)0.0428 (5)
H110.19830.05280.33520.051*
C120.12390 (8)0.06192 (7)0.4459 (3)0.0403 (4)
H120.13770.06690.55430.048*
C130.06647 (7)0.06394 (6)0.4184 (2)0.0333 (4)
C140.02720 (8)0.06748 (6)0.5610 (2)0.0353 (4)
O10.22180 (6)0.04252 (6)0.6136 (2)0.0619 (4)
O20.15774 (6)0.02632 (7)0.79971 (18)0.0710 (5)
O30.04181 (6)0.06418 (6)0.70928 (16)0.0523 (4)
O40.00911 (5)0.05848 (4)0.21703 (15)0.0356 (3)
N10.17083 (7)0.04246 (6)0.6569 (2)0.0458 (4)
N20.19283 (6)0.07078 (5)0.3198 (2)0.0409 (4)
H2A0.21690.06790.39960.049*
N30.09766 (5)0.08753 (5)0.27888 (17)0.0339 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (9)0.0326 (9)0.0300 (9)0.0013 (7)0.0007 (7)0.0038 (7)
C20.0399 (10)0.0385 (9)0.0262 (9)0.0023 (7)0.0043 (7)0.0041 (7)
C30.0317 (9)0.0351 (9)0.0376 (9)0.0000 (7)0.0096 (8)0.0021 (7)
C40.0279 (9)0.0299 (8)0.0392 (9)0.0020 (7)0.0050 (8)0.0021 (8)
C50.0371 (11)0.0692 (14)0.0622 (13)0.0076 (9)0.0087 (10)0.0000 (12)
C60.0379 (10)0.0763 (14)0.0399 (10)0.0030 (9)0.0018 (9)0.0174 (10)
C70.0282 (9)0.0317 (8)0.0315 (8)0.0012 (6)0.0022 (7)0.0017 (7)
C80.0280 (9)0.0310 (9)0.0356 (9)0.0027 (6)0.0001 (7)0.0029 (7)
C90.0395 (10)0.0425 (10)0.0378 (9)0.0006 (8)0.0079 (8)0.0006 (8)
C100.0364 (10)0.0426 (10)0.0527 (12)0.0032 (8)0.0143 (9)0.0029 (9)
C110.0283 (10)0.0424 (10)0.0577 (12)0.0009 (8)0.0010 (9)0.0047 (9)
C120.0334 (9)0.0393 (10)0.0483 (11)0.0010 (8)0.0041 (9)0.0015 (8)
C130.0318 (9)0.0304 (8)0.0376 (9)0.0028 (7)0.0014 (8)0.0007 (7)
C140.0376 (10)0.0344 (9)0.0338 (10)0.0029 (7)0.0032 (8)0.0027 (8)
O10.0335 (8)0.0824 (10)0.0697 (11)0.0039 (7)0.0197 (7)0.0028 (9)
O20.0627 (10)0.1090 (14)0.0414 (8)0.0052 (9)0.0172 (7)0.0141 (9)
O30.0468 (8)0.0771 (11)0.0330 (7)0.0008 (7)0.0074 (6)0.0042 (7)
O40.0274 (7)0.0480 (7)0.0315 (6)0.0005 (5)0.0014 (5)0.0065 (5)
N10.0422 (10)0.0525 (10)0.0427 (10)0.0006 (7)0.0168 (8)0.0015 (8)
N20.0252 (8)0.0485 (9)0.0492 (9)0.0011 (6)0.0038 (7)0.0018 (8)
N30.0263 (7)0.0419 (8)0.0334 (8)0.0003 (6)0.0005 (6)0.0026 (6)
Geometric parameters (Å, º) top
C1—C21.337 (2)C7—O41.4527 (19)
C1—C141.470 (2)C7—H70.9800
C1—C71.478 (2)C8—O41.3767 (19)
C2—C31.410 (2)C8—C91.389 (2)
C2—H20.9300C8—C131.392 (2)
C3—N11.383 (2)C9—C101.381 (3)
C3—C41.448 (3)C9—H90.9300
C4—N21.322 (2)C10—C111.384 (3)
C4—N31.352 (2)C10—H100.9300
C5—N21.459 (3)C11—C121.367 (3)
C5—H5A0.9600C11—H110.9300
C5—H5B0.9600C12—C131.398 (2)
C5—H5C0.9600C12—H120.9300
C6—N31.471 (2)C13—C141.474 (2)
C6—H6A0.9600C14—O31.228 (2)
C6—H6B0.9600O1—N11.271 (2)
C6—H6C0.9600O2—N11.250 (2)
C7—N31.440 (2)N2—H2A0.8600
C2—C1—C14123.98 (15)O4—C8—C13121.86 (15)
C2—C1—C7121.15 (15)C9—C8—C13121.26 (16)
C14—C1—C7114.82 (14)C10—C9—C8118.23 (18)
C1—C2—C3121.34 (16)C10—C9—H9120.9
C1—C2—H2119.3C8—C9—H9120.9
C3—C2—H2119.3C9—C10—C11121.74 (18)
N1—C3—C2117.53 (16)C9—C10—H10119.1
N1—C3—C4121.99 (16)C11—C10—H10119.1
C2—C3—C4120.25 (15)C12—C11—C10119.15 (17)
N2—C4—N3123.19 (16)C12—C11—H11120.4
N2—C4—C3119.11 (15)C10—C11—H11120.4
N3—C4—C3117.71 (15)C11—C12—C13121.18 (18)
N2—C5—H5A109.5C11—C12—H12119.4
N2—C5—H5B109.5C13—C12—H12119.4
H5A—C5—H5B109.5C8—C13—C12118.32 (16)
N2—C5—H5C109.5C8—C13—C14120.29 (15)
H5A—C5—H5C109.5C12—C13—C14120.99 (16)
H5B—C5—H5C109.5O3—C14—C1122.65 (16)
N3—C6—H6A109.5O3—C14—C13122.98 (17)
N3—C6—H6B109.5C1—C14—C13114.19 (15)
H6A—C6—H6B109.5C8—O4—C7112.85 (13)
N3—C6—H6C109.5O2—N1—O1119.09 (16)
H6A—C6—H6C109.5O2—N1—C3119.25 (16)
H6B—C6—H6C109.5O1—N1—C3121.65 (16)
N3—C7—O4106.47 (12)C4—N2—C5133.91 (16)
N3—C7—C1115.21 (13)C4—N2—H2A113.0
O4—C7—C1110.46 (13)C5—N2—H2A113.0
N3—C7—H7108.2C4—N3—C7124.17 (14)
O4—C7—H7108.2C4—N3—C6122.96 (15)
C1—C7—H7108.2C7—N3—C6112.47 (13)
O4—C8—C9116.82 (15)
C14—C1—C2—C3175.22 (15)C2—C1—C14—C13156.47 (16)
C7—C1—C2—C32.0 (3)C7—C1—C14—C1320.9 (2)
C1—C2—C3—N1176.57 (17)C8—C13—C14—O3165.56 (17)
C1—C2—C3—C41.9 (2)C12—C13—C14—O37.0 (3)
N1—C3—C4—N21.9 (2)C8—C13—C14—C19.7 (2)
C2—C3—C4—N2176.32 (15)C12—C13—C14—C1177.78 (15)
N1—C3—C4—N3178.45 (15)C9—C8—O4—C7157.13 (15)
C2—C3—C4—N34.0 (2)C13—C8—O4—C725.6 (2)
C2—C1—C7—N33.6 (2)N3—C7—O4—C8179.19 (12)
C14—C1—C7—N3173.86 (14)C1—C7—O4—C855.05 (17)
C2—C1—C7—O4124.28 (17)C2—C3—N1—O21.8 (3)
C14—C1—C7—O453.19 (18)C4—C3—N1—O2172.78 (17)
O4—C8—C9—C10179.54 (16)C2—C3—N1—O1179.23 (17)
C13—C8—C9—C103.2 (2)C4—C3—N1—O16.2 (3)
C8—C9—C10—C110.2 (3)N3—C4—N2—C514.2 (3)
C9—C10—C11—C122.6 (3)C3—C4—N2—C5166.2 (2)
C10—C11—C12—C132.5 (3)N2—C4—N3—C7178.08 (15)
O4—C8—C13—C12179.59 (16)C3—C4—N3—C72.3 (2)
C9—C8—C13—C123.3 (2)N2—C4—N3—C69.7 (2)
O4—C8—C13—C147.7 (2)C3—C4—N3—C6169.90 (16)
C9—C8—C13—C14169.44 (16)O4—C7—N3—C4124.20 (15)
C11—C12—C13—C80.4 (3)C1—C7—N3—C41.4 (2)
C11—C12—C13—C14172.27 (16)O4—C7—N3—C662.89 (17)
C2—C1—C14—O318.8 (3)C1—C7—N3—C6174.29 (15)
C7—C1—C14—O3163.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.832.543 (2)139
C5—H5A···O2i0.962.463.376 (3)159
C5—H5C···O3ii0.962.513.416 (3)157
C6—H6A···O3ii0.962.553.429 (2)152
C9—H9···O3i0.932.603.455 (2)154
Symmetry codes: (i) x, y, z1; (ii) x+1/4, y+1/4, z3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.832.543 (2)139
C5—H5A···O2i0.962.463.376 (3)159
C5—H5C···O3ii0.962.513.416 (3)157
C6—H6A···O3ii0.962.553.429 (2)152
C9—H9···O3i0.932.603.455 (2)154
Symmetry codes: (i) x, y, z1; (ii) x+1/4, y+1/4, z3/4.
 

Acknowledgements

The authors thank Department of Chemistry, IIT, Chennai, India, for X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.  Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds