

open 👌 access

Crystal structure of 4-[(*E*)-(4-hydroxybenzylidene)amino]-1,5-dimethyl-2phenyl-1*H*-pyrazol-3(2*H*)-one

Joel T. Mague,^a Mehmet Akkurt,^b Shaaban K. Mohamed,^{c,d} Alaa F. Mohamed^e and Mustafa R. Albayati^f*

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^eNational Organization for Drug Control and Research, Giza, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 9 November 2015; accepted 10 November 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The asymmetric unit of the title compound, $C_{18}H_{17}N_3O_2$, comprises three independent molecules (1, 2 and 3). In molecule 1, the dihedral angles between the pyrazolone ring and the pendant phenyl and hydroxybenzene rings are 54.43 (6) and 28.72 (6)°, respectively. The corresponding data for molecule 2 are 86.84 (6) and 25.69 (5)°, respectively, and for molecule 3 are 47.41 (7) and 17.09 (7)°, respectively. The three molecules feature an intramolecular C–H···O interaction, which closes an S(6) ring in each case. In the crystal, molecules are linked by O–H···O hydrogen bonds, which generate [100] chains incorporating all three asymmetric molecules. Two weak C–H···O interactions connect three independent molecules to each other along the c-axis direction.

Keywords: crystal structure; pyrazolones; bio-active motifs; hydrogen bonding.

CCDC reference: 1436039

1. Related literature

For the biological activities of the pyrazolone ring system, see: Nirali & Maulik (2010); Rahat *et al.* (2008); Thakkar & Joshi (2010); Mahmoud *et al.* (2011); Tripathy *et al.* (2007); Brune (1997); Abdel-Aziz *et al.* (2009). For industrial applications, see: Karci & Ertan (2002); Khalil *et al.* (2005); Ho (2005).

 $\gamma = 90.748 \ (1)^{\circ}$

Z = 6

V = 2360.9 (3) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.18 \times 0.15 \text{ mm}$

22491 measured reflections

11415 independent reflections

7110 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.035$

628 parameters

 $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{18}H_{17}N_3O_2\\ M_r = 307.35\\ \text{Triclinic, } P\overline{1}\\ a = 8.1214 \ (7) \ \mathring{A}\\ b = 12.5405 \ (10) \ \mathring{A}\\ c = 23.1875 \ (19) \ \mathring{A}\\ \alpha = 91.121 \ (1)^\circ\\ \beta = 90.199 \ (1)^\circ \end{array}$

2.2. Data collection

```
Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
T_{min} = 0.86, T_{max} = 0.99
```

```
2.3. Refinement
R[F^2 > 2\sigma(F^2)] = 0.046
wR(F^2) = 0.115
S = 0.97
11415 reflections
```

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O4	0.84	1.86	2.6947 (14)	170
$O3-H3A\cdots O6^{i}$	0.84	1.86	2.6993 (15)	175
$O5-H5A\cdots O4$	0.84	1.88	2.7218 (15)	179
$C7 - H7 \cdots O2$	0.95	2.30	3.009 (2)	131
C25-H25···O4	0.95	2.46	3.0612 (18)	121
C43-H43···O6	0.95	2.36	2.9989 (18)	124
C33−H33···O6 ⁱⁱ	0.95	2.42	3.168 (2)	135
$C35-H35\cdots O2^{ii}$	0.95	2.31	3.122 (2)	143

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT*; program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*b*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*a*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7540).

References

- Abdel-Aziz, M., Abuo-Rahma, G. El-Din A. & Hassan, A. A. (2009). Eur. J. Med. Chem. 44, 3480–3487.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brune, K. (1997). Acute Pain, 1, 33-40.
- Ho, Y. W. (2005). Dyes Pigm. 64, 223-230.
- Karci, F. & Ertan, N. (2002). Dyes Pigm. 55, 99-108.
- Khalil, A., Hassan, M., Mohamed, M. & El-Sayed, A. (2005). Dyes Pigm. 66, 241–245.
- Mahmoud, M., Ramiz, M. & Ibrahim, S. (2011). J. Chin. Chem. Soc. 58, 6–11.
- Nirali, S. & Maulik, K. (2010). Int. J. Drug Dev. Res. 2, 975–978.
 Rahat, K., Imam, U., Sultan, A. & Mohammad, M. (2008). Bangladesh J. Pharmacol. 3, 27–35.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Thakkar, A. & Joshi, K. (2010). Eur. J. Chem. 7, 1396–1406.
- Tripathy, R., Ghose, A., Singh, J., Bacon, E., Angeles, T., Yang, S., Albom, M., Aimone, L., Herman, J. & Mallamo, J. (2007). *Bioorg. Med. Chem. Lett.* 17, 1793–1798.

Acta Cryst. (2015). E71, o947–o948 [https://doi.org/10.1107/S2056989015021325]

Crystal structure of 4-[(*E*)-(4-hydroxybenzylidene)amino]-1,5-dimethyl-2phenyl-1*H*-pyrazol-3(2*H*)-one

Joel T. Mague, Mehmet Akkurt, Shaaban K. Mohamed, Alaa F. Mohamed and Mustafa R. Albayati

S1. Comment

The pyrazolone ring system is an important structural moiety found in numerous pharmaceutically active compounds. This is mainly due to the ease preparation and the important versatile pharmaceutical and industrial applications. Pyrazolones are mostly useful as anti-inflammatory and analgesic activities (Nirali & Maulik, 2010), but in recent times, they are known to exhibit anti-cancer (Rahat *et al.*, 2008), anti-bacterial (Thakkar & Joshi, 2010) and several other pharmacological actions like anti-fungal (Mahmoud *et al.*, 2011), protein kinase inhibitor (Tripathy *et al.*, 2007), anti-pyretic (Brune, 1997), anti-convulsant (Abdel-Aziz *et al.*, 2009). In addition, they have been used as plant growth regulator, herbicidal and as an azo-dyes (Karci & Ertan, 2002; Khalil *et al.*, 2005; Ho, 2005). Based on such findings and following to our on-going study, we report herein the synthesis and crystal structure of the title compound.

For the title compound there are three independent molecules in the asymmetric unit (Fig. 1) which differ in their conformations. In molecules 1 - 3, respectively, the maximum deviations from the mean planes of the pyrazolone rings are 0.0501 (8) Å (N3), 0.0305 (8) Å (N5) and -0.0367 (8) Å (N8). In molecule 1 the dihedral angles between the mean plane of the pyrazolone ring and those of the phenyl and hydroxyphenyl substituents are, respectively, 54.43 (6)° and 28.72 (6)°. In molecule 2 the corresponding angles are 86.84 (6) and 25.69 (5)° while in molecule 3 they are 47.41 (7) and 17.09 (7)°. In the asymmetric unit, molecules 1 and 3,respectively, form O1—H1…O4 and O5—H5A…O4 hydrogen bonds which tie the unit together (Fig. 1 and Table 1) while O3—H3A…O6ⁱ (i: x - 1, y, z) hydrogen bonds aid in the packing (Fig. 2 and Table 1).

S2. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in ocations derived from a difference map and their coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figure 1

The asymmetric unit with labeling scheme and 50% probability ellipsoids. The O—H…O hydrogen bonds are shown as dotted lines.

Figure 2

The unit-cell contents viewed down the *a* axis. Intermolecular O—H…O and C—H…O hydrogen bonds are shown, respectively, as red and black dotted lines.

4-[(E)-(4-Hydroxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Z = 6

F(000) = 972

 $\theta = 2.4 - 28.2^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.035$

 $h = -10 \rightarrow 10$

 $k = -16 \rightarrow 16$

 $l = -30 \rightarrow 31$

 $D_{\rm x} = 1.297 {\rm Mg} {\rm m}^{-3}$

Column, colourless

 $0.30 \times 0.18 \times 0.15$ mm

 $\theta_{\rm max} = 28.5^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$

22491 measured reflections

11415 independent reflections

7110 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6224 reflections

Crystal data

 $\begin{array}{l} C_{18}H_{17}N_{3}O_{2}\\ M_{r}=307.35\\ \text{Triclinic, }P\overline{1}\\ a=8.1214\ (7)\ \text{\AA}\\ b=12.5405\ (10)\ \text{\AA}\\ c=23.1875\ (19)\ \text{\AA}\\ a=91.121\ (1)^{\circ}\\ \beta=90.199\ (1)^{\circ}\\ \gamma=90.748\ (1)^{\circ}\\ V=2360.9\ (3)\ \text{\AA}^{3} \end{array}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2015) $T_{min} = 0.86, T_{max} = 0.99$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: mixed
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 0.97	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$
11415 reflections	where $P = (F_o^2 + 2F_c^2)/3$
628 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at $\varphi = 0$, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in ocations derived from a difference map and their coordinates adjusted to give O—H = 0.84%A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
01	0 43335 (13)	0 99066 (8)	0 36405 (5)	0.0329(3)	
H1	0 4041	0.9909	0.3293	0.040*	
02	0.69023(15)	0.34940(9)	0.3293 0.41279(5)	0.0414(3)	
N1	0.69265 (15)	0.56857(10)	0.48144(5)	0.0282(3)	
N2	0.82894(15)	0.29591(10)	0.49432(5)	0.0262(3)	
N3	0.82051(15)	0.29391(10) 0.34786(10)	0.19132(5) 0.54289(5)	0.0261(3)	
C1	0.57962 (19)	0.68917 (12)	0.31205(3) 0.41316(7)	0.0201(3) 0.0300(4)	
C2	0.54167 (18)	0.00917(12) 0.76897(12)	0.45379(7)	0.0300(1) 0.0282(4)	
U2 Н2	0.5501	0.7548	0.4938	0.034*	
C3	0.49214 (18)	0.86797 (12)	0.43633(7)	0.0287(4)	
НЗ	0.4660	0.9213	0.4644	0.034*	
C4	0.48012 (18)	0.9213 0.89043 (12)	0.37808(7)	0.0268(3)	
C5	0.5166(2)	0.81240(13)	0.37000(7) 0.33727(7)	0.0238(4)	
Н5	0.5087	0.8271	0.2973	0.041*	
C6	0.5647(2)	0.0271 0.71295(13)	0.2575 0.35493 (7)	0.0386(4)	
H6	0.5881	0.6594	0.3267	0.046*	
C7	0.6392(2)	0.58501(13)	0.3207 0.43047(7)	0.0338(4)	
С7 Н7	0.6381	0.5278	0.4030	0.041*	
C8	0.75333(18)	0.46864(12)	0.49509 (6)	0.0259(3)	
C9	0.74727 (19)	0.37078(12)	0.46124 (7)	0.0290(4)	
C10	0.84009 (18)	0.44934(12)	0.54448 (6)	0.0260(3)	
C11	0.9202 (2)	0.28398 (13)	0.59429 (6)	0.0331 (4)	
H11A	0.9757	0.3270	0.6245	0.050*	
H11B	0.9867	0.2214	0.5848	0.050*	
H11C	0.8119	0.2606	0.6081	0.050*	
C12	0.8719 (2)	0.52260 (13)	0.59430(7)	0.0379 (4)	
H12A	0.8126	0.4967	0.6281	0.057*	
H12B	0.8340	0.5942	0.5851	0.057*	
H12C	0.9903	0.5253	0.6027	0.057*	
C13	0.90702 (19)	0.20424 (11)	0.47004 (6)	0.0253 (3)	
C14	0.80958 (19)	0.12678 (12)	0.44266 (6)	0.0284 (4)	
H14	0.6932	0.1332	0.4419	0.034*	
C15	0.8844 (2)	0.03966 (12)	0.41634 (7)	0.0318 (4)	
H15	0.8190	-0.0136	0.3972	0.038*	
C16	1.0533 (2)	0.03015 (12)	0.41783 (7)	0.0319 (4)	
H16	1.1039	-0.0295	0.3997	0.038*	
C17	1.1490 (2)	0.10741 (12)	0.44578 (7)	0.0321 (4)	
H17	1.2652	0.0999	0.4472	0.038*	
C18	1.07674 (19)	0.19580 (12)	0.47182 (6)	0.0277 (3)	
H18	1.1426	0.2494	0.4905	0.033*	
03	-0.07276 (14)	0.38608 (8)	0.19190 (5)	0.0335 (3)	
H3A	-0.1490	0.3819	0.1674	0.040*	
04	0.30090 (12)	0.99610 (8)	0.25745 (4)	0.0276 (2)	
N4	-0.05124 (15)	0.88981 (10)	0.24542 (5)	0.0269 (3)	
N5	0.14278 (14)	1.14370 (9)	0.27759 (5)	0.0238 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N6	-0.02363 (14)	1.16934 (9)	0.27561 (5)	0.0241 (3)
C19	0.00875 (18)	0.70312 (11)	0.24138 (6)	0.0250 (3)
C20	0.12014 (19)	0.62286 (12)	0.25460 (6)	0.0272 (3)
H20	0.2185	0.6414	0.2749	0.033*
C21	0.09102 (19)	0.51762 (12)	0.23895 (6)	0.0274 (3)
H21	0.1682	0.4645	0.2487	0.033*
C22	-0.05170 (19)	0.48969 (11)	0.20883 (6)	0.0254 (3)
C23	-0.16547 (19)	0.56840 (12)	0.19590 (6)	0.0282 (4)
H23	-0.2644	0.5496	0.1760	0.034*
C24	-0.13492(19)	0.67315 (12)	0.21193 (6)	0.0278(3)
H24	-0.2132	0.7259	0.2027	0.033*
C25	0.04643(19)	0.81384(12)	0.25703 (6)	0.025 0.0267(3)
H25	0 1470	0.8302	0.2765	0.032*
C26	-0.00185(18)	0.99402 (11)	0.25961 (6)	0.032 0.0234(3)
C27	0.15973(18)	1.03778(11)	0.25901(0) 0.26465(6)	0.0231(3)
C28	-0.10975(18)	1.037782(12)	0.26463(6)	0.0251(3)
C20	-0.07842(10)	1.07702(12) 1.26236(11)	0.20002(0) 0.30874(7)	0.0230(3)
	-0.1040	1.20230 (11)	0.30874 (7)	0.0297 (4)
H29A H20P	-0.1949	1.2/49	0.3003	0.045*
П29Б	-0.0129	1.3230	0.2980	0.045*
H29C	-0.0042	1.2490	0.3300	0.045°
	-0.29232 (18)	1.0/331 (13)	0.20018 (8)	0.0536 (4)
HOUA	-0.5552	1.0920	0.3050	0.053*
HOUB	-0.3320	1.0043	0.2342	0.053*
H30C	-0.3330	1.1282	0.2391	0.053*
C31	0.26579 (17)	1.22415 (11)	0.26718 (6)	0.0225 (3)
C32	0.3001 (2)	1.25156 (12)	0.21120 (7)	0.0318 (4)
H32	0.2406	1.2189	0.1801	0.038*
C33	0.4207 (2)	1.32638 (14)	0.20060 (8)	0.0422 (4)
H33	0.4461	1.3451	0.1621	0.051*
C34	0.5045 (2)	1.37399 (14)	0.24610 (9)	0.0456 (5)
H34	0.5874	1.4261	0.2388	0.055*
C35	0.4699 (2)	1.34720 (14)	0.30215 (9)	0.0435 (5)
H35	0.5280	1.3811	0.3332	0.052*
C36	0.3501 (2)	1.27070 (12)	0.31313 (7)	0.0321 (4)
H36	0.3264	1.2507	0.3515	0.039*
05	0.43831 (13)	1.00160 (8)	0.15063 (5)	0.0359 (3)
H5A	0.3963	1.0005	0.1837	0.043*
O6	0.69633 (13)	0.37408 (8)	0.10793 (4)	0.0302 (3)
N7	0.68224 (15)	0.57227 (10)	0.02772 (5)	0.0278 (3)
N8	0.82733 (15)	0.30098 (10)	0.02799 (5)	0.0255 (3)
N9	0.88764 (15)	0.34003 (10)	-0.02407 (5)	0.0277 (3)
C37	0.53272 (18)	0.69523 (12)	0.08808 (7)	0.0277 (4)
C38	0.46494 (18)	0.71054 (13)	0.14274 (7)	0.0297 (4)
H38	0.4420	0.6503	0.1657	0.036*
C39	0.43024 (18)	0.81153 (12)	0.16433 (7)	0.0286 (4)
H39	0.3844	0.8201	0.2017	0.034*
C40	0.46269 (18)	0.89989 (12)	0.13116 (7)	0.0279 (4)
C41	0.5231 (2)	0.88589 (13)	0.07559 (7)	0.0347 (4)

H41	0.5407	0.9461	0.0520	0.042*
C42	0.55773 (19)	0.78528 (13)	0.05449 (7)	0.0326 (4)
H42	0.5993	0.7770	0.0164	0.039*
C43	0.58390 (18)	0.58873 (12)	0.07025 (7)	0.0278 (4)
H43	0.5431	0.5292	0.0908	0.033*
C44	0.74040 (17)	0.46900 (12)	0.01784 (6)	0.0242 (3)
C45	0.74410 (17)	0.38185 (12)	0.05700 (6)	0.0244 (3)
C46	0.82686 (18)	0.43964 (12)	-0.03047 (6)	0.0253 (3)
C47	0.9212 (2)	0.26398 (13)	-0.07089 (7)	0.0368 (4)
H47A	0.8227	0.2200	-0.0786	0.055*
H47B	1.0124	0.2181	-0.0598	0.055*
H47C	0.9512	0.3028	-0.1057	0.055*
C48	0.8547 (2)	0.50055 (13)	-0.08359 (7)	0.0344 (4)
H48A	0.9725	0.5017	-0.0926	0.052*
H48B	0.8165	0.5738	-0.0777	0.052*
H48C	0.7935	0.4666	-0.1156	0.052*
C49	0.90208 (19)	0.21186 (12)	0.05461 (6)	0.0275 (3)
C50	0.8033 (2)	0.14313 (13)	0.08618 (7)	0.0346 (4)
H50	0.6883	0.1546	0.0893	0.041*
C51	0.8750 (2)	0.05781 (14)	0.11303 (7)	0.0413 (4)
H51	0.8091	0.0112	0.1354	0.050*
C52	1.0412 (2)	0.03980 (14)	0.10757 (7)	0.0413 (4)
H52	1.0892	-0.0196	0.1257	0.050*
C53	1.1383 (2)	0.10819 (14)	0.07575 (7)	0.0389 (4)
H53	1.2528	0.0952	0.0718	0.047*
C54	1.06954 (19)	0.19547 (13)	0.04960 (7)	0.0328 (4)
H54	1.1365	0.2435	0.0285	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0364 (6)	0.0284 (6)	0.0344 (6)	0.0082 (5)	0.0011 (5)	0.0044 (5)
O2	0.0553 (8)	0.0376 (7)	0.0314 (7)	0.0158 (6)	-0.0136 (6)	-0.0071 (5)
N1	0.0293 (7)	0.0247 (7)	0.0308 (7)	0.0052 (6)	0.0009 (6)	0.0013 (6)
N2	0.0314 (7)	0.0248 (7)	0.0229 (7)	0.0054 (6)	-0.0012 (5)	-0.0035 (5)
N3	0.0327 (7)	0.0242 (7)	0.0214 (7)	0.0034 (6)	-0.0009(5)	-0.0002(5)
C1	0.0314 (9)	0.0266 (9)	0.0321 (9)	0.0043 (7)	-0.0041 (7)	-0.0005 (7)
C2	0.0259 (8)	0.0320 (9)	0.0268 (8)	0.0008 (7)	-0.0002 (7)	0.0014 (7)
C3	0.0284 (9)	0.0276 (9)	0.0302 (9)	0.0053 (7)	0.0026 (7)	-0.0025 (7)
C4	0.0203 (8)	0.0260 (8)	0.0341 (9)	0.0025 (6)	-0.0003 (6)	0.0029 (7)
C5	0.0409 (10)	0.0354 (10)	0.0255 (9)	0.0088 (8)	-0.0027 (7)	0.0028 (7)
C6	0.0522 (11)	0.0357 (10)	0.0280 (9)	0.0123 (8)	-0.0034 (8)	-0.0060 (7)
C7	0.0406 (10)	0.0264 (9)	0.0345 (10)	0.0079 (7)	-0.0024 (8)	-0.0034 (7)
C8	0.0278 (8)	0.0226 (8)	0.0275 (8)	0.0040 (6)	0.0034 (7)	-0.0005 (6)
C9	0.0303 (9)	0.0287 (9)	0.0281 (9)	0.0069 (7)	-0.0005 (7)	0.0011 (7)
C10	0.0296 (8)	0.0220 (8)	0.0265 (8)	0.0019 (6)	0.0047 (7)	0.0013 (6)
C11	0.0453 (10)	0.0304 (9)	0.0240 (9)	0.0043 (8)	-0.0014 (7)	0.0040 (7)
C12	0.0550 (11)	0.0292 (9)	0.0296 (9)	0.0049 (8)	-0.0027 (8)	-0.0024 (7)

C13	0.0335 (9)	0.0196 (8)	0.0230 (8)	0.0044 (7)	0.0031 (6)	0.0014 (6)
C14	0.0302 (9)	0.0272 (9)	0.0279 (8)	-0.0004 (7)	0.0040 (7)	0.0012 (7)
C15	0.0417 (10)	0.0230 (9)	0.0306 (9)	-0.0041 (7)	0.0045 (7)	-0.0010 (7)
C16	0.0424 (10)	0.0234 (9)	0.0300 (9)	0.0055 (7)	0.0064 (7)	-0.0003 (7)
C17	0.0326 (9)	0.0291 (9)	0.0348 (9)	0.0080 (7)	0.0024 (7)	0.0020 (7)
C18	0.0307 (9)	0.0244 (8)	0.0279 (8)	0.0024 (7)	-0.0014 (7)	-0.0001 (7)
O3	0.0453 (7)	0.0227 (6)	0.0324 (6)	0.0005 (5)	-0.0041 (5)	-0.0029(5)
O4	0.0228 (6)	0.0250 (6)	0.0351 (6)	0.0051 (4)	0.0010 (5)	-0.0013 (5)
N4	0.0295 (7)	0.0217 (7)	0.0295 (7)	-0.0011 (6)	0.0007 (6)	-0.0015 (5)
N5	0.0186 (6)	0.0204 (7)	0.0323 (7)	0.0015 (5)	0.0031 (5)	-0.0004(5)
N6	0.0193 (6)	0.0205 (7)	0.0326 (7)	0.0030 (5)	0.0035 (5)	-0.0005(5)
C19	0.0300 (8)	0.0215 (8)	0.0237 (8)	-0.0008(6)	0.0032 (6)	0.0003 (6)
C20	0.0286 (8)	0.0281(9)	0.0249 (8)	-0.0008(7)	-0.0001(6)	0.0007 (6)
C21	0.0332(9)	0.0236 (8)	0.0256(8)	0.0051 (7)	0.0017(7)	0.0023 (6)
C22	0.0356(9)	0.0185 (8)	0.0222(8)	-0.0012(7)	0.0049(7)	0.0005 (6)
C23	0.0282(8)	0.0281(9)	0.0222(0)	-0.0012(7)	-0.0012(7)	0.0005(0)
C24	0.0282(9)	0.0236(8)	0.0201(9)	0.0024(7)	0.0005(7)	0.0032(7)
C25	0.0289(9)	0.0252(9)	0.0260(8)	-0.0020(7)	0.0005(7)	0.0002(7)
C26	0.0252(8)	0.0232(9) 0.0210(8)	0.0200(0) 0.0241(8)	0.0004 (6)	0.0008 (6)	0.0002 (6)
C27	0.0252(8)	0.0210(0)	0.0213(8)	0.0001(0)	0.0021 (6)	0.0007(0)
C28	0.0252(8)	0.0221(0) 0.0250(8)	0.0249(8)	-0.0022(0)	0.0015 (6)	0.0010(0)
C29	0.0202(0) 0.0302(9)	0.0220(8)	0.0219(0)	0.0000(0)	0.0013(0)	0.0022(0)
C30	0.0302(9) 0.0233(8)	0.0221(0) 0.0358(10)	0.0371(5) 0.0476(11)	-0.0007(7)	0.0031(7)	-0.0003(8)
C31	0.0235(0) 0.0185(7)	0.0330(10)	0.0304(8)	0.00005 (7)	0.0020 (6)	-0.0004(6)
C32	0.0105(7)	0.0100(0) 0.0308(9)	0.0309(9)	0.0021(0)	0.0020(0) 0.0038(7)	-0.0024(7)
C33	0.0394(10)	0.0300(9)	0.0305(5)	0.0005 (7)	0.0050(7)	0.0024(7)
C34	0.0257(9)	0.0309(10)	0.0810(15)	-0.0023(8)	0.0102(9)	0.0093(10)
C35	0.0232(3)	0.0303(10) 0.0322(10)	0.0610(13) 0.0633(13)	-0.0023(8)	-0.0179(9)	-0.0042(9)
C36	0.0310(10)	0.0222(10) 0.0287(9)	0.0323(9)	0.0007(0)	-0.0067(7)	-0.0003(7)
05	0.0392(3)	0.0207(5) 0.0316(7)	0.0323(7)	0.0033(7) 0.0082(5)	0.0007(7)	-0.0045(5)
06	0.0321(6)	0.0348(6)	0.0237(6)	0.0002(5)	0.0012(5)	-0.0028(5)
N7	0.0321(0) 0.0279(7)	0.0310(0)	0.0257(0)	0.0035 (6)	-0.0018(6)	-0.0020(6)
N8	0.0279(7) 0.0264(7)	0.0301(7) 0.0277(7)	0.0230(7)	0.0023 (6)	0.0010(0)	-0.0012(0)
N9	0.0281(7) 0.0285(7)	0.0277(7)	0.0225(7)	0.0011 (6)	0.0019(5)	-0.0021(6)
C37	0.0209(7) 0.0209(8)	0.0320(0) 0.0321(9)	0.0229(7) 0.0299(9)	0.0011(0) 0.0032(7)	-0.0005(6)	-0.0025(0)
C38	0.0209(0)	0.0321(9)	0.0293(9)	0.0032(7)	0.0005(0)	0.0020(7)
C39	0.0270(9) 0.0257(8)	0.0322(9) 0.0353(9)	0.0293(9) 0.0247(8)	0.0029(7) 0.0049(7)	0.0013(6)	-0.0004(7)
C40	0.0237(8)	0.0335(9)	0.0247(0) 0.0323(0)	0.0049(7)	-0.0013(0)	-0.0028(7)
C40	0.0228(0) 0.0377(10)	0.0230(9) 0.0328(10)	0.0323(9)	0.0008(7) 0.0046(7)	0.0020(7) 0.0047(7)	0.0044(7)
C41	0.0377(10)	0.0328(10) 0.0364(10)	0.0303(9)	0.0040(7) 0.0035(7)	0.0047(7)	-0.0020(7)
C42	0.0311(9)	0.0304(10)	0.0305(9)	0.0033(7)	-0.0005(7)	-0.0000(7)
C43	0.0229(8)	0.0298(9)	0.0300(9)	-0.0013(7)	0.0003(7)	-0.0020(7)
C45	0.0219(3)	0.0200(8)	0.0258(8)	-0.0000(0)	-0.0000(0)	-0.0059(0)
C45	0.0178(7)	0.0290(9)	0.0202(8)	-0.0009(0)	-0.0002(0)	-0.0038(7)
C47	0.0212(0) 0.0420(10)	0.0234(3) 0.0414(10)	0.0251(0)	0.0011(0)	0.0022(0)	-0.0039(0)
C48	0.0420(10)	0.0414(10) 0.0386(10)	0.0200(9) 0.0276(0)	-0.0097(8)	0.0010(7)	-0.0008(7)
C40	0.0309(10)	0.0300(10)	0.0270 (9)	0.0012(0)	-0.0040(7)	-0.0000(7)
C49	0.0303 (9)	0.0244(0)	0.0270(0)	0.0023(7)	-0.0000(7)	-0.0034(0)
C30	0.0330 (9)	0.0317(9)	0.0300 (10)	-0.0027(7)	0.0010(/)	-0.0014(8)

C51	0.0495 (12)	0.0335 (10)	0.0408 (11)	-0.0041 (8)	-0.0002 (9)	0.0038 (8)
C52	0.0519 (12)	0.0343 (10)	0.0378 (10)	0.0088 (9)	-0.0068 (9)	-0.0013 (8)
C53	0.0340 (10)	0.0434 (11)	0.0394 (10)	0.0113 (8)	-0.0032 (8)	-0.0013 (8)
C54	0.0296 (9)	0.0351 (10)	0.0335 (9)	0.0013 (7)	0.0019 (7)	-0.0040 (7)

Geometric parameters (Å, °)

O1—C4	1.3630 (17)	С25—Н25	0.9500
O1—H1	0.8402	C26—C28	1.3839 (19)
O2—C9	1.2369 (18)	C26—C27	1.419 (2)
N1—C7	1.2791 (19)	C28—C30	1.485 (2)
N1—C8	1.3942 (18)	С29—Н29А	0.9800
N2—C9	1.3966 (18)	C29—H29B	0.9800
N2—N3	1.4069 (16)	С29—Н29С	0.9800
N2—C13	1.4272 (18)	C30—H30A	0.9800
N3—C10	1.3669 (18)	C30—H30B	0.9800
N3—C11	1.4593 (18)	С30—Н30С	0.9800
C1—C6	1.394 (2)	C31—C32	1.378 (2)
C1—C2	1.399 (2)	C31—C36	1.380 (2)
C1—C7	1.462 (2)	C32—C33	1.374 (2)
C2—C3	1.378 (2)	С32—Н32	0.9500
С2—Н2	0.9500	C33—C34	1.376 (3)
C3—C4	1.388 (2)	С33—Н33	0.9500
С3—Н3	0.9500	C34—C35	1.378 (3)
C4—C5	1.383 (2)	С34—Н34	0.9500
C5—C6	1.381 (2)	C35—C36	1.385 (2)
С5—Н5	0.9500	С35—Н35	0.9500
С6—Н6	0.9500	С36—Н36	0.9500
С7—Н7	0.9500	O5—C40	1.3617 (17)
C8—C10	1.370 (2)	O5—H5A	0.8402
C8—C9	1.444 (2)	O6—C45	1.2496 (17)
C10—C12	1.482 (2)	N7—C43	1.2863 (18)
C11—H11A	0.9800	N7—C44	1.3992 (18)
C11—H11B	0.9800	N8—C45	1.3900 (18)
C11—H11C	0.9800	N8—N9	1.3993 (16)
C12—H12A	0.9800	N8—C49	1.4286 (19)
C12—H12B	0.9800	N9—C46	1.3597 (18)
C12—H12C	0.9800	N9—C47	1.4597 (18)
C13—C18	1.384 (2)	C37—C38	1.395 (2)
C13—C14	1.388 (2)	C37—C42	1.397 (2)
C14—C15	1.389 (2)	C37—C43	1.457 (2)
C14—H14	0.9500	C38—C39	1.385 (2)
C15—C16	1.378 (2)	C38—H38	0.9500
C15—H15	0.9500	C39—C40	1.384 (2)
C16—C17	1.384 (2)	С39—Н39	0.9500
C16—H16	0.9500	C40—C41	1.389 (2)
C17—C18	1.390 (2)	C41—C42	1.377 (2)
C17—H17	0.9500	C41—H41	0.9500

C18—H18	0.9500	C42—H42	0.9500
O3—C22	1.3584 (17)	C43—H43	0.9500
ОЗ—НЗА	0.8402	C44—C46	1.371 (2)
O4—C27	1.2763 (16)	C44—C45	1.435 (2)
N4—C25	1.2798 (18)	C46—C48	1.479 (2)
N4—C26	1.3949 (18)	C47—H47A	0.9800
N5—C27	1.3648 (18)	C47—H47B	0.9800
N5—N6	1.3941 (16)	C47—H47C	0.9800
N5-C31	1.4350 (18)	C48—H48A	0.9800
N6-C28	1 3482 (18)	C48—H48B	0.9800
N6 C20	1.5102(10) 1.4503(17)	C_{10} H10D	0.9800
$C_{10} = C_{24}$	1.4373(17) 1 204 (2)	C40 - C54	1.383(2)
$C_{19} = C_{24}$	1.394(2)	$C_{49} = C_{54}$	1.365(2)
C19 - C20	1.400(2)	$C_{49} = C_{50}$	1.390 (2)
C19—C25	1.457 (2)	C50—C51	1.382 (2)
C20—C21	1.3 /9 (2)	C50—H50	0.9500
С20—Н20	0.9500	C51—C52	1.378 (2)
C21—C22	1.389 (2)	C51—H51	0.9500
C21—H21	0.9500	C52—C53	1.383 (2)
C22—C23	1.397 (2)	С52—Н52	0.9500
C23—C24	1.377 (2)	C53—C54	1.385 (2)
С23—Н23	0.9500	С53—Н53	0.9500
C24—H24	0.9500	С54—Н54	0.9500
C4—O1—H1	109.3	N5—C27—C26	106.62 (12)
C7—N1—C8	119 66 (13)	N6-C28-C26	109.55(13)
C9-N2-N3	109.04(12)	N6-C28-C30	121 58 (13)
C_{9} N2 C_{13}	109.01(12) 123.24(12)	$C_{26} = C_{28} = C_{30}$	121.30(13) 128.85(14)
N_{3} N_{2} C_{13}	129.24(12) 119.37(12)	N6-C29-H294	109 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.37(12) 106.06(11)	N6 C20 H20P	109.5
C10 - N3 - N2	100.90(11) 122.17(12)	$N0 - C_{29} - H_{29} D$	109.5
	123.17(12)	H29A—C29—H29B	109.5
N2—N3—C11	116.63 (12)	N6-C29-H29C	109.5
C6-C1-C2	117.94 (14)	H29A—C29—H29C	109.5
C6—C1—C7	120.32 (15)	H29B—C29—H29C	109.5
C2—C1—C7	121.70 (14)	С28—С30—Н30А	109.5
C3—C2—C1	120.59 (14)	C28—C30—H30B	109.5
С3—С2—Н2	119.7	H30A—C30—H30B	109.5
С1—С2—Н2	119.7	С28—С30—Н30С	109.5
C2—C3—C4	120.53 (14)	H30A—C30—H30C	109.5
С2—С3—Н3	119.7	H30B-C30-H30C	109.5
С4—С3—Н3	119.7	C32—C31—C36	121.27 (14)
O1—C4—C5	123.04 (14)	C32—C31—N5	119.12 (13)
01	117.26 (13)	C36—C31—N5	119.59 (14)
$C_{5} - C_{4} - C_{3}$	119 70 (14)	$C_{33} - C_{32} - C_{31}$	119 66 (16)
C_{6} C_{5} C_{4}	119 61 (15)	C33_C32_H32	120.2
C6 C5 H5	120.2	C_{31} C_{32} H_{32}	120.2
C_{4} C_{5} H_{5}	120.2	$C_{31} = C_{32} = C_{34}$	120.2
	120.2	$C_{22} = C_{23} = C_{24}$	119.30 (17)
	121.62 (15)	C32—C33—H33	120.2
С5—С6—Н6	119.2	C34—C33—H33	120.2

С1—С6—Н6	119.2	C33—C34—C35	120.93 (16)
N1—C7—C1	122.03 (15)	С33—С34—Н34	119.5
N1—C7—H7	119.0	С35—С34—Н34	119.5
С1—С7—Н7	119.0	C34—C35—C36	119.84 (16)
C10—C8—N1	123.46 (14)	С34—С35—Н35	120.1
C10—C8—C9	107.64 (13)	С36—С35—Н35	120.1
N1—C8—C9	128.82 (13)	C31—C36—C35	118.73 (16)
O2—C9—N2	122.70 (14)	С31—С36—Н36	120.6
O2—C9—C8	131.93 (14)	С35—С36—Н36	120.6
N2—C9—C8	105.34 (13)	C40—O5—H5A	109.6
N3—C10—C8	110.19 (13)	C43—N7—C44	118.60 (13)
N3—C10—C12	121.57 (13)	C45—N8—N9	109.06 (12)
C8—C10—C12	128.24 (14)	C45—N8—C49	125.18 (12)
N3—C11—H11A	109.5	N9—N8—C49	120.77 (11)
N3—C11—H11B	109.5	C46—N9—N8	107.53 (11)
H11A—C11—H11B	109.5	C46—N9—C47	125.54 (13)
N3—C11—H11C	109.5	N8—N9—C47	118.42 (12)
H11A—C11—H11C	109.5	C38—C37—C42	117.58 (14)
H11B—C11—H11C	109.5	C38—C37—C43	119.10 (14)
C10—C12—H12A	109.5	C42—C37—C43	123.19 (14)
C10—C12—H12B	109.5	C39—C38—C37	121.56 (15)
H12A—C12—H12B	109.5	С39—С38—Н38	119.2
C10—C12—H12C	109.5	С37—С38—Н38	119.2
H12A—C12—H12C	109.5	C40—C39—C38	119.73 (14)
H12B—C12—H12C	109.5	С40—С39—Н39	120.1
C18—C13—C14	121.21 (14)	С38—С39—Н39	120.1
C18—C13—N2	120.28 (14)	O5—C40—C39	122.79 (14)
C14—C13—N2	118.45 (13)	O5—C40—C41	117.71 (14)
C13—C14—C15	119.14 (14)	C39—C40—C41	119.50 (14)
C13—C14—H14	120.4	C42—C41—C40	120.38 (15)
C15—C14—H14	120.4	C42—C41—H41	119.8
C16—C15—C14	120.28 (15)	C40—C41—H41	119.8
C16—C15—H15	119.9	C41—C42—C37	121.12 (15)
C14—C15—H15	119.9	C41—C42—H42	119.4
C15—C16—C17	120.02 (15)	С37—С42—Н42	119.4
C15—C16—H16	120.0	N7—C43—C37	122.46 (15)
C17—C16—H16	120.0	N7—C43—H43	118.8
C16—C17—C18	120.62 (15)	C37—C43—H43	118.8
C16—C17—H17	119.7	C46—C44—N7	123.26 (14)
C18—C17—H17	119.7	C46—C44—C45	107.84 (13)
C13—C18—C17	118.72 (15)	N7—C44—C45	128.33 (13)
C13—C18—H18	120.6	O6—C45—N8	122.91 (14)
C17—C18—H18	120.6	O6—C45—C44	131.57 (14)
С22—О3—НЗА	109.0	N8—C45—C44	105.39 (13)
C25—N4—C26	118.39 (13)	N9—C46—C44	109.75 (13)
C27—N5—N6	109.15 (11)	N9—C46—C48	121.71 (13)
C27—N5—C31	124.66 (12)	C44—C46—C48	128.54 (14)
N6—N5—C31	119.98 (11)	N9—C47—H47A	109.5

C28—N6—N5	107.53 (11)	N9—C47—H47B	109.5
C28—N6—C29	126.16 (12)	H47A—C47—H47B	109.5
N5—N6—C29	118.27 (12)	N9—C47—H47C	109.5
C24—C19—C20	117.65 (14)	H47A—C47—H47C	109.5
C24—C19—C25	122.16 (14)	H47B—C47—H47C	109.5
C20—C19—C25	120.16 (14)	C46—C48—H48A	109.5
C21—C20—C19	121.82 (15)	C46—C48—H48B	109.5
C21—C20—H20	119.1	H48A—C48—H48B	109.5
C19—C20—H20	119.1	C46—C48—H48C	109.5
C20—C21—C22	119.61 (14)	H48A—C48—H48C	109.5
C20—C21—H21	120.2	H48B—C48—H48C	109.5
C22—C21—H21	120.2	C54—C49—C50	120.93 (15)
O3—C22—C21	117.97 (13)	C54—C49—N8	120.48 (14)
O3—C22—C23	122.58 (14)	C50—C49—N8	118.58 (14)
C21—C22—C23	119.44 (14)	C51—C50—C49	119.05 (16)
C24—C23—C22	120.30 (14)	С51—С50—Н50	120.5
С24—С23—Н23	119.9	С49—С50—Н50	120.5
C22—C23—H23	119.9	C52—C51—C50	120.49 (17)
C23—C24—C19	121.16 (14)	С52—С51—Н51	119.8
C23—C24—H24	119.4	С50—С51—Н51	119.8
C19—C24—H24	119.4	C51—C52—C53	120.06 (16)
N4—C25—C19	122.26 (14)	С51—С52—Н52	120.0
N4—C25—H25	118.9	С53—С52—Н52	120.0
С19—С25—Н25	118.9	C52—C53—C54	120.32 (16)
C28—C26—N4	123.84 (13)	С52—С53—Н53	119.8
C28—C26—C27	106.85 (13)	С54—С53—Н53	119.8
N4—C26—C27	129.10 (13)	C49—C54—C53	119.14 (16)
O4—C27—N5	121.76 (13)	С49—С54—Н54	120.4
O4—C27—C26	131.57 (14)	С53—С54—Н54	120.4
C9—N2—N3—C10	9.42 (15)	N4—C26—C27—O4	0.6 (3)
C13—N2—N3—C10	158.68 (12)	C28—C26—C27—N5	3.35 (16)
C9—N2—N3—C11	151.86 (13)	N4-C26-C27-N5	178.09 (14)
C13—N2—N3—C11	-58.87 (17)	N5—N6—C28—C26	-3.20 (16)
C6-C1-C2-C3	-0.4 (2)	C29—N6—C28—C26	-150.99 (14)
C7—C1—C2—C3	177.34 (15)	N5—N6—C28—C30	175.78 (13)
C1—C2—C3—C4	-0.4 (2)	C29—N6—C28—C30	28.0 (2)
C2-C3-C4-01	-178.79 (13)	N4-C26-C28-N6	-175.15 (13)
C2—C3—C4—C5	0.6 (2)	C27—C26—C28—N6	-0.06 (16)
O1—C4—C5—C6	179.40 (15)	N4-C26-C28-C30	6.0 (2)
C3—C4—C5—C6	0.0 (2)	C27—C26—C28—C30	-178.94 (15)
C4—C5—C6—C1	-0.9 (3)	C27—N5—C31—C32	69.87 (18)
C2-C1-C6-C5	1.1 (3)	N6—N5—C31—C32	-79.37 (17)
C7—C1—C6—C5	-176.72 (16)	C27—N5—C31—C36	-108.60 (17)
C8—N1—C7—C1	-177.79 (14)	N6—N5—C31—C36	102.17 (16)
C6—C1—C7—N1	162.55 (16)	C36—C31—C32—C33	0.2 (2)
C2—C1—C7—N1	-15.1 (3)	N5-C31-C32-C33	-178.24 (14)
C7—N1—C8—C10	167.52 (15)	C31—C32—C33—C34	-0.8 (2)

C7—N1—C8—C9	-8.9 (2)	C32—C33—C34—C35	0.4 (3)
N3—N2—C9—O2	171.47 (15)	C33—C34—C35—C36	0.5 (3)
C13—N2—C9—O2	23.6 (2)	C32—C31—C36—C35	0.7 (2)
N3—N2—C9—C8	-6.85 (16)	N5—C31—C36—C35	179.17 (13)
C13—N2—C9—C8	-154.68 (13)	C34—C35—C36—C31	-1.1 (2)
C10—C8—C9—O2	-176.28(18)	C45—N8—N9—C46	-6.79(15)
N1-C8-C9-O2	0.5 (3)	C49—N8—N9—C46	-163.01(13)
C10—C8—C9—N2	1.81 (17)	C45—N8—N9—C47	-156.57(13)
N1-C8-C9-N2	178.63 (14)	C49—N8—N9—C47	47.21 (18)
N2—N3—C10—C8	-8.28(16)	C42 - C37 - C38 - C39	-2.9(2)
$C_{11} = N_3 = C_{10} = C_8$	-147.67(14)	C43 - C37 - C38 - C39	$173\ 08\ (14)$
$N_2 - N_3 - C_{10} - C_{12}$	172.00 (14)	C_{37} C_{38} C_{39} C_{40}	0.2(2)
$C_{11} = N_3 = C_{10} = C_{12}$	32 6 (2)	C_{38} C_{39} C_{40} C_{50}	-177.08(14)
N1-C8-C10-N3	-172.97(13)	C_{38} C_{39} C_{40} C_{41}	2 8 (2)
C9 - C8 - C10 - N3	4 06 (17)	05-C40-C41-C42	176.88(14)
N1 - C8 - C10 - C12	4.00(17)	C_{39} C_{40} C_{41} C_{42}	-30(2)
$C_{0} = C_{0} = C_{10} = C_{12}$	-176.24(15)	$C_{40} C_{41} C_{42} C_{37}$	0.2(2)
$C_{9} = C_{10} = C_{12}$	170.24(13) 112 10(17)	$C_{40} = C_{41} = C_{42} = C_{37}$	0.2(2)
$N_{2} = N_{2} = C_{13} = C_{16}$	-22.53(10)	$C_{30} = C_{37} = C_{42} = C_{41}$	2.7(2)
$N_{3} = N_{2} = C_{13} = C_{18}$	-32.33(19)	C43 - C37 - C42 - C41	-173.10(13)
$V_{2} = N_{2} = C_{12} = C_{14}$	-03.07(19)	$C_{44} = N/ = C_{43} = C_{3}/$	1/2.49(13)
$N_{3} = N_{2} = C_{13} = C_{14}$	130.21(13)	$C_{38} = C_{37} = C_{43} = N_7$	-102.40(14)
C13 - C13 - C14 - C13	-0.4(2)	C42 - C3 / - C43 - N/	13.3(2)
$N_2 = C_{13} = C_{14} = C_{15}$	1/6.85 (15)	C43 - N7 - C44 - C46	1/0./9(14)
C13 - C14 - C15 - C16	0.5 (2)	C43 - N / - C44 - C45	-19.0(2)
C14-C15-C16-C17	0.2(2)	N9—N8—C45—O6	-1/0.23(13)
C15-C16-C17-C18	-0.9(2)	C49—N8—C45—O6	-15.3(2)
C14 - C13 - C18 - C17	-0.3(2)	N9—N8—C45—C44	6.01 (15)
N2—C13—C18—C17	-177.52(13)	C49—N8—C45—C44	160.93 (13)
C16—C17—C18—C13	1.0 (2)	C46—C44—C45—O6	172.67 (15)
C27—N5—N6—C28	5.40 (15)	N7-C44-C45-O6	1.2 (3)
C31—N5—N6—C28	158.95 (13)	C46—C44—C45—N8	-3.10 (16)
C27—N5—N6—C29	156.14 (12)	N7—C44—C45—N8	-174.53 (14)
C31—N5—N6—C29	-50.31 (17)	N8—N9—C46—C44	4.76 (16)
C24—C19—C20—C21	0.5 (2)	C47—N9—C46—C44	151.81 (14)
C25—C19—C20—C21	-178.02 (13)	N8—N9—C46—C48	-174.57 (13)
C19—C20—C21—C22	0.5 (2)	C47—N9—C46—C48	-27.5 (2)
C20—C21—C22—O3	177.13 (13)	N7—C44—C46—N9	170.93 (13)
C20—C21—C22—C23	-1.4 (2)	C45—C44—C46—N9	-1.03 (16)
O3—C22—C23—C24	-177.20 (13)	N7—C44—C46—C48	-9.8 (2)
C21—C22—C23—C24	1.2 (2)	C45—C44—C46—C48	178.24 (14)
C22—C23—C24—C19	-0.2 (2)	C45—N8—C49—C54	-119.28 (16)
C20-C19-C24-C23	-0.6(2)	N9—N8—C49—C54	32.9 (2)
C25—C19—C24—C23	177.84 (14)	C45—N8—C49—C50	59.9 (2)
C26—N4—C25—C19	-177.08 (13)	N9—N8—C49—C50	-147.93 (14)
C24—C19—C25—N4	1.1 (2)	C54—C49—C50—C51	0.4 (2)
C20—C19—C25—N4	179.49 (14)	N8—C49—C50—C51	-178.77 (14)
C25—N4—C26—C28	-158.83 (14)	C49—C50—C51—C52	-1.4 (3)
C25—N4—C26—C27	27.2 (2)	C50-C51-C52-C53	1.0 (3)

N6—N5—C27—O4	172.41 (12)	C51—C52—C53—C54	0.5 (3)
C31—N5—C27—O4	20.4 (2)	C50-C49-C54-C53	1.1 (2)
N6—N5—C27—C26	-5.35 (15)	N8—C49—C54—C53	-179.82 (14)
C31—N5—C27—C26	-157.38 (13)	C52—C53—C54—C49	-1.5 (2)
C28—C26—C27—O4	-174.11 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
01—H1…O4	0.84	1.86	2.6947 (14)	170
O3—H3A···O6 ⁱ	0.84	1.86	2.6993 (15)	175
O5—H5 <i>A</i> ···O4	0.84	1.88	2.7218 (15)	179
С7—Н7…О2	0.95	2.30	3.009 (2)	131
C25—H25…O4	0.95	2.46	3.0612 (18)	121
C43—H43…O6	0.95	2.36	2.9989 (18)	124
C33—H33…O6 ⁱⁱ	0.95	2.42	3.168 (2)	135
C35—H35…O2 ⁱⁱ	0.95	2.31	3.122 (2)	143

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*+1, *z*.