CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of 6-deoxy- α-L-psicofuranose

Akihide Yoshihara, ${ }^{\text {a }}$ Tomohiko Ishii, ${ }^{\mathrm{b} *}$ Tatsuya Kamakura, ${ }^{\text {b }}$ Hiroaki Taguchi ${ }^{\text {b }}$ and Kazuhiro Fukada ${ }^{\text {c }}$
${ }^{\text {a }}$ Rare Sugar Research Center, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, ${ }^{\mathbf{b}}$ Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, and ${ }^{\mathbf{c}}$ Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan. *Correspondence e-mail: tishii@eng.kagawa-u.ac.jp

Received 12 November 2015; accepted 20 November 2015

Edited by H. Ishida, Okayama University, Japan

The title compound, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$, was crystallized from an aqueous solution of 6 -deoxy-L-psicose (6-deoxy-L-allulose, ($3 S, 4 S, 5 S$)-1,3,4,5-tetrahydroxyhexan-2-one), and the molecule was confirmed as α-furanose with a ${ }^{3} T_{4}$ (or E_{4}) conformation, which is a predominant tautomer in solution. This five-membered furanose ring structure is the second example in the field of the 6-deoxy-ketohexose family. The cell volume of the title compound [742.67 (7) $\AA^{3}, Z=4$ at room temperature] is only 1.4% smaller than that of β-d-psicopyranose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\left(753.056 \AA^{3}, Z=4\right.$ at room temperature $)$.

Keywords: crystal structure; hydrogen bonding; deoxy compound; rare sugar.

CCDC reference: 1437931

1. Related literature

For the predominant tautomer, α-furanose, of 6-deoxy-Lpsicose in aqueous solution, see: Yoshihara et al. (2015). For the crystal structure of chiral β-d-psicose, see: Kwiecień et al. (2008); Fukada et al. (2010). For the crystal structure of racemic β - D, L-psicose, see: Ishii et al. (2015). For the synthesis of 6-deoxy-L-psicose, see: Shompoosang et al. (2014). For the crystal structures of 6-deoxy- α-L-sorbofuranose and 6-deoxy-α-d-sorbofuranose, see: Swaminathan et al. (1979); Rao et al. (1981); Jones et al. (2006).

2. Experimental

2.1. Crystal data

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$
$M_{r}=164.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.7853$ (3) А
$b=8.9442(5) \AA$
$c=14.3528(8) \AA$
$V=742.69$ (7) \AA^{3}
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

2.2. Data collection

Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

13299 measured reflections 1358 independent reflections 1330 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$ $R_{\text {int }}=0.072$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.065$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e} \AA^{-3}$
$S=1.08$
1358 reflections
105 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack x determined using 521 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right]\left[\left[I^{+}\right)+\left(I^{-}\right)\right]$(Parsons \& Flack, 2004)
Absolute structure parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.02	$2.839(2)$	177
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.82	2.13	$2.819(2)$	142
$\mathrm{O}^{2}-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.82	2.08	$2.592(2)$	121
$\mathrm{O}^{\mathrm{iii}}-\mathrm{H} 3 A \cdots \mathrm{O} 22^{\mathrm{iiv}}$	0.82	1.93	$2.732(2)$	166
$\mathrm{O}_{2}-\mathrm{H} 4 A \cdots \mathrm{O} 3^{\mathrm{iv}}$	0.82	2.24	$2.902(2)$	138
$\mathrm{O}_{4}-\mathrm{H} 4 A \cdots 4^{\mathrm{iv}}$	0.82	2.26	$2.987(2)$	148

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-1, y, z ;$ (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv)
$x+\frac{1}{2},-y+\frac{3}{2},-z+1$.
Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure.

Acknowledgements

The authors are grateful to Grants-in-Aid for Rare Sugar Research of Kagawa University.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5433).

References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. \& Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.

Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. \& Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193-1197.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ishii, T., Sakane, G., Yoshihara, A., Fukada, K. \& Senoo, T. (2015). Acta Cryst. E71, o289-o290.

Jones, N. A., Fanefjord, M., Jenkinson, S. F., Fleet, G. W. J. \& Watkin, D. J. (2006). Acta Cryst. E62, o4663-o4665.

Kwiecień, A., Ślepokura, K. \& Lis, T. (2008). Carbohydr. Res. 343, 2336-2339. Parsons, S. \& Flack, H. (2004). Acta Cryst. A60, s61.
Rao, S. T., Swaminathan, P. \& Sundaralingam, M. (1981). Carbohydr. Res. 89, 151-154.
Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shompoosang, S., Yoshihara, A., Uechi, K., Asada, Y. \& Morimoto, K. (2014). Biosci. Biotechnol. Biochem. 78, 317-325.
Swaminathan, P., Anderson, L. \& Sundaralingam, M. (1979). Carbohydr. Res. 75, 1-10.
Yoshihara, A., Sato, M. \& Fukada, K. (2015). Chem. Lett. In the press.

supporting information

Acta Cryst. (2015). E71, o993-o994 [https://doi.org/10.1107/S2056989015022215]

Crystal structure of 6-deoxy- α-L-psicofuranose

Akihide Yoshihara, Tomohiko Ishii, Tatsuya Kamakura, Hiroaki Taguchi and Kazuhiro Fukada

S1. Comment

Psicose is classified into a rare sugar, and hardly exists in nature. In this study we prepare a single crystal of 6-deoxy-Lpsicose (Fig. 1), which is obtained by enzymatic isomerization of L-rhamnose, and investigate the structure by X-ray crystal analysis. The space group of this compound is orthorhombic $P 2_{1_{2}} 2_{1}$, which is the same as that of β - D-psicopyranose (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). The molecular weight of 6-deoxy-L-psicose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}\right.$; $m . w .=164.16)$ is about 10% smaller than that of D-psicose (180.16). On the other hand, the cell volume of 6-deoxy- $\alpha-L-$ psicofuranose is 742.67 (7) \AA^{3} at r.t., which is a mere 1.4% smaller than that of β - D-psicopyranose ($753.056 \AA^{3}$ at r.t., cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). This imbalance of decreasing suggests that a weaker intermolecular interaction caused by a smaller molecular density can be expected. The melting point of 6-deoxy- $\alpha-L-$ psicofuranose has been observed to be $76^{\circ} \mathrm{C}$, which is about $30^{\circ} \mathrm{C}$ lower than that of psicose $\left(107.6^{\circ} \mathrm{C}\right)$. This lower melting point is consistent with the suggested weaker intermolecular interaction.
We found that 6-deoxy- L-psicose molecules form a five-membered α-furanose ring structure in crystal. In the crystals of ketohexoses so far, six-membered pyranose ring structures have been mainly confirmed (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010, 1-deoxy-L-sorbose; Jones et al., 2006). Because of the deoxygenation in the 6-deoxy-L-psicose molecule, the carbonyl group at the C-2 position cannot form hemiacetal with the C-6 but with the C-5 hydroxyl group. It should be noted that the crystal structure of 6-deoxy- L-sorbose, C-4 epimer of 6-deoxy- L-psicose, was reported to be α furanose; C^{\prime} '-exo-C4'-endo, ${ }_{3} \mathrm{~T}^{4}$ (Swaminathan et al., 1979). Therefore, the α-furanose structure observed in the crystal of 6-deoxy-L-psicose is the second example in 6-deoxy-ketohexose family, with ${ }^{3} \mathrm{~T}_{4}$ (or E_{4}) conformation. An intramolecular hydrogen bond ($\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 5$) has been observed both in a chiral D-psicose (Kwiecień et al., 2008; Fukada et al., 2010) and a racemic D, L-psicose (Ishii et al., 2015). This comes from two hydroxy groups located in a shorter distance from each other because of both axial conformations connecting to the C-3 and C-5 positions. On the other hand in the 6-deoxy- L-psicose, such an intramolecular hydrogen bond is not observed, because the hydroxy group at a C-5 position has been used for creating the ring structure. Intermolecular hydrogen bonds (O3-H3A․ㅇ2 and O1$\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 5)$ are also confirmed along the b-axis, and $\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 4$ along the a-axis, as shown in Fig. 2.

S2. Experimental

6-Deoxy- L-psicose was prepared from L-rhamnose by immobilized L-rhamnose isomerase and immobilized D-tagatose 3-epimerase in the batch reaction (Shompoosang et al., 2014). After this reaction was reached equilibrium, the reaction mixture containing 6-deoxy- L-psicose was separated by column chromatography. The purified 6-deoxy-L-psicose solution was concentrated to 80% by evaporation. A seed crystal of 6-deoxy-L-psicose was added to the $80 \% 6$-deoxy- L psicose solution, which was kept at $30^{\circ} \mathrm{C}$. The tautomer ratio in aqueous solution at $30^{\circ} \mathrm{C}$ is obtained as α-furanose : β furanose : acyclic form $=72.9: 24.5: 2.69$ (Yoshihara et al., 2015). After one day, single crystals were obtained.

S3. Refinement

H atoms bounded to methine-type $\mathrm{C}(\mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}, \mathrm{H} 5 \mathrm{~A})$ were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms bounded to methylene-type $\mathrm{C}(\mathrm{H1B}, \mathrm{H1C})$ were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms bounded to methyltype C (H6A, H6B, H6C) were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. H atoms bounded to $\mathrm{O}(\mathrm{H} 1 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A})$ were positioned geometrically and refined using a riding model with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\mathrm{is} 0}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$, allowing for free rotation of the OH groups.

Figure 1
An ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2
A packing diagram of the title compound viewed down the a-axis, showing the hydrogen-bonding network (green dashed lines).

6-Deoxy- α-L-psicofuranose
Crystal data
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$
$M_{r}=164.16$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.7853$ (3) \AA
$b=8.9442(5) \AA$
$c=14.3528(8) \AA$
$V=742.69$ (7) \AA^{3}
$Z=4$
$F(000)=352.00$
$D_{\mathrm{x}}=1.468 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54187 \AA$
Cell parameters from 7546 reflections
$\theta=3.1-68.3^{\circ}$
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 10.000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min }=0.732, T_{\text {max }}=0.894$
13299 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.065$
$S=1.08$
1358 reflections
105 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

1358 independent reflections
1330 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=68.2^{\circ}, \theta_{\min }=5.8^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0207 P)^{2}+0.1732 P\right]
$$

where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.14$ e \AA^{-3}
Extinction correction: SHELXL
Extinction coefficient: 0.0144 (15)
Absolute structure: Flack x determined using 521 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons \& Flack, 2004)
Absolute structure parameter: 0.03 (8)

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R -factor (wR) and goodness of fit (S) are based on F^{2}. R-factor (gt) are based on F . The threshold expression of $\mathrm{F}^{2}>2.0 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating Rfactor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$1.1489(3)$	$0.60359(18)$	$0.19568(11)$	$0.0370(4)$
O2	$0.5730(3)$	$0.45936(18)$	$0.23138(13)$	$0.0419(4)$
O3	$0.5171(2)$	$0.68432(15)$	$0.34295(10)$	$0.0274(3)$
O4	$0.8265(3)$	$0.72675(18)$	$0.47842(10)$	$0.0371(4)$
O5	$0.8957(3)$	$0.41852(14)$	$0.32155(9)$	$0.0297(4)$
C1	$0.9314(4)$	$0.5411(2)$	$0.17460(13)$	$0.0299(5)$
C2	$0.7827(3)$	$0.5218(2)$	$0.26045(13)$	$0.0239(4)$
C3	$0.7513(3)$	$0.6680(2)$	$0.31678(13)$	$0.0217(4)$
C4	$0.9029(3)$	$0.6417(2)$	$0.40186(13)$	$0.0243(4)$
C5	$0.8846(4)$	$0.4748(2)$	$0.41607(13)$	$0.0288(5)$
C6	$1.0749(5)$	$0.4055(3)$	$0.47269(18)$	$0.0472(6)$
H1A	1.14196	0.69485	0.19094	0.0444^{*}
H1C	0.95355	0.44456	0.14516	0.0359^{*}
H1B	0.85181	0.60539	0.13061	0.0359^{*}
H2A	0.46647	0.5151	0.24595	0.0503^{*}
H3A	0.47011	0.76663	0.32637	0.0328^{*}
H3B	0.80479	0.75478	0.28114	0.0261^{*}
H4A	0.93817	0.75318	0.50951	0.0445^{*}

H4B	1.06309	0.66817	0.38712	0.0291^{*}
H5A	0.73436	0.45008	0.44361	0.0346^{*}
H6A	1.0678	0.44263	0.53538	0.0566^{*}
H6B	1.05675	0.29881	0.47311	0.0566^{*}
H6C	1.22165	0.4308	0.44577	0.0566^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	$U^{2_{3}}$
O1	$0.0306(8)$	$0.0317(8)$	$0.0486(9)$	$0.0022(7)$	$0.0045(7)$	$0.0026(7)$
O2	$0.0265(8)$	$0.0310(9)$	$0.0683(11)$	$-0.0008(7)$	$-0.0091(7)$	$-0.0203(8)$
O3	$0.0221(7)$	$0.0249(8)$	$0.0351(7)$	$0.0048(6)$	$-0.0004(6)$	$0.0008(6)$
O4	$0.0320(8)$	$0.0467(10)$	$0.0325(8)$	$0.0046(8)$	$-0.0052(6)$	$-0.0198(7)$
O5	$0.0448(9)$	$0.0177(7)$	$0.0266(7)$	$0.0073(6)$	$-0.0022(7)$	$0.0004(5)$
C1	$0.0384(11)$	$0.0263(11)$	$0.0249(10)$	$0.0058(9)$	$-0.0033(8)$	$-0.0040(8)$
C2	$0.0267(11)$	$0.0170(9)$	$0.0282(9)$	$0.0018(8)$	$-0.0066(8)$	$-0.0025(7)$
C3	$0.0223(9)$	$0.0165(9)$	$0.0262(9)$	$0.0002(8)$	$0.0014(8)$	$-0.0022(7)$
C4	$0.0231(9)$	$0.0244(11)$	$0.0253(9)$	$0.0001(9)$	$-0.0000(8)$	$-0.0055(8)$
C5	$0.0333(11)$	$0.0283(11)$	$0.0248(9)$	$0.0004(9)$	$-0.0008(8)$	$0.0004(8)$
C6	$0.0607(16)$	$0.0405(14)$	$0.0404(12)$	$0.0144(12)$	$-0.0125(12)$	$0.0049(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	$1.410(3)$	O2-H2A	0.820
O2-C2	$1.399(2)$	O3-H3A	0.820
O3-C3	$1.414(2)$	O4-H4A	0.820
O4-C4	$1.408(2)$	C1-H1C	0.970
O5-C2	$1.432(2)$	C1-H1B	0.970
O5-C5	$1.448(2)$	C3-H3B	0.980
C1-C2	$1.512(3)$	C4-H4B	0.980
C2-C3	$1.548(3)$	C5-H5A	0.980
C3-C4	$1.522(3)$	C6-H6A	0.960
C4-C5	$1.510(3)$	C6-H6B	0.960
C5-C6	$1.502(3)$	C6-H6C	0.960
O1-H1A	0.820		
C2-O5-C5	$109.24(14)$	O1-C1-H1C	109.164
O1-C1-C2	$112.20(16)$	O1-C1-H1B	109.167
O2-C2-O5	$108.73(15)$	C2-C1-H1C	109.166
O2-C2-C1	$107.19(16)$	C2-C1-H1B	109.170
O2-C2-C3	$113.01(16)$	H1C-C1-H1B	107.872
O5-C2-C1	$108.26(16)$	O3-C3-H3B	111.067
O5-C2-C3	$106.18(14)$	C2-C3-H3B	111.068
C1-C2-C3	$113.31(16)$	C4-C3-H3B	111.066
O3-C3-C2	$109.81(15)$	O4-C4-H4B	109.543
O3-C3-C4	$110.80(15)$	C3-C4-H4B	109.538
C2-C3-C4	$102.75(15)$	C5-C4-H4B	109.537
O4-C4-C3	$111.22(16)$	O5-C5-H5A	109.822

O4-C4-C5	114.02 (16)	C4-C5-H5A	109.816
C3-C4-C5	102.76 (15)	C6-C5-H5A	109.811
O5-C5-C4	102.34 (14)	C5-C6-H6A	109.470
O5-C5-C6	109.33 (18)	C5-C6-H6B	109.472
C4-C5-C6	115.43 (18)	C5-C6-H6C	109.471
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	109.468	H6A-C6-H6B	109.472
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.470	H6A-C6-H6C	109.470
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	109.471	H6B-C6-H6C	109.473
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	109.477		
C2-O5-C5-C4	-34.64 (18)	O5-C2-C3-C4	12.06 (17)
C2-O5-C5-C6	-157.50 (14)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	135.42 (15)
C5-O5-C2-O2	-107.81 (16)	C1-C2-C3-C4	-106.65 (16)
C5-O5-C2-C1	136.05 (14)	O3-C3-C4-O4	-37.4 (2)
C5-O5-C2-C3	14.07 (18)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	85.02 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-179.95 (14)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	-154.60 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 5$	-62.8 (2)	C2-C3-C4-C5	-32.21 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	54.7 (2)	O4-C4-C5-O5	161.44 (14)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	13.2 (2)	O4-C4-C5-C6	-79.9 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	131.17 (15)	C3-C4-C5-O5	40.95 (18)
$\mathrm{O} 5-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	-105.88 (16)	C3-C4-C5-C6	159.59 (14)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A^{\cdots} \mathrm{O}^{\text {i }}$	0.82	2.02	2.839 (2)	177
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {ii }}$	0.82	2.13	2.819 (2)	142
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.82	2.08	2.592 (2)	121
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {iii }}$	0.82	1.93	2.732 (2)	166
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 3^{\text {iv }}$	0.82	2.24	2.902 (2)	138
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 4^{\text {iv }}$	0.82	2.26	2.987 (2)	148

Symmetry codes: (i) $-x+2, y+1 / 2,-z+1 / 2$; (ii) $x-1, y, z$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $x+1 / 2,-y+3 / 2,-z+1$.

