

OPEN access

Crystal structure of 2-bromo-3-dimethylamino-N,N,N',N',4-pentamethyl-4-(trimethylsilyloxy)pent-2-eneamidinium bromide

Ioannis Tiritiris, Ralf Kress and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

Received 30 November 2015; accepted 11 December 2015

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic

The reaction of the orthoamide 1,1,1-tris(dimethylamino)-4methyl-4-(trimethylsilyloxy)pent-2-yne with bromine in benzene, yields the title salt, C₁₅H₃₃BrN₃OSi⁺·Br⁻. The C-N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double-bond character, pointing towards charge delocalization within the NCN plane. The C-Br bond length of 1.926 (5) Å is characteristic for a C-Br single bond. Additionally, there is a bromine-bromine interaction [3.229 (3) Å] present involving the anion and cation. In the crystal, weak C-H···Br interactions between the methyl H atoms of the cation and the bromide ions are present.

Keywords: crystal structure; bromide; amidinium; salt; Br...Br interactions: C—H···Br interactions.

CCDC reference: 1441961

1. Related literature

For the nature of halogen-halogen interactions in crystals, see: Desiraju & Parthasarathy (1989). For the synthesis of alkynyl orthoamides and propiolamidinium salts, see: Weingärtner et al. (2011). For the synthesis of vinylogous guanidinium iodides and bromides, see: Kantlehner et al. (2012a). For the crystal of 3-phenyl-*N*,*N*,*N*',*N*''-tetramethyl-1-ethyne-1structure carboximidamidium bromide, see: Tiritiris & Kantlehner (2012b).

V = 4167.5 (3) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.30 \times 0.15 \text{ mm}$

 $\mu = 3.95 \text{ mm}^-$

T = 100 K

Z = 8

2. Experimental

2.1. Crystal data

C₁₅H₃₃BrN₃OSi⁺·Br⁻ $M_r = 459.33$ Orthorhombic, Pbca a = 13.3524 (5) Å b = 11.3802 (3) Å c = 27.4261 (14) Å

2.2. Data collection

Bruker Kappa APEXII DUO 32287 measured reflections diffractometer 5164 independent reflections 3394 reflections with $I > 2\sigma(I)$ Absorption correction: multi-scan $R_{\rm int} = 0.095$ (Blessing, 1995) $T_{\min} = 0.285, T_{\max} = 0.530$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	210 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.17	$\Delta \rho_{\rm max} = 1.10 \ {\rm e} \ {\rm \AA}^{-3}$
5164 reflections	$\Delta \rho_{\rm min} = -1.88 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

, , ,	,			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3C\cdots Br1^{i}$ $C14-H14B\cdots Br1^{ii}$	0.98 0.98	2.81 2.87	3.742 (3) 3.790 (3)	159 156
	. 2 1 //*			

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014.

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FF2146).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.
 Kantlehner, W., Stieglitz, R., Kress, R., Frey, W. & Tiritiris, I. (2012a). Synthesis, 44, 3090–3094.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o1812.
- Weingärtner, W., Kantlehner, W. & Maas, G. (2011). Synthesis, 2011, 265-272.

Acta Cryst. (2015). E71, o1061–o1062 [https://doi.org/10.1107/S205698901502383X]

Crystal structure of 2-bromo-3-dimethylamino-*N*,*N*,*N'*,*N'*,4-pentamethyl-4-(trimethylsilyloxy)pent-2-eneamidinium bromide

Ioannis Tiritiris, Ralf Kress and Willi Kantlehner

S1. Comment

Orthoamide derivatives of alkynecarboxylic acids are prepared from N.N.N'.N''.- hexaalkylguanidinium chlorides and terminal alkynes. Their conversion into propiolamidinium chlorides by reaction with benzoyl chloride and into propiolamidinium triflates by reaction with triethylsilyl trifluoromethanesulfonate is well known in literature (Weingärtner et al., 2011). Alkyne orthoamides are transformed by elemental iodine or bromine to vinylogous guanidinium iodides or bromides (Kantlehner et al., 2012a). Phenyl substituted alkyne orthoamides like 3,3,3-Tris(dimethylamino)-1-phenyl- prop-1-yne (Weingärtner et al., 2011) behave differently, it reacts with bromine to give 3-Phenyl-N,N,N',N''- tetramethyl-1-ethyne-1-carboximidamidium bromide (Tiritiris & Kantlehner, 2012b). According to the structure analysis of the title compound, the C-N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double bond character. The positive charge in the cation is distributed between both dimethylamino groups. The bromine atom Br2 and the 3-dimethylamino group are in cis position due to sterical reasons (Fig. 1). The angle between the planes N1/C5/N2 and C10/C7/N3 is 85.1 (1)°. Other prominent bond parameters in the cation are: C6-Br2 =1.926 (5) Å and C6–C7 = 1.327 (7) Å, characteristic for a C–Br single and C–C double bond, respectively. Additionally, an bromine-bromine interaction [d(Br...Br) = 3.229 (3) Å] between the anion and cation has been determined, which is shorter than the sum of their van der Waals radii (Desiraju & Parthasarathy, 1989). Week C-H…Br interactions between the hydrogen atoms of -N(CH₃)₂ and -SiCH₃ groups and the bromide ions are present (Fig. 2), ranging from 2.81 to 2.87 Å (Tab. 1). Typical values of Br...Br, C...Br and H...Br interactions in bromohydrocarbon crystals were considered by Desiraju and Parthasarathy having less than 3.72, 3.61 and 3.06 Å, respectively (Desiraju & Parthasarathy, 1989).

S2. Experimental

To (2.10 g, 7.0 mmol) 4-methyl-4-trimethylsilyloxy-1,1,1- tris(dimethylamino)pent-2-yne in 50 ml benzene was added dropwise under ice/water cooling, elemental bromine (1.12 g, 7.0 mmol) in benzene. After stirring for two hours at room temperature, a yellow precipitate was collected by filtration. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming yellow single crystals. Yield: 2.77 g (80%).

S3. Refinement

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N, C–C and C–Si bonds to best fit the experimental electron density, with $U_{iso}(H)$ set to 1.5 $U_{eq}(C)$ and d(C-H) = 0.98 Å.

Figure 1

The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity. The Br…Br interaction is indicated by a black dashed line.

C—H···Br interactions (black dashed lines) between the hydrogen atoms of the methyl groups and the bromide ions. Br···Br interactions are also indicated by black dashed lines.

2-Bromo-3-dimethylamino-N,N,N',N',4-pentamethyl-4-(trimethylsilyloxy)pent-2-eneamidinium bromide

Crystal data

C₁₅H₃₃BrN₃OSi⁺·Br⁻ $M_r = 459.33$ Orthorhombic, *Pbca* a = 13.3524 (5) Å b = 11.3802 (3) Å c = 27.4261 (14) Å V = 4167.5 (3) Å³ Z = 8F(000) = 1888

Data collection

Bruker Kappa APEXII DUO diffractometer Radiation source: fine-focus sealed tube Triumph monochromator φ scans, and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.285, T_{\max} = 0.530$ $D_x = 1.464 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 32287 reflections $\theta = 1.5-28.3^{\circ}$ $\mu = 3.95 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.45 \times 0.30 \times 0.15 \text{ mm}$

32287 measured reflections 5164 independent reflections 3394 reflections with $I > 2\sigma(I)$ $R_{int} = 0.095$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -17 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = -36 \rightarrow 36$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.17	H-atom parameters constrained
5164 reflections	$w = 1/[\sigma^2(F_o^2) + 19.9082P]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.10 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -1.88 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.54519 (4)	0.73694 (4)	0.13843 (2)	0.01487 (12)	
Br2	0.45103 (4)	0.23306 (5)	0.24383 (2)	0.01507 (12)	
N1	0.5406 (3)	0.3518 (3)	0.13946 (16)	0.0147 (9)	
C1	0.4511 (4)	0.4276 (4)	0.1374 (2)	0.0213 (12)	
H1A	0.3938	0.3816	0.1258	0.032*	
H1B	0.4633	0.4930	0.1149	0.032*	
H1C	0.4367	0.4585	0.1700	0.032*	
C2	0.6368 (4)	0.4157 (5)	0.1374 (2)	0.0226 (13)	
H2A	0.6879	0.3714	0.1553	0.034*	
H2B	0.6287	0.4935	0.1521	0.034*	
H2C	0.6576	0.4244	0.1033	0.034*	
N2	0.6052 (3)	0.1612 (4)	0.14393 (15)	0.0125 (9)	
C3	0.6869 (4)	0.1740 (5)	0.1081 (2)	0.0183 (12)	
H3A	0.6711	0.2385	0.0857	0.027*	
H3B	0.6942	0.1008	0.0896	0.027*	
H3C	0.7496	0.1914	0.1252	0.027*	
C4	0.6060 (4)	0.0462 (5)	0.1683 (2)	0.0194 (12)	
H4A	0.5545	0.0448	0.1938	0.029*	
H4B	0.6719	0.0328	0.1831	0.029*	
H4C	0.5922	-0.0157	0.1444	0.029*	
C5	0.5318 (3)	0.2392 (4)	0.15005 (16)	0.0109 (10)	
C6	0.4400 (4)	0.1967 (4)	0.17545 (17)	0.0113 (10)	
C7	0.3621 (3)	0.1384 (4)	0.15758 (18)	0.0090 (10)	
N3	0.2856 (3)	0.0847 (4)	0.18667 (15)	0.0135 (10)	
C8	0.2094 (4)	0.1616 (5)	0.2075 (2)	0.0202 (13)	

H8A	0.2364	0.2005	0.2365	0.030*
H8B	0.1506	0.1149	0.2166	0.030*
H8C	0.1900	0.2209	0.1834	0.030*
C9	0.3192 (4)	-0.0079 (5)	0.2199 (2)	0.0206 (13)
H9A	0.3710	-0.0551	0.2039	0.031*
H9B	0.2623	-0.0583	0.2284	0.031*
H9C	0.3466	0.0277	0.2496	0.031*
C10	0.3455 (4)	0.1153 (4)	0.10276 (18)	0.0087 (10)
C11	0.3601 (4)	-0.0161 (4)	0.09338 (19)	0.0145 (11)
H11A	0.3426	-0.0341	0.0595	0.022*
H11B	0.3168	-0.0612	0.1154	0.022*
H11C	0.4302	-0.0372	0.0993	0.022*
C12	0.2409 (3)	0.1539 (4)	0.08853 (18)	0.0112 (10)
H12A	0.2334	0.2383	0.0947	0.017*
H12B	0.1916	0.1103	0.1078	0.017*
H12C	0.2301	0.1381	0.0538	0.017*
01	0.4196 (2)	0.1804 (3)	0.07547 (12)	0.0096 (7)
Si1	0.41809 (10)	0.21877 (12)	0.01674 (5)	0.0103 (3)
C13	0.3405 (4)	0.3517 (5)	0.0054 (2)	0.0169 (12)
H13A	0.2698	0.3332	0.0113	0.025*
H13B	0.3491	0.3772	-0.0285	0.025*
H13C	0.3616	0.4149	0.0274	0.025*
C14	0.3757 (4)	0.0988 (5)	-0.02454 (19)	0.0170 (12)
H14A	0.4182	0.0295	-0.0198	0.025*
H14B	0.3804	0.1251	-0.0585	0.025*
H14C	0.3060	0.0785	-0.0170	0.025*
C15	0.5486 (4)	0.2599 (5)	0.00131 (18)	0.0196 (11)
H15A	0.5687	0.3283	0.0207	0.029*
H15B	0.5529	0.2791	-0.0335	0.029*
H15C	0.5934	0.1939	0.0086	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0172 (2)	0.0146 (3)	0.0128 (3)	-0.0002 (2)	0.0014 (2)	0.0024 (2)
Br2	0.0157 (2)	0.0198 (3)	0.0097 (2)	0.0007 (2)	-0.0020 (2)	-0.0043 (2)
N1	0.010 (2)	0.015 (2)	0.019 (2)	-0.0006 (18)	-0.003 (2)	-0.0009 (18)
C1	0.017 (3)	0.014 (3)	0.033 (3)	0.006 (2)	-0.003 (3)	-0.002(2)
C2	0.013 (3)	0.018 (3)	0.036 (4)	-0.009(2)	-0.004 (3)	-0.003 (3)
N2	0.009 (2)	0.013 (2)	0.015 (2)	0.0023 (16)	-0.0033 (18)	-0.0027 (18)
C3	0.011 (3)	0.024 (3)	0.020 (3)	0.002 (2)	0.002 (2)	-0.009(3)
C4	0.017 (3)	0.014 (3)	0.027 (3)	0.005 (2)	-0.002 (2)	-0.003 (2)
C5	0.011 (2)	0.013 (2)	0.009 (2)	-0.002 (2)	-0.0038 (18)	-0.0037 (19)
C6	0.017 (3)	0.012 (2)	0.005 (2)	0.001 (2)	0.002 (2)	-0.0028 (19)
C7	0.009 (2)	0.008 (2)	0.011 (3)	0.0018 (18)	0.000 (2)	-0.0007 (19)
N3	0.011 (2)	0.017 (2)	0.013 (2)	-0.0023 (17)	0.0040 (17)	0.0027 (18)
C8	0.014 (3)	0.029 (3)	0.017 (3)	0.001 (2)	0.008 (2)	-0.004(2)
C9	0.026 (3)	0.017 (3)	0.019 (3)	-0.001 (2)	0.005 (2)	0.005 (2)

C10	0.011 (2)	0.004 (2)	0.011 (3)	-0.0030 (18)	-0.002(2)	0.000 (2)
C11	0.018 (3)	0.013 (3)	0.013 (3)	-0.001 (2)	-0.001 (2)	-0.004 (2)
C12	0.009 (2)	0.013 (3)	0.012 (3)	-0.0002 (19)	0.000 (2)	0.001 (2)
01	0.0090 (16)	0.0135 (18)	0.0064 (17)	-0.0018 (13)	0.0008 (14)	-0.0002 (14)
Si1	0.0086 (6)	0.0130 (7)	0.0091 (7)	-0.0004 (5)	-0.0014 (5)	0.0002 (6)
C13	0.016 (3)	0.018 (3)	0.016 (3)	-0.001 (2)	-0.002 (2)	0.005 (2)
C14	0.020 (3)	0.022 (3)	0.010 (3)	-0.001 (2)	0.001 (2)	0.000 (2)
C15	0.015 (2)	0.028 (3)	0.016 (3)	-0.004 (3)	0.002 (2)	0.003 (2)

Geometric parameters (Å, °)

Br2—C6	1.926 (5)	C8—H8C	0.9800	
N1C5	1.319 (6)	С9—Н9А	0.9800	
N1—C1	1.475 (6)	С9—Н9В	0.9800	
N1C2	1.476 (6)	С9—Н9С	0.9800	
C1—H1A	0.9800	C10—O1	1.445 (6)	
C1—H1B	0.9800	C10—C12	1.515 (7)	
C1—H1C	0.9800	C10—C11	1.530 (6)	
C2—H2A	0.9800	C11—H11A	0.9800	
C2—H2B	0.9800	C11—H11B	0.9800	
C2—H2C	0.9800	C11—H11C	0.9800	
N2—C5	1.333 (6)	C12—H12A	0.9800	
N2-C4	1.470 (6)	C12—H12B	0.9800	
N2—C3	1.475 (6)	C12—H12C	0.9800	
С3—НЗА	0.9800	O1—Si1	1.669 (3)	
С3—Н3В	0.9800	Si1—C15	1.854 (5)	
С3—Н3С	0.9800	Si1—C13	1.860 (5)	
C4—H4A	0.9800	Si1—C14	1.862 (5)	
C4—H4B	0.9800	C13—H13A	0.9800	
C4—H4C	0.9800	C13—H13B	0.9800	
С5—С6	1.491 (7)	C13—H13C	0.9800	
С6—С7	1.327 (7)	C14—H14A	0.9800	
C7—N3	1.433 (6)	C14—H14B	0.9800	
C7—C10	1.542 (7)	C14—H14C	0.9800	
N3—C8	1.458 (6)	C15—H15A	0.9800	
N3—C9	1.464 (6)	C15—H15B	0.9800	
C8—H8A	0.9800	C15—H15C	0.9800	
C8—H8B	0.9800			
C5—N1—C1	120.3 (4)	N3—C9—H9B	109.5	
C5—N1—C2	124.4 (4)	H9A—C9—H9B	109.5	
C1—N1—C2	114.6 (4)	N3—C9—H9C	109.5	
N1—C1—H1A	109.5	H9A—C9—H9C	109.5	
N1—C1—H1B	109.5	H9B—C9—H9C	109.5	
H1A—C1—H1B	109.5	O1—C10—C12	110.4 (4)	
N1—C1—H1C	109.5	O1—C10—C11	109.1 (4)	
H1A—C1—H1C	109.5	C12—C10—C11	110.9 (4)	
H1B—C1—H1C	109.5	O1—C10—C7	108.6 (4)	

N1—C2—H2A	109.5	C12—C10—C7	109.5 (4)
N1—C2—H2B	109.5	C11—C10—C7	108.2 (4)
H2A—C2—H2B	109.5	C10—C11—H11A	109.5
N1—C2—H2C	109.5	C10—C11—H11B	109.5
H2A—C2—H2C	109.5	H11A—C11—H11B	109.5
H2B—C2—H2C	109.5	C10—C11—H11C	109.5
C5—N2—C4	122.8 (4)	H11A—C11—H11C	109.5
C5—N2—C3	124.1 (4)	H11B—C11—H11C	109.5
C4—N2—C3	112.7 (4)	C10—C12—H12A	109.5
N2-C3-H3A	109.5	C10—C12—H12B	109.5
N2-C3-H3B	109.5	H12A— $C12$ — $H12B$	109.5
H_{3A} C_{3} H_{3B}	109.5	C10-C12-H12C	109.5
N2-C3-H3C	109.5	H12A— $C12$ — $H12C$	109.5
$H_3A = C_3 = H_3C$	109.5	H12B— $C12$ — $H12C$	109.5
H3B-C3-H3C	109.5	C10-01-Si1	128.7(3)
N2-C4-H4A	109.5	01—Si1—C15	126.7(3) 106.0(2)
N2-C4-H4B	109.5	01—Si1—C13	1124(2)
H4A - C4 - H4B	109.5	C_{15}	106.3(2)
N2-C4-H4C	109.5	01—Si1—C14	100.5(2) 113 5(2)
H4A - C4 - H4C	109.5	C15— $Si1$ — $C14$	109.4(2)
H4B-C4-H4C	109.5	C13— $Si1$ — $C14$	109.4(2) 109.0(2)
N1-C5-N2	123 6 (4)	Sil—Cl3—Hl3A	109.5
N1 - C5 - C6	1194(4)	Sil—Cl3—Hl3B	109.5
N_{2} C5 C6	116.6 (4)	H13A-C13-H13B	109.5
C7 - C6 - C5	129 3 (4)	Sil-Cl3-Hl3C	109.5
$C7-C6-Br^{2}$	121.8 (4)	H_{13A} $-C_{13}$ $-H_{13C}$	109.5
C_{5} C_{6} Br_{2}	108.8(3)	H_{13B} C_{13} H_{13C}	109.5
C6-C7-N3	1245(5)	Si1—C14—H14A	109.5
C6-C7-C10	1239(4)	Sil—Cl4—Hl4B	109.5
N_{3} C7 C10	111 6 (4)	H14A— $C14$ — $H14B$	109.5
C7-N3-C8	117.4 (4)	Si1-C14-H14C	109.5
C7-N3-C9	115 8 (4)	H_{14A} $-C_{14}$ $-H_{14C}$	109.5
C8 - N3 - C9	113.7 (4)	H14B— $C14$ — $H14C$	109.5
N3—C8—H8A	109 5	Sil—C15—H15A	109.5
N3—C8—H8B	109.5	Sil—C15—H15B	109.5
H8A—C8—H8B	109.5	H15A—C15—H15B	109.5
N3—C8—H8C	109.5	Sil—C15—H15C	109.5
H8A - C8 - H8C	109.5	H15A - C15 - H15C	109.5
H8B-C8-H8C	109.5	H15B-C15-H15C	109.5
N3—C9—H9A	109.5		107.0
	107.5		
C1 - N1 - C5 - N2	167.2 (5)	C6-C7-N3-C8	77.4 (6)
C_{2} N1 C_{5} N2	-23.8(8)	C10-C7-N3-C8	-105 1 (5)
C1 - N1 - C5 - C6	-20.1(7)	C6-C7-N3-C9	-61.4 (6)
$C_2 = N_1 = C_5 = C_6$	148.9 (5)	C10-C7-N3-C9	116 1 (5)
C4 - N2 - C5 - N1	161.7 (5)	C6-C7-C10-O1	-7.7 (6)
$C_3 - N_2 - C_5 - N_1$	-25.9(7)	N3-C7-C10-01	174.8 (4)
C4-N2-C5-C6	-11.3(7)	C6-C7-C10-C12	-128.4(5)
	···· (')		1 (2)

C3—N2—C5—C6	161.1 (4)	N3-C7-C10-C12	54.1 (5)
N1—C5—C6—C7	104.0 (6)	C6-C7-C10-C11	110.6 (5)
N2—C5—C6—C7	-82.7 (6)	N3-C7-C10-C11	-66.9 (5)
N1—C5—C6—Br2	-78.9 (5)	C12—C10—O1—Si1	-40.7 (5)
N2—C5—C6—Br2	94.4 (4)	C11—C10—O1—Si1	81.4 (5)
C5—C6—C7—N3	169.1 (5)	C7—C10—O1—Si1	-160.9 (3)
Br2—C6—C7—N3	-7.7 (7)	C10—O1—Si1—C15	-163.6 (4)
C5—C6—C7—C10	-8.1 (8)	C10—O1—Si1—C13	80.7 (4)
Br2—C6—C7—C10	175.1 (3)	C10—O1—Si1—C14	-43.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3C···Br1 ⁱ	0.98	2.81	3.742 (3)	159
C14—H14B····Br1 ⁱⁱ	0.98	2.87	3.790 (3)	156

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+1, -*y*+1, -*z*.