data reports

Cu $K\alpha$ radiation

 $0.21 \times 0.16 \times 0.10 \text{ mm}$

7869 measured reflections

1990 independent reflections

1901 reflections with $I > 2\sigma(I)$

 $\mu = 2.42 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.032$

CRYSTALLOGRAPHIC

OPEN d ACCESS

Crystal structure of 1-(cyclopentylideneamino)-3-(prop-2-en-1-yl)thiourea

Shaaban K. Mohamed,^{a,b} Joel T. Mague,^c Mehmet Akkurt,^d Alaa A. Hassan,^b Ahmed T. Abdel-Aziz^b and Mustafa R. Albayati^e*

^aFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, ^bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, CDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^dDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Turkey, and ^eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 3 November 2015; accepted 5 November 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_9H_{15}N_3S$, the cyclopentyl ring adopts an envelope conformation with one of the methylene C atoms as the flap. The thiosemicarbazide fragment is almost planar (r.m.s. deviation = 0.038 Å) and a short intramolecular N-H...N contact occurs. In the crystal, molecules are linked into helical (41 symmetry) chains propagating in [001] by N- $H \cdots N$ and $N - H \cdots S$ hydrogen bonds. A very weak $C - H \cdots S$ interaction is also observed.

Keywords: crystal structure; thiosemicarbazides; hydrogen bonding.

CCDC reference: 1435175

1. Related literature

For the biological activities of thiosemicarbazide-containing compounds, see: Hu et al. (2010); da Costa et al. (2015). For the synthesis of the title compound, see: Mague et al. (2014).

2. Experimental

2.1. Crystal data $C_9H_{15}N_3S$

 $M_r = 197.30$

- - 100 CMOS diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.67, \ T_{\max} = 0.79$

Bruker D8 VENTURE PHOTON

2.3. Refinement

Tetragonal, P41

a = 9.0124 (2) Å

c = 12.8200 (2) Å

Z = 4

V = 1041.28 (5) Å³

2.2. Data collection

$R[F^2 > 2\sigma(F^2)] = 0.041$	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.109$	Absolute structure: Flack x
S = 1.10	determined using 826 quotients
1990 reflections	$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons
119 parameters	et al., 2013)
1 restraint	Absolute structure parameter:
H-atom parameters constrained	0.04 (3)
$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1			
Hvdrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2C\cdots N1^{i}$	0.91	2.29	3.194 (4)	177
N3−H3 <i>C</i> ···N1	0.91	2.25	2.642 (4)	106
$N3-H3C\cdots S1^{ii}$	0.91	2.49	3.310 (3)	151
$C3-H3A\cdots S1^{iii}$	0.99	2.86	3.663 (4)	139

Symmetry codes: (i) -y + 1, x, $z + \frac{1}{4}$; (ii) y, -x + 1, $z - \frac{1}{4}$; (iii) -y, x, $z + \frac{1}{4}$.

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7535).

References

- Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Costa, P. M. da, da Costa, M. P., Carvalho, A. A., Cavalcanti, M. S., de Oliveira Cardoso, M. V., de Oliveira Filho, G. B., de Araújo Viana, D., Fechine-Jamacaru, F. V., Leite, A. C., de Moraes, M. O., Pessoa, C. & Ferreira, P. M. (2015). Chem. Biol. Interact. 239, 174-183.
- Hu, K., Yang, Z., Pan, S., Xu, H. & Ren, J. (2010). Eur. J. Med. Chem. 45, 3453-3458.

Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). *Acta Cryst.* E**70**, o515. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

- Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8. Sheldrick, G. M. (2015*b*). Acta Cryst. C**71**, 3–8.

supporting information

Acta Cryst. (2015). E71, o924–o925 [https://doi.org/10.1107/S2056989015021003]

Crystal structure of 1-(cyclopentylideneamino)-3-(prop-2-en-1-yl)thiourea

Shaaban K. Mohamed, Joel T. Mague, Mehmet Akkurt, Alaa A. Hassan, Ahmed T. Abdel-Aziz and Mustafa R. Albayati

S1. Comment

The thiosemicarbazones comprise a class of molecules known for their diverse biological activities (Hu *et al.*, 2010; Costa *et al.*, 2015). In this context we report here the synthesis and crystal structure determination of the title compound.

In the title compound (Fig. 1), a Cremer-Pople analysis of the conformation of the 5-membered ring gave puckering parameters Q(2) = 0.380 (4) Å and $\varphi(2) = 285.3$ (6)°. The molecules pack in helical chains about the 4₁ axis assisted by an N2—H2C···N1ⁱ and an N3—H3C···S1ⁱⁱ (i: 1 - *y*, *x*, 1/4 + *z*; ii: *y*, 1 - *x*, -1/4 + *z*) hydrogen bond between each pair of adjacent molecules (Table 1 and Fig. 2).

S2. Experimental

The title compound was prepared according to our recently reported method (Mague *et al.*, 2014). Colourless blocks were grown from ethanol solution by slow evaporation. *M*. p. 374–375 K; 89% yield.

S3. Refinement

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Figure 1

The title molecule, shown with 50% probability ellipsoids.

Figure 2

The packing in the title molecule, viewed down the *b* axis. N—H…N and N—H…S hydrogen bonds are shown, respectively, as blue and brown dotted lines.

1-(Cyclopentylideneamino)-3-(prop-2-en-1-yl)thiourea

Crystal data

C₉H₁₅N₃S $D_{\rm x} = 1.259 {\rm Mg m^{-3}}$ $M_r = 197.30$ Cu *K* α radiation, $\lambda = 1.54178$ Å Cell parameters from 7005 reflections Tetragonal, P41 Hall symbol: P 4w $\theta = 3.5 - 72.4^{\circ}$ a = 9.0124 (2) Å $\mu = 2.42 \text{ mm}^{-1}$ T = 150 Kc = 12.8200(2) Å V = 1041.28 (5) Å³ Block, colourless Z = 4 $0.21 \times 0.16 \times 0.10 \text{ mm}$ F(000) = 424Data collection Bruker D8 VENTURE PHOTON 100 CMOS $T_{\rm min} = 0.67, \ T_{\rm max} = 0.79$ 7869 measured reflections diffractometer Radiation source: INCOATEC IµS micro-focus 1990 independent reflections source 1901 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$ Mirror monochromator Detector resolution: 10.4167 pixels mm⁻¹ $\theta_{\rm max} = 72.4^\circ, \ \theta_{\rm min} = 4.9^\circ$ $h = -10 \rightarrow 11$ ω scans Absorption correction: multi-scan $k = -11 \rightarrow 11$ (SADABS; Bruker, 2014) $l = -15 \rightarrow 15$ Refinement Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0616P)^2 + 0.3211P]$ Least-squares matrix: full where $P = (F_0^2 + 2F_c^2)/3$ $R[F^2 > 2\sigma(F^2)] = 0.041$ $(\Delta/\sigma)_{\rm max} < 0.001$ $wR(F^2) = 0.109$ $\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.10 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack x determined using 1990 reflections 119 parameters 826 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 1 restraint 2013) Hydrogen site location: mixed Absolute structure parameter: 0.04 (3)

H-atom parameters constrained

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ х Ζ v **S**1 0.0404(3)0.50830(11) 0.10489 (10) 0.51268 (7) N1 0.0312 (8) 0.2886(3)0.4807(3)0.5217(2)N2 0.3701(3)0.3575(3)0.5510(2)0.0325(8)N3 0.0357 (9) 0.3362 (3) 0.2660 (3) 0.3854(2)C1 0.2584(4)0.5764 (4) 0.5926 (3) 0.0293 (9) C2 0.3050(4)0.5761 (4) 0.7060(3)0.0339(10)C3 0.2402 (4) 0.7223(4)0.7498 (3) 0.0362 (10) C4 0.2242(4)0.8220(4)0.6547(3)0.0389(11) C5 0.1737(4)0.7160(4)0.5686(3)0.0359(11) C6 0.3975(4)0.2491(4)0.4790(3)0.0331 (10) C7 0.3533(5)0.1587 (5) 0.3012 (3) 0.0430(11) C8 0.2503 (6) 0.0262 (6) 0.3117(4)0.0617(17) C9 0.079(2)0.1462 (7) -0.0066(7)0.2532 (5) H2A 0.41450 0.71240 0.0410* 0.57460 H₂B 0.48910 0.74300 0.0410* 0.26350 H₂C 0.41060 0.34020 0.61480 0.0390* 0.0430* H3A 0.14260 0.70480 0.78310 H3B 0.30820 0.76700 0.80170 0.0430* H₃C 0.27400 0.34430 0.37540 0.0430* H4A 0.32000 0.86910 0.63660 0.0470* H4B 0.14930 0.90050 0.0470* 0.66700 H5A 0.06530 0.69880 0.57190 0.0430* H5B 0.19970 0.75490 0.49880 0.0430* 0.0520* H7A 0.45720 0.12310 0.30000 H7B 0.33340 0.20860 0.23380 0.0520* H8 0.26760 -0.038100.36910 0.0740* 0.05410 0.0950* H9A 0.12420 0.19460 H9B 0.08830 -0.092500.26690 0.0950*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic disp	lacement	parameters	$(Å^2)$
		1	· · ·

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0529 (6)	0.0352 (4)	0.0332 (4)	0.0076 (4)	-0.0021 (4)	-0.0046 (4)
N1	0.0366 (14)	0.0334 (13)	0.0235 (12)	-0.0002 (11)	-0.0003 (12)	0.0003 (12)
N2	0.0433 (16)	0.0325 (15)	0.0217 (12)	0.0033 (12)	-0.0040 (12)	-0.0021 (11)
N3	0.0413 (17)	0.0387 (17)	0.0272 (15)	0.0005 (12)	-0.0016 (13)	-0.0047 (12)

supporting information

C1	0.0316 (16)	0.0328 (17)	0.0236 (16)	-0.0033 (13)	0.0013 (13)	0.0030 (13)
C2	0.0415 (19)	0.0357 (18)	0.0245 (17)	0.0010 (15)	-0.0038 (14)	0.0002 (13)
C3	0.0379 (18)	0.0401 (18)	0.0307 (17)	-0.0040 (14)	0.0039 (15)	-0.0051 (15)
C4	0.047 (2)	0.0338 (18)	0.036 (2)	0.0042 (15)	0.0050 (17)	-0.0026 (15)
C5	0.0389 (18)	0.0392 (19)	0.0297 (18)	0.0042 (15)	-0.0013 (14)	0.0033 (15)
C6	0.0372 (17)	0.0361 (18)	0.0260 (16)	-0.0053 (13)	0.0023 (14)	-0.0018 (13)
C7	0.044 (2)	0.055 (2)	0.0299 (17)	-0.0055 (17)	0.0020 (15)	-0.0131 (17)
C8	0.065 (3)	0.061 (3)	0.059 (3)	-0.002 (2)	0.005 (2)	-0.018 (2)
C9	0.075 (3)	0.090 (4)	0.073 (4)	-0.040 (3)	0.019 (3)	-0.028 (3)

Geometric parameters (Å, °)

S1—C6	1.695 (4)	C8—C9	1.237 (8)
N1—N2	1.383 (4)	C2—H2A	0.9900
N1—C1	1.282 (5)	C2—H2B	0.9900
N2—C6	1.367 (5)	С3—НЗА	0.9900
N3—C6	1.330 (5)	С3—Н3В	0.9900
N3—C7	1.457 (5)	C4—H4A	0.9900
C1—C2	1.513 (5)	C4—H4B	0.9900
C1—C5	1.503 (5)	C5—H5A	0.9900
C2—C3	1.547 (5)	С5—Н5В	0.9900
N2—H2C	0.9100	C7—H7A	0.9900
C3—C4	1.521 (5)	С7—Н7В	0.9900
N3—H3C	0.9100	С8—Н8	0.9500
C4—C5	1.529 (5)	С9—Н9А	0.9500
С7—С8	1.519 (7)	С9—Н9В	0.9500
N2—N1—C1	117.4 (3)	С2—С3—Н3В	111.00
N1—N2—C6	119.1 (3)	С4—С3—НЗА	111.00
C6—N3—C7	123.3 (3)	C4—C3—H3B	111.00
N1—C1—C2	128.4 (3)	H3A—C3—H3B	109.00
N1—C1—C5	121.7 (3)	C3—C4—H4A	111.00
C2—C1—C5	109.8 (3)	C3—C4—H4B	111.00
C1—C2—C3	104.0 (3)	C5—C4—H4A	111.00
N1—N2—H2C	127.00	C5—C4—H4B	111.00
C6—N2—H2C	114.00	H4A—C4—H4B	109.00
C2—C3—C4	104.4 (3)	C1—C5—H5A	111.00
C6—N3—H3C	118.00	C1—C5—H5B	111.00
C7—N3—H3C	118.00	С4—С5—Н5А	111.00
C3—C4—C5	103.8 (3)	C4—C5—H5B	111.00
C1—C5—C4	102.9 (3)	H5A—C5—H5B	109.00
S1—C6—N2	118.9 (3)	N3—C7—H7A	109.00
N2—C6—N3	116.9 (3)	N3—C7—H7B	109.00
S1—C6—N3	124.2 (3)	С8—С7—Н7А	109.00
N3—C7—C8	113.1 (3)	С8—С7—Н7В	109.00
C7—C8—C9	126.7 (5)	H7A—C7—H7B	108.00
C1—C2—H2A	111.00	С7—С8—Н8	117.00
C1—C2—H2B	111.00	С9—С8—Н8	117.00

supporting information

C3—C2—H2A C3—C2—H2B H2A—C2—H2B C2—C3—H3A	111.00 111.00 109.00 111.00	C8—C9—H9A C8—C9—H9B H9A—C9—H9B	120.00 120.00 120.00
C1—N1—N2—C6	176.4 (3)	N1 - C1 - C2 - C3 $C5 - C1 - C2 - C3$ $N1 - C1 - C5 - C4$ $C2 - C1 - C5 - C4$ $C1 - C2 - C3 - C4$ $C2 - C3 - C4 - C5$ $C3 - C4 - C5 - C1$ $N3 - C7 - C8 - C9$	177.8 (4)
N2—N1—C1—C2	2.3 (5)		1.3 (4)
N2—N1—C1—C5	178.5 (3)		-154.9 (3)
N1—N2—C6—S1	175.4 (2)		21.9 (4)
N1—N2—C6—N3	-3.5 (5)		-24.2 (4)
C7—N3—C6—S1	2.2 (5)		38.1 (3)
C7—N3—C6—N2	-179.0 (3)		-36.6 (3)
C6—N3—C7—C8	80.2 (5)		113.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2— $H2C$ ···N1 ⁱ	0.91	2.29	3.194 (4)	177
N3—H3 <i>C</i> ···N1	0.91	2.25	2.642 (4)	106
N3—H3 <i>C</i> ···S1 ⁱⁱ	0.91	2.49	3.310 (3)	151
C3—H3A····S1 ⁱⁱⁱ	0.99	2.86	3.663 (4)	139

Symmetry codes: (i) -y+1, x, z+1/4; (ii) y, -x+1, z-1/4; (iii) -y, x, z+1/4.