organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-(5,6-di­hydro­benzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-2-meth­­oxy­phenol

aSchool of Chemical Sciences, 11800, USM Pulau Pinang, Malaysia
*Correspondence e-mail: farook@usm.my

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 10 October 2015; accepted 8 November 2015; online 21 November 2015)

In the mol­ecule of the title compound, C21H17N3O2, the 5,6-di­hydro­benzimidazo[1,2-c]quinazoline moiety is disordered over two orientations about a pseudo-mirror plane, with a refined occupancy ratio of 0.863 (2):0.137 (2). The dihedral angles formed by the benzimidazole ring system and the benzene ring of the quinazoline group are 14.28 (5) and 4.7 (3)° for the major and minor disorder components, respectively. An intra­molecular O—H⋯O hydrogen bond is present. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains running parallel to [10-1].

1. Related literature

For the structure of related N-heterocyclic Schiff base compounds, see: Cheng et al. (2006[Cheng, L.-H., Jin, F., Yang, L. & Tian, Y.-P. (2006). Acta Cryst. E62, o2860-o2861.]); Ünver et al. (2010[Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.]); Gurumoorthy et al. (2010[Gurumoorthy, A., Gopalsamy, V., Ünlüer, D., Düğdü, E. & Varghesee, B. (2010). Acta Cryst. E66, o2777-o2778.]); Natarajan & Mathews (2011[Natarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o2828.]); Alliouche et al. (2014[Alliouche, H., Bouraiou, A., Bouacida, S., Merazig, H. & Belfaitah, A. (2014). Acta Cryst. E70, o962-o963.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H17N3O2

  • Mr = 343.38

  • Monoclinic, P 21 /n

  • a = 9.7359 (7) Å

  • b = 10.0822 (7) Å

  • c = 17.4624 (13) Å

  • β = 94.2958 (15)°

  • V = 1709.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.29 × 0.20 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 19177 measured reflections

  • 4987 independent reflections

  • 3575 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.05

  • 4987 reflections

  • 370 parameters

  • 752 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.80 (3) 2.25 (3) 2.6706 (16) 112 (3)
O1—H1O1⋯N1i 0.80 (3) 1.98 (3) 2.703 (2) 150 (3)
O1—H1O1⋯N1Xi 0.80 (3) 2.18 (3) 2.873 (9) 145 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig. 1), which features a cyclic structure instead of the planned imine CN double bond of a Schiff base compound, was unexpectedly obtained by the reaction of 3-hy­droxy-4-meth­oxy-benzaldehyde and 2-(2-amino­phenyl)-1H-benzimidazole. In the molecule, the 5,6-di­hydro­benzimidazo[1,2-c]quinazoline moiety has been found to be disordered over two sets of sites, with occupancy ratio of 0.863 (2):0.137 (2), related by a pseudo-mirror plane approximately parallel to the (1 0 1) plane. Within the disordered components, the dihedral angle between the benzimidazole ring and the benzene ring of the quinazoline group is 14.28 (5) and 4.7 (3)°, respectively. The molecular conformation is enforced by an intra­molecular O—H···O hydrogen bond (Table 1). In the crystal, molecules form chains parallel to the [1 0 -1] direction via O—H···N hydrogen bonds.

Refinement top

During the refinement of the disordered 5,6-di­hydro­benzimidazo[1,2-c]quinazoline moiety DELU and SIMU restraints were applied. The phenolic hydrogen atom was located in a difference Fourier map and refined freely. All other H atoms were calculated geometrically and refined using a riding model, with C—H = 0.93-0.98 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. A rotating model was used for the methyl group. Four outliers (-3 0 1, -7 0 1, 0 0 2, 0 0 6) were omitted in the last cycles of refinement.

Synthesis and crystallization top

3-Hy­droxy-4-meth­oxy-benzaldehyde (5 mmol, 0.761 g) and 2-(2-amino­phenyl)-1H-benzimidazole (5 mmol, 1.046 g) were dissolved in ethanol in separate beakers, then the amine solution was added drop wise with stirring to the aldehyde solution in a round bottomed flask. The mixture was refluxed over 4h. The product was filtered and washed with hot ethanol and n-hexane, then dried out over 24 h under reduced pressure in a desiccator. Single crystals suitable for X-ray analysis were formed on slow evaporation of the ethanol solution. M. p.: 560-561 K; Yield: 97%. Anal. Cal. for C21H17N3O2 (fw: 343.43 g/mol); C, 73.56; H, 4.95; N, 12.23; Found: C, 73.90; H, 4.56; N, 12.24%. IR (KBr pellets νmax/cm-1): 3382 ν(OH), 1616 ν(C=N), 1497 ν(CH3, stre.), 1154 ν(C—O), 1127 ν(C—N).

Related literature top

For the structure of related N-heterocyclic Schiff base compounds, see: Cheng et al. (2006); Ünver et al. (2010); Gurumoorthy et al. (2010); Natarajan & Mathews (2011); Alliouche et al. (2014).

Structure description top

The title compound (Fig. 1), which features a cyclic structure instead of the planned imine CN double bond of a Schiff base compound, was unexpectedly obtained by the reaction of 3-hy­droxy-4-meth­oxy-benzaldehyde and 2-(2-amino­phenyl)-1H-benzimidazole. In the molecule, the 5,6-di­hydro­benzimidazo[1,2-c]quinazoline moiety has been found to be disordered over two sets of sites, with occupancy ratio of 0.863 (2):0.137 (2), related by a pseudo-mirror plane approximately parallel to the (1 0 1) plane. Within the disordered components, the dihedral angle between the benzimidazole ring and the benzene ring of the quinazoline group is 14.28 (5) and 4.7 (3)°, respectively. The molecular conformation is enforced by an intra­molecular O—H···O hydrogen bond (Table 1). In the crystal, molecules form chains parallel to the [1 0 -1] direction via O—H···N hydrogen bonds.

For the structure of related N-heterocyclic Schiff base compounds, see: Cheng et al. (2006); Ünver et al. (2010); Gurumoorthy et al. (2010); Natarajan & Mathews (2011); Alliouche et al. (2014).

Synthesis and crystallization top

3-Hy­droxy-4-meth­oxy-benzaldehyde (5 mmol, 0.761 g) and 2-(2-amino­phenyl)-1H-benzimidazole (5 mmol, 1.046 g) were dissolved in ethanol in separate beakers, then the amine solution was added drop wise with stirring to the aldehyde solution in a round bottomed flask. The mixture was refluxed over 4h. The product was filtered and washed with hot ethanol and n-hexane, then dried out over 24 h under reduced pressure in a desiccator. Single crystals suitable for X-ray analysis were formed on slow evaporation of the ethanol solution. M. p.: 560-561 K; Yield: 97%. Anal. Cal. for C21H17N3O2 (fw: 343.43 g/mol); C, 73.56; H, 4.95; N, 12.23; Found: C, 73.90; H, 4.56; N, 12.24%. IR (KBr pellets νmax/cm-1): 3382 ν(OH), 1616 ν(C=N), 1497 ν(CH3, stre.), 1154 ν(C—O), 1127 ν(C—N).

Refinement details top

During the refinement of the disordered 5,6-di­hydro­benzimidazo[1,2-c]quinazoline moiety DELU and SIMU restraints were applied. The phenolic hydrogen atom was located in a difference Fourier map and refined freely. All other H atoms were calculated geometrically and refined using a riding model, with C—H = 0.93-0.98 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. A rotating model was used for the methyl group. Four outliers (-3 0 1, -7 0 1, 0 0 2, 0 0 6) were omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only the major component of the disordered 5,6-dihydrobenzimidazo[1,2-c]quinazoline moiety is shown.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. Only the major component of the disordered 5,6-dihydrobenzimidazo[1,2-c]quinazoline moiety is shown.
5-(5,6-Dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-2-methoxyphenol top
Crystal data top
C21H17N3O2Dx = 1.334 Mg m3
Mr = 343.38Melting point < 560 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7359 (7) ÅCell parameters from 4581 reflections
b = 10.0822 (7) Åθ = 3.1–27.8°
c = 17.4624 (13) ŵ = 0.09 mm1
β = 94.2958 (15)°T = 294 K
V = 1709.3 (2) Å3Block, colourless
Z = 40.29 × 0.20 × 0.12 mm
F(000) = 720
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.030
φ and ω scansθmax = 30.1°, θmin = 2.3°
19177 measured reflectionsh = 1313
4987 independent reflectionsk = 1414
3575 reflections with I > 2σ(I)l = 2324
Refinement top
Refinement on F2752 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4546P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4987 reflectionsΔρmax = 0.34 e Å3
370 parametersΔρmin = 0.23 e Å3
Crystal data top
C21H17N3O2V = 1709.3 (2) Å3
Mr = 343.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7359 (7) ŵ = 0.09 mm1
b = 10.0822 (7) ÅT = 294 K
c = 17.4624 (13) Å0.29 × 0.20 × 0.12 mm
β = 94.2958 (15)°
Data collection top
Bruker APEXII CCD
diffractometer
3575 reflections with I > 2σ(I)
19177 measured reflectionsRint = 0.030
4987 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049752 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
4987 reflectionsΔρmin = 0.23 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.93764 (14)0.63506 (12)0.04088 (7)0.0588 (4)
O20.86896 (12)0.89115 (10)0.05203 (6)0.0491 (3)
N10.59770 (15)0.75237 (13)0.35710 (8)0.0396 (3)0.863 (2)
N20.69523 (14)0.63791 (13)0.26610 (7)0.0359 (3)0.863 (2)
N30.57057 (16)0.51245 (15)0.17367 (9)0.0468 (4)0.863 (2)
H3B0.56510.43270.15630.056*0.863 (2)
C10.7995 (2)0.6669 (2)0.32075 (11)0.0351 (4)0.863 (2)
C20.9392 (3)0.6376 (2)0.32537 (13)0.0478 (5)0.863 (2)
H2A0.97970.59190.28660.057*0.863 (2)
C31.0146 (3)0.6803 (3)0.39098 (19)0.0598 (7)0.863 (2)
H3A1.10890.66420.39600.072*0.863 (2)
C40.9543 (3)0.7462 (3)0.44958 (16)0.0597 (7)0.863 (2)
H4A1.00860.77130.49330.072*0.863 (2)
C50.8155 (3)0.7756 (2)0.44454 (12)0.0487 (5)0.863 (2)
H5A0.77530.81980.48390.058*0.863 (2)
C60.7377 (2)0.7363 (2)0.37795 (13)0.0375 (4)0.863 (2)
C70.5774 (3)0.6934 (7)0.2911 (3)0.0361 (7)0.863 (2)
C80.4506 (2)0.6765 (2)0.24247 (13)0.0403 (4)0.863 (2)
C90.3310 (3)0.7459 (2)0.25541 (13)0.0526 (5)0.863 (2)
H9A0.33180.80860.29450.063*0.863 (2)
C100.2110 (3)0.7218 (3)0.2101 (2)0.0635 (8)0.863 (2)
H10A0.13110.76880.21800.076*0.863 (2)
C110.2111 (3)0.6263 (4)0.1525 (2)0.0674 (9)0.863 (2)
H11A0.13000.60880.12260.081*0.863 (2)
C120.3284 (3)0.5578 (3)0.13899 (14)0.0559 (6)0.863 (2)
H12A0.32640.49420.10030.067*0.863 (2)
C130.4515 (2)0.5835 (2)0.18347 (13)0.0424 (4)0.863 (2)
C140.7041 (5)0.5718 (5)0.1925 (2)0.0344 (6)0.863 (2)
H14B0.77220.50040.19940.041*0.863 (2)
N1X0.5001 (9)0.7439 (9)0.3169 (5)0.0386 (19)0.137 (2)
N2X0.5950 (10)0.6217 (9)0.2297 (5)0.0419 (19)0.137 (2)
N3X0.8202 (12)0.5396 (10)0.2406 (5)0.056 (2)0.137 (2)
H3XB0.86170.46520.23560.067*0.137 (2)
C1X0.4602 (9)0.6321 (10)0.2060 (7)0.040 (2)0.137 (2)
C2X0.3809 (14)0.5828 (12)0.1429 (6)0.053 (3)0.137 (2)
H2XA0.42120.52980.10710.063*0.137 (2)
C3X0.2413 (14)0.6126 (16)0.1331 (6)0.059 (4)0.137 (2)
H3XA0.18820.57960.09080.071*0.137 (2)
C4X0.1810 (9)0.6918 (15)0.1865 (8)0.052 (4)0.137 (2)
H4XA0.08760.71170.17990.063*0.137 (2)
C5X0.2603 (13)0.7411 (10)0.2496 (6)0.054 (3)0.137 (2)
H5XA0.22000.79410.28530.065*0.137 (2)
C6X0.3999 (12)0.7113 (10)0.2594 (5)0.036 (2)0.137 (2)
C7X0.611 (2)0.683 (4)0.2897 (19)0.032 (3)0.137 (2)
C8X0.7465 (9)0.6924 (9)0.3393 (6)0.036 (2)0.137 (2)
C9X0.7716 (11)0.7555 (10)0.4097 (7)0.043 (3)0.137 (2)
H9XA0.70150.80270.43080.051*0.137 (2)
C10X0.9013 (14)0.7482 (15)0.4486 (6)0.061 (5)0.137 (2)
H10B0.91800.79040.49570.073*0.137 (2)
C11X1.0059 (10)0.6776 (18)0.4170 (8)0.071 (5)0.137 (2)
H11B1.09270.67270.44300.085*0.137 (2)
C12X0.9809 (11)0.6144 (14)0.3466 (7)0.061 (4)0.137 (2)
H12B1.05090.56730.32550.074*0.137 (2)
C13X0.8512 (13)0.6218 (9)0.3077 (5)0.045 (2)0.137 (2)
C14X0.712 (4)0.588 (3)0.1788 (18)0.052 (6)0.137 (2)
H14A0.68150.50860.14990.062*0.137 (2)
C150.75062 (14)0.66702 (13)0.13052 (7)0.0347 (3)
C160.82721 (14)0.61424 (13)0.07362 (8)0.0360 (3)
H16A0.85260.52530.07600.043*
C170.86614 (14)0.69147 (13)0.01369 (7)0.0351 (3)
C180.82827 (14)0.82542 (13)0.01053 (7)0.0354 (3)
C190.75414 (18)0.87820 (14)0.06726 (9)0.0465 (4)
H19A0.72950.96730.06540.056*
C200.71589 (18)0.79913 (14)0.12733 (9)0.0475 (4)
H20A0.66640.83590.16560.057*
C210.8361 (2)1.02811 (16)0.05978 (11)0.0623 (5)
H21A0.87291.06240.10530.093*
H21B0.87541.07540.01570.093*
H21C0.73791.03900.06360.093*
H1O10.969 (3)0.692 (3)0.0666 (15)0.096 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0862 (9)0.0403 (6)0.0563 (7)0.0106 (6)0.0472 (7)0.0054 (5)
O20.0672 (7)0.0399 (5)0.0426 (6)0.0027 (5)0.0206 (5)0.0083 (4)
N10.0473 (8)0.0401 (7)0.0333 (7)0.0007 (6)0.0145 (6)0.0021 (5)
N20.0400 (7)0.0406 (7)0.0284 (6)0.0019 (6)0.0117 (5)0.0006 (5)
N30.0548 (9)0.0404 (7)0.0466 (8)0.0107 (6)0.0136 (6)0.0101 (6)
C10.0402 (10)0.0353 (9)0.0305 (8)0.0008 (8)0.0081 (7)0.0053 (7)
C20.0433 (13)0.0536 (11)0.0471 (12)0.0052 (10)0.0077 (9)0.0060 (9)
C30.0489 (12)0.0677 (16)0.0609 (17)0.0029 (11)0.0089 (10)0.0096 (13)
C40.0650 (18)0.0624 (15)0.0490 (13)0.0030 (14)0.0144 (11)0.0055 (10)
C50.0674 (15)0.0454 (10)0.0328 (10)0.0047 (10)0.0008 (9)0.0020 (8)
C60.0496 (11)0.0341 (9)0.0297 (10)0.0012 (8)0.0089 (8)0.0027 (8)
C70.0403 (16)0.0370 (13)0.0331 (10)0.0027 (15)0.0174 (13)0.0005 (8)
C80.0396 (10)0.0447 (11)0.0379 (11)0.0012 (8)0.0108 (8)0.0023 (8)
C90.0419 (12)0.0642 (13)0.0529 (12)0.0060 (12)0.0115 (11)0.0099 (9)
C100.0392 (12)0.085 (2)0.067 (2)0.0031 (13)0.0073 (12)0.0217 (16)
C110.0461 (12)0.092 (2)0.0631 (19)0.0165 (14)0.0052 (13)0.0200 (16)
C120.0547 (15)0.0652 (14)0.0469 (11)0.0225 (12)0.0023 (10)0.0043 (10)
C130.0451 (10)0.0463 (11)0.0363 (10)0.0126 (9)0.0074 (8)0.0041 (8)
C140.0465 (11)0.0317 (9)0.0272 (14)0.0000 (8)0.0162 (9)0.0024 (9)
N1X0.042 (4)0.045 (4)0.030 (4)0.001 (4)0.009 (3)0.003 (3)
N2X0.058 (4)0.043 (4)0.026 (4)0.000 (4)0.015 (3)0.003 (3)
N3X0.075 (6)0.053 (5)0.042 (5)0.030 (5)0.026 (4)0.017 (4)
C1X0.052 (5)0.037 (6)0.032 (6)0.009 (5)0.011 (4)0.015 (4)
C2X0.063 (7)0.063 (8)0.035 (6)0.031 (7)0.020 (5)0.013 (5)
C3X0.074 (9)0.068 (9)0.037 (7)0.015 (8)0.005 (7)0.011 (5)
C4X0.046 (7)0.070 (10)0.040 (8)0.009 (6)0.005 (5)0.008 (6)
C5X0.034 (6)0.075 (8)0.054 (7)0.001 (7)0.003 (6)0.002 (6)
C6X0.035 (5)0.039 (6)0.033 (5)0.001 (5)0.002 (5)0.005 (4)
C7X0.036 (6)0.030 (7)0.030 (5)0.001 (7)0.015 (6)0.001 (4)
C8X0.047 (5)0.031 (5)0.033 (5)0.006 (4)0.015 (4)0.005 (4)
C9X0.050 (6)0.043 (6)0.035 (7)0.004 (5)0.000 (5)0.002 (5)
C10X0.059 (10)0.063 (8)0.058 (7)0.005 (8)0.021 (7)0.014 (6)
C11X0.063 (8)0.079 (11)0.067 (10)0.003 (7)0.019 (7)0.022 (8)
C12X0.045 (7)0.083 (9)0.057 (8)0.013 (6)0.008 (5)0.033 (6)
C13X0.034 (5)0.055 (7)0.048 (5)0.011 (5)0.012 (4)0.026 (4)
C14X0.063 (8)0.055 (13)0.038 (10)0.015 (9)0.013 (6)0.021 (9)
C150.0395 (7)0.0351 (6)0.0306 (6)0.0002 (5)0.0092 (5)0.0015 (5)
C160.0412 (7)0.0308 (6)0.0374 (7)0.0015 (5)0.0127 (5)0.0000 (5)
C170.0376 (7)0.0356 (6)0.0335 (6)0.0005 (5)0.0121 (5)0.0036 (5)
C180.0420 (7)0.0337 (6)0.0311 (6)0.0016 (5)0.0073 (5)0.0012 (5)
C190.0646 (10)0.0306 (6)0.0468 (8)0.0050 (6)0.0198 (7)0.0008 (6)
C200.0670 (10)0.0369 (7)0.0415 (8)0.0053 (7)0.0244 (7)0.0053 (6)
C210.0813 (13)0.0413 (8)0.0660 (11)0.0010 (8)0.0158 (9)0.0155 (8)
Geometric parameters (Å, º) top
O1—C171.3473 (16)N2X—C14X1.53 (3)
O1—H1O10.80 (3)N3X—C13X1.449 (14)
O2—C181.3617 (16)N3X—C14X1.53 (3)
O2—C211.4215 (19)N3X—H3XB0.8600
N1—C71.299 (5)C1X—C2X1.3900
N1—C61.394 (2)C1X—C6X1.3900
N2—C11.372 (2)C2X—C3X1.3900
N2—C71.377 (3)C2X—H2XA0.9300
N2—C141.455 (5)C3X—C4X1.3900
N3—C131.384 (3)C3X—H3XA0.9300
N3—C141.446 (5)C4X—C5X1.3900
N3—H3B0.8600C4X—H4XA0.9300
C1—C21.389 (3)C5X—C6X1.3900
C1—C61.392 (3)C5X—H5XA0.9300
C2—C31.382 (3)C7X—C8X1.53 (3)
C2—H2A0.9300C8X—C9X1.3900
C3—C41.387 (4)C8X—C13X1.3900
C3—H3A0.9300C9X—C10X1.3900
C4—C51.380 (4)C9X—H9XA0.9300
C4—H4A0.9300C10X—C11X1.3900
C5—C61.397 (3)C10X—H10B0.9300
C5—H5A0.9300C11X—C12X1.3900
C7—C81.455 (4)C11X—H11B0.9300
C8—C91.391 (3)C12X—C13X1.3900
C8—C131.394 (3)C12X—H12B0.9300
C9—C101.383 (4)C14X—C151.24 (3)
C9—H9A0.9300C14X—H14A0.9800
C10—C111.392 (4)C15—C201.3744 (19)
C10—H10A0.9300C15—C161.3919 (18)
C11—C121.370 (4)C16—C171.3801 (18)
C11—H11A0.9300C16—H16A0.9300
C12—C131.403 (3)C17—C181.4000 (19)
C12—H12A0.9300C18—C191.376 (2)
C14—C151.540 (4)C19—C201.390 (2)
C14—H14B0.9800C19—H19A0.9300
N1X—C7X1.36 (2)C20—H20A0.9300
N1X—C6X1.386 (12)C21—H21A0.9600
N2X—C7X1.22 (3)C21—H21B0.9600
N2X—C1X1.350 (13)C21—H21C0.9600
C17—O1—H1O1109.3 (19)C1X—C2X—H2XA120.0
C18—O2—C21118.18 (12)C2X—C3X—C4X120.0
C7—N1—C6105.05 (18)C2X—C3X—H3XA120.0
C1—N2—C7106.5 (2)C4X—C3X—H3XA120.0
C1—N2—C14128.5 (2)C5X—C4X—C3X120.0
C7—N2—C14124.9 (3)C5X—C4X—H4XA120.0
C13—N3—C14120.3 (2)C3X—C4X—H4XA120.0
C13—N3—H3B119.9C4X—C5X—C6X120.0
C14—N3—H3B119.9C4X—C5X—H5XA120.0
N2—C1—C2131.7 (2)C6X—C5X—H5XA120.0
N2—C1—C6105.6 (2)N1X—C6X—C5X131.8 (10)
C2—C1—C6122.63 (17)N1X—C6X—C1X108.2 (10)
C3—C2—C1116.0 (2)C5X—C6X—C1X120.0
C3—C2—H2A122.0N2X—C7X—N1X118 (2)
C1—C2—H2A122.0N2X—C7X—C8X124.7 (18)
C2—C3—C4122.2 (3)N1X—C7X—C8X117 (2)
C2—C3—H3A118.9C9X—C8X—C13X120.0
C4—C3—H3A118.9C9X—C8X—C7X128.1 (13)
C5—C4—C3121.5 (2)C13X—C8X—C7X111.9 (13)
C5—C4—H4A119.2C8X—C9X—C10X120.0
C3—C4—H4A119.2C8X—C9X—H9XA120.0
C4—C5—C6117.4 (2)C10X—C9X—H9XA120.0
C4—C5—H5A121.3C11X—C10X—C9X120.0
C6—C5—H5A121.3C11X—C10X—H10B120.0
C1—C6—N1109.7 (2)C9X—C10X—H10B120.0
C1—C6—C5120.2 (2)C10X—C11X—C12X120.0
N1—C6—C5130.0 (2)C10X—C11X—H11B120.0
N1—C7—N2113.1 (3)C12X—C11X—H11B120.0
N1—C7—C8129.6 (2)C13X—C12X—C11X120.0
N2—C7—C8117.3 (3)C13X—C12X—H12B120.0
C9—C8—C13120.7 (2)C11X—C12X—H12B120.0
C9—C8—C7122.0 (3)C12X—C13X—C8X120.0
C13—C8—C7117.2 (3)C12X—C13X—N3X119.4 (10)
C10—C9—C8120.0 (2)C8X—C13X—N3X119.9 (10)
C10—C9—H9A120.0C15—C14X—N3X117 (3)
C8—C9—H9A120.0C15—C14X—N2X122 (2)
C9—C10—C11119.3 (2)N3X—C14X—N2X99.5 (18)
C9—C10—H10A120.4C15—C14X—H14A105.7
C11—C10—H10A120.4N3X—C14X—H14A105.7
C12—C11—C10121.2 (2)N2X—C14X—H14A105.7
C12—C11—H11A119.4C14X—C15—C20124.4 (14)
C10—C11—H11A119.4C14X—C15—C16116.5 (15)
C11—C12—C13120.0 (3)C20—C15—C16119.00 (12)
C11—C12—H12A120.0C20—C15—C14123.2 (2)
C13—C12—H12A120.0C16—C15—C14117.7 (2)
N3—C13—C8119.5 (2)C17—C16—C15121.20 (12)
N3—C13—C12121.6 (3)C17—C16—H16A119.4
C8—C13—C12118.7 (2)C15—C16—H16A119.4
N3—C14—N2106.2 (3)O1—C17—C16118.95 (12)
N3—C14—C15113.9 (3)O1—C17—C18121.86 (12)
N2—C14—C15112.1 (3)C16—C17—C18119.18 (12)
N3—C14—H14B108.2O2—C18—C19126.10 (12)
N2—C14—H14B108.2O2—C18—C17114.18 (11)
C15—C14—H14B108.2C19—C18—C17119.71 (12)
C7X—N1X—C6X100.1 (14)C18—C19—C20120.41 (13)
C7X—N2X—C1X106.5 (13)C18—C19—H19A119.8
C7X—N2X—C14X123.9 (19)C20—C19—H19A119.8
C1X—N2X—C14X125.9 (15)C15—C20—C19120.48 (13)
C13X—N3X—C14X118.6 (14)C15—C20—H20A119.8
C13X—N3X—H3XB120.7C19—C20—H20A119.8
C14X—N3X—H3XB120.7O2—C21—H21A109.5
N2X—C1X—C2X133.2 (10)O2—C21—H21B109.5
N2X—C1X—C6X106.8 (10)H21A—C21—H21B109.5
C2X—C1X—C6X120.0O2—C21—H21C109.5
C3X—C2X—C1X120.0H21A—C21—H21C109.5
C3X—C2X—H2XA120.0H21B—C21—H21C109.5
C7—N2—C1—C2179.3 (4)N2X—C1X—C6X—C5X179.3 (9)
C14—N2—C1—C24.0 (4)C2X—C1X—C6X—C5X0.0
C7—N2—C1—C61.7 (4)C1X—N2X—C7X—N1X0 (4)
C14—N2—C1—C6176.9 (2)C14X—N2X—C7X—N1X159 (2)
N2—C1—C2—C3178.3 (2)C1X—N2X—C7X—C8X177 (3)
C6—C1—C2—C30.6 (3)C14X—N2X—C7X—C8X24 (5)
C1—C2—C3—C41.2 (4)C6X—N1X—C7X—N2X1 (4)
C2—C3—C4—C51.6 (4)C6X—N1X—C7X—C8X178 (2)
C3—C4—C5—C60.0 (4)N2X—C7X—C8X—C9X177 (2)
N2—C1—C6—N11.64 (19)N1X—C7X—C8X—C9X0 (4)
C2—C1—C6—N1179.22 (17)N2X—C7X—C8X—C13X0 (4)
N2—C1—C6—C5176.98 (18)N1X—C7X—C8X—C13X177 (2)
C2—C1—C6—C52.2 (3)C13X—C8X—C9X—C10X0.0
C7—N1—C6—C10.9 (4)C7X—C8X—C9X—C10X177 (2)
C7—N1—C6—C5177.5 (4)C8X—C9X—C10X—C11X0.0
C4—C5—C6—C11.8 (3)C9X—C10X—C11X—C12X0.0
C4—C5—C6—N1179.9 (2)C10X—C11X—C12X—C13X0.0
C6—N1—C7—N20.2 (6)C11X—C12X—C13X—C8X0.0
C6—N1—C7—C8178.9 (6)C11X—C12X—C13X—N3X170.7 (9)
C1—N2—C7—N11.2 (6)C9X—C8X—C13X—C12X0.0
C14—N2—C7—N1176.7 (3)C7X—C8X—C13X—C12X177.5 (19)
C1—N2—C7—C8179.9 (4)C9X—C8X—C13X—N3X170.6 (9)
C14—N2—C7—C84.5 (7)C7X—C8X—C13X—N3X6.9 (19)
N1—C7—C8—C912.1 (9)C14X—N3X—C13X—C12X152.5 (15)
N2—C7—C8—C9169.3 (4)C14X—N3X—C13X—C8X36.8 (17)
N1—C7—C8—C13165.5 (5)C13X—N3X—C14X—C1583 (3)
N2—C7—C8—C1313.1 (7)C13X—N3X—C14X—N2X50 (2)
C13—C8—C9—C100.8 (3)C7X—N2X—C14X—C1585 (4)
C7—C8—C9—C10176.7 (4)C1X—N2X—C14X—C1570 (3)
C8—C9—C10—C110.9 (4)C7X—N2X—C14X—N3X46 (3)
C9—C10—C11—C121.2 (4)C1X—N2X—C14X—N3X159.1 (12)
C10—C11—C12—C130.2 (4)N3X—C14X—C15—C20109 (2)
C14—N3—C13—C831.8 (3)N2X—C14X—C15—C2014 (4)
C14—N3—C13—C12152.8 (2)N3X—C14X—C15—C1675 (3)
C9—C8—C13—N3177.67 (18)N2X—C14X—C15—C16162.1 (19)
C7—C8—C13—N30.0 (4)N3X—C14X—C15—C1460 (53)
C9—C8—C13—C122.2 (3)N2X—C14X—C15—C1462 (52)
C7—C8—C13—C12175.5 (4)N3—C14—C15—C14X46 (54)
C11—C12—C13—N3177.2 (2)N2—C14—C15—C14X166 (54)
C11—C12—C13—C81.9 (3)N3—C14—C15—C2086.7 (3)
C13—N3—C14—N244.5 (3)N2—C14—C15—C2033.8 (4)
C13—N3—C14—C1579.3 (3)N3—C14—C15—C1690.8 (3)
C1—N2—C14—N3154.53 (19)N2—C14—C15—C16148.6 (2)
C7—N2—C14—N331.0 (5)C14X—C15—C16—C17174.9 (19)
C1—N2—C14—C1580.6 (3)C20—C15—C16—C171.3 (2)
C7—N2—C14—C1593.9 (5)C14—C15—C16—C17176.3 (2)
C7X—N2X—C1X—C2X179 (2)C15—C16—C17—O1178.56 (13)
C14X—N2X—C1X—C2X22 (2)C15—C16—C17—C180.3 (2)
C7X—N2X—C1X—C6X1 (2)C21—O2—C18—C191.7 (2)
C14X—N2X—C1X—C6X157.3 (16)C21—O2—C18—C17179.45 (14)
N2X—C1X—C2X—C3X179.1 (11)O1—C17—C18—O20.5 (2)
C6X—C1X—C2X—C3X0.0C16—C17—C18—O2178.36 (12)
C1X—C2X—C3X—C4X0.0O1—C17—C18—C19179.39 (15)
C2X—C3X—C4X—C5X0.0C16—C17—C18—C190.5 (2)
C3X—C4X—C5X—C6X0.0O2—C18—C19—C20178.31 (15)
C7X—N1X—C6X—C5X179.8 (19)C17—C18—C19—C200.4 (2)
C7X—N1X—C6X—C1X2 (2)C14X—C15—C20—C19175 (2)
C4X—C5X—C6X—N1X178.1 (11)C16—C15—C20—C191.4 (2)
C4X—C5X—C6X—C1X0.0C14—C15—C20—C19176.1 (2)
N2X—C1X—C6X—N1X2.2 (8)C18—C19—C20—C150.5 (3)
C2X—C1X—C6X—N1X178.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.80 (3)2.25 (3)2.6706 (16)112 (3)
O1—H1O1···N1i0.80 (3)1.98 (3)2.703 (2)150 (3)
O1—H1O1···N1Xi0.80 (3)2.18 (3)2.873 (9)145 (3)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.80 (3)2.25 (3)2.6706 (16)112 (3)
O1—H1O1···N1i0.80 (3)1.98 (3)2.703 (2)150 (3)
O1—H1O1···N1Xi0.80 (3)2.18 (3)2.873 (9)145 (3)
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The research was supported financially by the RU grant 1001/PKIMIA/811269 from University Sains Malaysia. The authors wish to thank The World Academy of Science (TWAS) for a scholarship to MdAA.

References

First citationAlliouche, H., Bouraiou, A., Bouacida, S., Merazig, H. & Belfaitah, A. (2014). Acta Cryst. E70, o962–o963.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L.-H., Jin, F., Yang, L. & Tian, Y.-P. (2006). Acta Cryst. E62, o2860–o2861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurumoorthy, A., Gopalsamy, V., Ünlüer, D., Düğdü, E. & Varghesee, B. (2010). Acta Cryst. E66, o2777–o2778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNatarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o2828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÜnver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds