data reports

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of N"-(2-ethoxy-2oxoethyl)-N,N,N',N'-tetramethyl-N"-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate

Ioannis Tiritiris and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

Received 22 November 2015; accepted 1 December 2015

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

In the title salt, $C_{16}H_{34}N_5O_3^+ \cdot C_{24}H_{20}B^-$, the C-N bond lengths in the cation are 1.3368 (16), 1.3375 (18) and 1.3594 (17) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal-planar geometry and the positive charge is delocalized in the CN₃ plane. In the crystal, weak $C-H \cdots O$ contacts are observed between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate anions. In addition, $C-H \cdots \pi$ interactions involving guanidinium H atoms and aromatic rings of the anion are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the *ab* plane.

Keywords: crystal structure; ureidoalkylguanidinium; tetraphenylborate; salt; C—H···O contacts; C—H··· π interactions.

CCDC reference: 1439925

1. Related literature

For the crystal structure of N, N, N', N'-tetramethylurea, see: Frampton & Parkes (1996). For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008a). For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the crystal structure of 2-dimethylamino-1-(2-ethoxy-2oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate, see: Tiritiris & Kantlehner (2012a). For the crystal structure of N, N, N', N', N''-pentamethyl-N''-[3-(1,3,3trimethylureido)propyl]guanidinium tetraphenylborate, see: Tiritiris & Kantlehner (2012b). For the synthesis of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2013).

V = 3644.2 (2) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.30 \times 0.15 \ \mathrm{mm}$

8666 independent reflections

6067 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.048$

450 parameters

 $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Z = 4

2. Experimental

2.1. Crystal data

 $C_{16}H_{34}N_5O_3^+ \cdot C_{24}H_{20}B^ M_{\rm w} = 663.69$ Monoclinic, $P2_1/c$ a = 9.6650 (3) Åb = 33.8756 (9) Å c = 11.1543 (5) Å $\beta = 93.759(1)^{\circ}$

2.2. Data collection

Bruker-Nonius KappaCCD diffractometer 16724 measured reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.122$

S = 1.068666 reflections

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C29-C34 and C35-C40 rings, respectively.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11B \cdot \cdot \cdot O1^{i}$	0.98	2.73	3.687 (2)	165
$C25 - H25A \cdots O2^{ii}$	0.95	2.72	3.617 (2)	158
$C27 - H27A \cdots O2^{iii}$	0.95	2.71	3.392 (2)	129
$C12-H12C\cdots Cg1$	0.98	2.64	3.541 (2)	152
$C13 - H13A \cdots Cg1$	0.99	2.91	3.432 (2)	114
$C5-H5A\cdots Cg2$	0.98	2.89	3.868 (2)	174
$C16-H16B\cdots Cg2$	0.98	2.66	3.542 (2)	151

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) -x + 1, -y, -z + 1.

Data collection: COLLECT (Hooft, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014.

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5179).

References

Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Frampton, C. S. & Parkes, K. E. B. (1996). Acta Cryst. C52, 3246-3248.

- Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tiritiris, I. & Kantlehner, W. (2008a). Z. Kristallogr. 223, 345-346.
- Tiritiris, I. & Kantlehner, W. (2012a). Acta Cryst. E68, o2002. Tiritiris, I. & Kantlehner, W. (2012b). Acta Cryst. E68, o2202.
- Tiritiris, I. & Kantlehner, W. (2013). Adv. Chem. Lett. 1, 300-307.

Acta Cryst. (2015). E71, o1026–o1027 [https://doi.org/10.1107/S2056989015023142]

Crystal structure of *N*''-(2-ethoxy-2-oxoethyl)-*N*,*N*,*N*',*N*'-tetramethyl-*N*''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate

Ioannis Tiritiris and Willi Kantlehner

S1. Comment

By reaction of N.N.V.N'-tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008a) with N-methylpropane-1,3-diamine, a mixture consisting of two guanidinium chlorides and one bisguanidinium dichloride have been obtained. After treating the salt mixture with an aqueous sodium hydroxide solution, the guanidine-urea derivative N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine emerges as byproduct, due to partial hydrolysis of the bisguanidinium dichloride (Tiritiris & Kantlehner, 2013). As usual in guanidines, also in ureidoalkyl-guanidines electrophiles can attack on the imine nitrogen atom because it is the most basic site, giving substituted ureidoalkylguanidinium salts. The here presented title salt is the second one in our serie, which has been structurally characterized after anion exchange with sodium tetraphenylborate. The crystal structure analysis reveals, that the bond lengths and angles in the cation are in very good agreement with the data obtained from the structure analysis of $N_{,N}N'_{,N'}N'_{,N'}$ methyl- N"-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate (Tiritiris & Kantlehner, 2012b) Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.3375 (18) Å, C1–N2 = 1.3368 (16) Å and C1–N3 = 1.3594 (17) Å, indicating partial double-bond character. The N–C1–N angles are: 120.32 (12)° (N1–C1–N2), 120.64 (12)° (N2–C1– N3) and 119.04 (11)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN_3 plane (Fig. 1). Bond lengths in the ureido group are: C10-O1 = 1.2328 (17) Å, C10-N4 = 1.3777 (18) Å and C10-N5 = 1.3835 (17) Å. They agree very well with the data from the crystal structure analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, the bond lengths in the 2-ethoxy-2-oxoethyl group are comparable with the data from the structure analysis of 2-dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin- 1-ium tetraphenylborate (Tiritiris & Kantlehner, 2012a). The bond lengths and angles in the tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C-H…O contacts between neighbouring guanidinium ions and between guanidinium ions and tetraphenylborate ions have been determined $[d(H \cdot \cdot O) = 2.71 - 2.73]$ Å (Tab. 1)] (Fig. 2). C–H··· π interactions between the guanidinium hydrogen atoms of –N(CH₃)₂, –CH₂ and –CH₃ groups and the phenyl carbon atoms (centroids: Cg1 = C29-C34 and Cg2 = C35-C40) of the tetraphenylborate ion are also present (Fig. 3), ranging from 2.64 to 2.91 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the guanidinium ions are embedded.

S2. Experimental

The title compound was obtained by reaction of N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2013) with bromoacetic acid ethyl ester in acetonitrile at room temperature. After evaporation of the solvent the crude N,N,N',N'-tetramethyl-N''-(2-ethoxy-2-oxoethyl)-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium bromide (I) was washed with diethylether and dried *in vacuo*. 1.48 g (3.5 mmol) of (I) was dissolved in 20 ml acetonitrile

and 1.2 g (3.5 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallized from a saturated acetonitrile solution after several months at 273 K, forming colorless single crystals. Yield: 1.97 g (86%).

S3. Refinement

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N and C–C bonds to best fit the experimental electron density, with $U_{iso}(H)$ set to 1.5 $U_{eq}(C)$ and d(C-H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C-H) = 0.99 Å (H atoms in CH₂ groups) and (C-H) = 0.95 Å (H atoms in aromatic rings). They were refined using a riding model, with $U_{iso}(H)$ set to 1.2 $U_{eq}(C)$.

Figure 1

The structure of the title compound with displacement ellipsoids at the 50% probability level. All hydrogen atoms were omitted for the sake of clarity.

Figure 2

C—H…O contacts (black dashed lines) between the hydrogen atoms of tetraphenylborate ions and the oxygen atom of the cations and between the hydrogen atoms and oxygen atoms of adjacent guanidinium ions.

Figure 3

C—H··· π interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl carbon atoms (centroids) of the tetraphenylborate ion.

N''-(2-Ethoxy-2-oxoethyl)-N,N,N',N'-tetramethyl-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate

F(000) = 1432

 $\theta = 0.4 - 27.9^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colorless

 $0.45 \times 0.30 \times 0.15$ mm

T = 100 K

 $D_{\rm x} = 1.210 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8389 reflections

Crystal data

 $C_{16}H_{34}N_5O_3^+ \cdot C_{24}H_{20}B^ M_r = 663.69$ Monoclinic, $P2_1/c$ a = 9.6650 (3) Å b = 33.8756 (9) Å c = 11.1543 (5) Å $\beta = 93.759$ (1)° V = 3644.2 (2) Å³ Z = 4

Data collection

Bruker–Nonius KappaCCD	6067 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.048$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 28.0^{\circ}, \theta_{\rm min} = 1.2^{\circ}$
Graphite monochromator	$h = -12 \rightarrow 12$
φ scans, and ω scans	$k = -44 \rightarrow 44$
16724 measured reflections	$l = -14 \rightarrow 14$
8666 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.06	H-atom parameters constrained
8666 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2]$
450 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
 WR(F') = 0.122 S = 1.06 8666 reflections 450 parameters 0 restraints Primary atom site location: structure-invariant direct methods 	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0606P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.27 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.84093 (14)	0.12384 (4)	0.92515 (11)	0.0141 (3)	
N1	0.73352 (12)	0.14132 (4)	0.97324 (9)	0.0165 (3)	
N2	0.83213 (12)	0.11315 (4)	0.80954 (10)	0.0171 (3)	
N3	0.95854 (12)	0.11695 (3)	0.99567 (9)	0.0142 (2)	

C2	0.74939 (16)	0.17100 (4)	1.06782 (12)	0.0204 (3)
H2A	0.8478	0.1776	1.0825	0.031*
H2B	0.7136	0.1606	1.1417	0.031*
H2C	0.6975	0.1948	1.0428	0.031*
C3	0.59041 (15)	0.13337 (5)	0.92991 (13)	0.0260 (4)
H3A	0.5874	0.1097	0.8793	0.039*
H3B	0.5539	0.1559	0.8828	0.039*
H3C	0.5338	0.1291	0.9985	0.039*
C4	0.89927 (16)	0.07750 (5)	0.76717 (12)	0.0225(3)
H4A	0.9747	0.0850	0.7171	0.034*
H4B	0.8311	0.0615	0.7197	0.034*
H4C	0.9369	0.0621	0.8363	0.034*
C5	0.75132 (16)	0.13535(5)	0.71706 (12)	0.0226(3)
H5A	0.6674	0.1205	0.6918	0.034*
H5R	0.8070	0.1394	0.6478	0.034*
H5C	0.7254	0.1610	0.7495	0.034*
C6	1 09650 (14)	0 11774 (4)	0.94674(12)	0.037
Нба	1.09090 (11)	0.1271	0.8625	0.021*
H6R	1.1343	0.0906	0.9465	0.021*
C7	1.1949	0.0900 0.14434(4)	1 01854 (13)	0.021 0.0204(3)
С7 Н7А	1.19761 (13)	0.1472	0 9848	0.0204 (5)
H7R	1.2076	0.1346	1 1024	0.024
C8	1.15600 (16)	0.1370 0.18780(4)	1.1024	0.024
U8 A	1.0612	0.18780 (4)	1.01999 (12)	0.0177 (3)
LIND	1.0012	0.1099	1.0781	0.024
N/	1.2190 1 15008 (12)	0.2021 0.20672 (4)	1.0781 0.00220 (10)	0.024°
C0	1.13908(12) 1.28780(15)	0.20072(4) 0.22640(5)	0.90229(10) 0.87710(14)	0.0138(3)
	1.20709 (13)	0.22040 (3)	0.8104	0.0255 (5)
119A 110D	1.2703	0.2449	0.8556	0.035*
	1.3302	0.2007	0.0330	0.035*
П9С С10	1.5257 1.02676(15)	0.2409	0.9467	0.035°
01	1.03070(13)	0.21111(4)	0.85290(12)	0.0105(3)
UI N5	0.92302(10)	0.20020(3)	0.8/4/3(8) 0.71448(10)	0.0210(2)
NJ C11	1.04830(13)	0.22190 (4)	0.71448(10)	0.0191(3)
	0.91878 (10)	0.23147(3)	0.64337 (12)	0.0254 (5)
HIIA	0.8722	0.2070	0.6190	0.035*
HIIB	0.9388	0.24/4	0.5754	0.035*
HIIC C12	0.8584	0.2464	0.6962	0.035*
U12	1.14626 (19)	0.20145 (5)	0.641/3 (14)	0.0308 (4)
HI2A	1.2216	0.1903	0.6943	0.046*
HI2B	1.1846	0.2201	0.5856	0.046*
HI2C	1.0981	0.1802	0.5965	0.046*
C13	0.94899 (15)	0.10156 (4)	1.11681 (11)	0.0172 (3)
HI3A	0.8953	0.1203	1.1637	0.021*
HI3B	1.0434	0.0996	1.1566	0.021*
C14	0.88068 (15)	0.06163 (4)	1.11757 (12)	0.0174 (3)
02	0.83182 (13)	0.04434 (4)	1.03091 (9)	0.0350 (3)
03	0.87943 (11)	0.04887 (3)	1.23022 (8)	0.0219 (2)
C15	0.81131 (17)	0.01131 (5)	1.25050 (13)	0.0265 (4)

H15A	0.8522	-0.0098	1.2028	0.032*
H15B	0.7111	0.0131	1.2266	0.032*
C16	0.8328 (2)	0.00251 (5)	1.38170 (14)	0.0387 (5)
H16A	0.9322	-0.0004	1.4034	0.058*
H16B	0.7847	-0.0220	1.3998	0.058*
H16C	0.7957	0.0242	1.4279	0.058*
B1	0.34042 (17)	0.11535 (5)	0.39939 (13)	0.0143 (3)
C17	0.43843 (14)	0.15505 (4)	0.39351 (11)	0.0157 (3)
C18	0.49782 (15)	0.17349 (4)	0.49770 (12)	0.0186 (3)
H18A	0.4844	0.1618	0.5734	0.022*
C19	0.57527 (15)	0.20806 (5)	0.49502 (14)	0.0223 (3)
H19A	0.6132	0.2193	0.5680	0.027*
C20	0.59757 (16)	0.22626 (5)	0.38682 (14)	0.0243 (3)
H20A	0.6523	0.2495	0.3845	0.029*
C21	0.53821 (16)	0.20976 (5)	0.28209 (13)	0.0228 (3)
H21A	0.5500	0.2222	0.2071	0.027*
C22	0.46146 (15)	0.17509 (4)	0.28616 (12)	0.0186 (3)
H22A	0.4226	0.1644	0.2127	0.022*
C23	0.35548 (15)	0.08579 (4)	0.28264(11)	0.0151(3)
C24	0 47268 (15)	0.08387(4)	0.21527(12)	0.0195(3)
H24A	0 5494	0.1005	0.2370	0.023*
C25	0.48122(17)	0.05850(5)	0.11770 (12)	0.022
H25A	0.5626	0.0583	0.0744	0.027*
C26	0.37252(17)	0.03359(5)	0.08325(12)	0.027
H26A	0.37232 (17)	0.0170	0.0150	0.027*
C27	0.25708 (16)	0.0170 0.03331(5)	0.0150 0.15005(12)	0.027 0.0218(3)
H27A	0.1825	0.0158	0.1203	0.0218 (3)
C28	0.25009 (15)	0.05867 (4)	0.1273 (12)	0.020
H28A	0.1703	0.0576	0.2930	0.021*
C29	0.17692 (14)	0.0370 0.12955 (4)	0.39947 (11)	0.021
C30	0.1702(14) 0.12827(14)	0.12555(4) 0.16549(4)	0.34958 (11)	0.0155(3)
H30A	0.12327 (14)	0.1828	0.3163	0.0108
C31	-0.00070(15)	0.1828 0.17687 (4)	0.3103	0.019°
	-0.0370	0.17087 (4)	0.34007 (11)	0.0100 (3)
1131A C32	-0.10837(15)	0.2017 0.15240 (5)	0.3130	0.023°
U32	0.10837 (13)	0.15240(5)	0.39233 (11)	0.0192(3)
П32А С22	-0.2029	0.1002 0.11628 (4)	0.3900 0.44077 (11)	0.023°
	-0.00388 (13)	0.11028 (4)	0.44077 (11)	0.0180 (3)
Н33А	-0.1319	0.0988	0.4/12	0.022^{*}
	0.07303 (13)	0.10370 (4)	0.44472 (11)	0.0101 (3)
H34A	0.1002	0.0811	0.4/98	0.019*
035	0.38/60 (14)	0.09029 (4)	0.52189 (11)	0.0154 (3)
C36	0.33605 (15)	0.09853 (4)	0.63423 (12)	0.01/6(3)
H36A	0.2684	0.118/	0.6392	0.021*
037	0.38038 (15)	0.07824 (5)	0.73862 (12)	0.0199 (3)
H37A	0.3422	0.0846	0.8125	0.024*
C38	0.4/946 (16)	0.04899 (4)	0.73512 (12)	0.0204 (3)
H38A	0.5105	0.0353	0.8063	0.025*
C39	0.53299 (15)	0.03985 (4)	0.62634 (12)	0.0208 (3)

H39A	0.6010	0.0197	0.6224	0.025*
C40	0.48709 (15)	0.06020 (4)	0.52267 (12)	0.0185 (3)
H40A	0.5251	0.0533	0.4490	0.022*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0152 (7)	0.0160 (7)	0.0112 (6)	-0.0023 (5)	0.0011 (5)	0.0007 (5)
N1	0.0116 (6)	0.0249 (7)	0.0130 (6)	-0.0006 (5)	0.0010 (5)	-0.0007 (5)
N2	0.0192 (7)	0.0210 (7)	0.0110 (6)	-0.0005 (5)	0.0000 (5)	-0.0001 (5)
N3	0.0124 (6)	0.0192 (6)	0.0111 (6)	-0.0008(5)	0.0020 (4)	0.0011 (4)
C2	0.0204 (8)	0.0243 (8)	0.0171 (7)	0.0017 (6)	0.0058 (6)	-0.0038 (6)
C3	0.0131 (8)	0.0386 (10)	0.0260 (8)	-0.0003 (7)	0.0003 (6)	0.0040 (7)
C4	0.0281 (9)	0.0243 (8)	0.0150 (7)	0.0015 (7)	0.0009 (6)	-0.0047 (6)
C5	0.0285 (9)	0.0260 (8)	0.0127 (7)	0.0000 (7)	-0.0032 (6)	0.0018 (6)
C6	0.0125 (7)	0.0210 (8)	0.0198 (7)	0.0020 (6)	0.0040 (6)	0.0015 (6)
C7	0.0134 (8)	0.0265 (8)	0.0209 (7)	-0.0005 (6)	-0.0006 (6)	0.0057 (6)
C8	0.0190 (8)	0.0260 (8)	0.0134 (7)	-0.0039 (6)	-0.0040 (6)	0.0007 (6)
N4	0.0162 (7)	0.0230 (7)	0.0173 (6)	-0.0040(5)	0.0010 (5)	0.0039 (5)
C9	0.0178 (8)	0.0252 (8)	0.0277 (8)	-0.0043 (6)	0.0032 (6)	0.0016 (6)
C10	0.0219 (8)	0.0147 (7)	0.0131 (7)	-0.0011 (6)	0.0012 (6)	-0.0008 (5)
01	0.0163 (6)	0.0304 (6)	0.0163 (5)	-0.0042 (4)	0.0017 (4)	0.0025 (4)
N5	0.0219 (7)	0.0228 (7)	0.0129 (6)	0.0011 (5)	0.0030 (5)	0.0006 (5)
C11	0.0311 (9)	0.0231 (8)	0.0155 (7)	-0.0018 (7)	-0.0031 (6)	0.0019 (6)
C12	0.0411 (11)	0.0304 (9)	0.0223 (8)	0.0055 (8)	0.0122 (7)	-0.0011 (7)
C13	0.0179 (8)	0.0211 (8)	0.0123 (7)	-0.0019 (6)	-0.0019 (5)	0.0019 (6)
C14	0.0151 (7)	0.0224 (8)	0.0148 (7)	0.0004 (6)	0.0011 (5)	0.0002 (6)
O2	0.0549 (8)	0.0339 (7)	0.0159 (6)	-0.0208 (6)	0.0000 (5)	-0.0034 (5)
O3	0.0272 (6)	0.0231 (6)	0.0151 (5)	-0.0091 (5)	-0.0020 (4)	0.0049 (4)
C15	0.0315 (10)	0.0240 (8)	0.0233 (8)	-0.0118 (7)	-0.0035 (7)	0.0055 (7)
C16	0.0487 (12)	0.0364 (11)	0.0288 (9)	-0.0199 (9)	-0.0134 (8)	0.0144 (8)
B1	0.0144 (8)	0.0170 (8)	0.0113 (7)	0.0017 (6)	-0.0002 (6)	-0.0007 (6)
C17	0.0120 (7)	0.0178 (7)	0.0173 (7)	0.0045 (6)	0.0008 (5)	-0.0002 (6)
C18	0.0147 (8)	0.0220 (8)	0.0189 (7)	0.0032 (6)	-0.0008 (6)	-0.0006 (6)
C19	0.0155 (8)	0.0230 (8)	0.0281 (8)	0.0027 (6)	-0.0016 (6)	-0.0080 (6)
C20	0.0160 (8)	0.0179 (8)	0.0398 (9)	-0.0005 (6)	0.0071 (7)	-0.0037 (7)
C21	0.0223 (9)	0.0221 (8)	0.0253 (8)	0.0028 (6)	0.0114 (6)	0.0017 (6)
C22	0.0169 (8)	0.0221 (8)	0.0168 (7)	0.0022 (6)	0.0024 (6)	-0.0011 (6)
C23	0.0178 (8)	0.0166 (7)	0.0106 (6)	0.0044 (6)	-0.0012 (5)	0.0026 (5)
C24	0.0193 (8)	0.0216 (8)	0.0179 (7)	0.0008 (6)	0.0028 (6)	0.0015 (6)
C25	0.0271 (9)	0.0234 (8)	0.0173 (7)	0.0079 (7)	0.0072 (6)	0.0015 (6)
C26	0.0330 (9)	0.0219 (8)	0.0118 (7)	0.0108 (7)	-0.0018 (6)	-0.0025 (6)
C27	0.0246 (9)	0.0209 (8)	0.0191 (7)	0.0021 (6)	-0.0055 (6)	-0.0028 (6)
C28	0.0182 (8)	0.0208 (8)	0.0143 (7)	0.0039 (6)	0.0000 (6)	0.0001 (6)
C29	0.0167 (7)	0.0182 (7)	0.0065 (6)	0.0012 (6)	-0.0001(5)	-0.0043 (5)
C30	0.0177 (8)	0.0203 (7)	0.0085 (6)	-0.0002 (6)	-0.0005 (5)	-0.0001 (5)
C31	0.0220 (8)	0.0221 (8)	0.0117 (7)	0.0058 (6)	-0.0030 (6)	-0.0011 (6)
C32	0.0165 (8)	0.0281 (8)	0.0125 (7)	0.0056 (6)	-0.0011 (6)	-0.0056 (6)

C33	0.0180 (8)	0.0260 (8)	0.0103 (6)	-0.0019 (6)	0.0027 (5)	-0.0021 (6)	
C34	0.0189 (8)	0.0191 (7)	0.0103 (6)	0.0019 (6)	0.0003 (5)	-0.0002 (5)	
C35	0.0154 (7)	0.0171 (7)	0.0133 (7)	-0.0023 (6)	-0.0023 (5)	-0.0008 (5)	
C36	0.0170 (8)	0.0196 (8)	0.0158 (7)	0.0005 (6)	-0.0019 (6)	-0.0008 (6)	
C37	0.0207 (8)	0.0272 (8)	0.0116 (7)	-0.0045 (6)	-0.0001 (6)	-0.0002 (6)	
C38	0.0222 (8)	0.0226 (8)	0.0157 (7)	-0.0031 (6)	-0.0052 (6)	0.0048 (6)	
C39	0.0207 (8)	0.0182 (8)	0.0225 (8)	0.0021 (6)	-0.0050 (6)	0.0005 (6)	
C40	0.0196 (8)	0.0207 (8)	0.0150 (7)	0.0018 (6)	-0.0004 (6)	-0.0014 (6)	

Geometric parameters (Å, °)

C1—N2	1.3368 (16)	C15—H15B	0.9900
C1—N1	1.3375 (18)	C16—H16A	0.9800
C1—N3	1.3594 (17)	C16—H16B	0.9800
N1—C2	1.4583 (17)	C16—H16C	0.9800
N1—C3	1.4599 (18)	B1—C35	1.647 (2)
N2—C5	1.4608 (18)	B1—C17	1.649 (2)
N2—C4	1.4639 (18)	B1—C29	1.652 (2)
N3—C13	1.4568 (16)	B1—C23	1.657 (2)
N3—C6	1.4737 (17)	C17—C22	1.4069 (19)
C2—H2A	0.9800	C17—C18	1.4081 (19)
C2—H2B	0.9800	C18—C19	1.391 (2)
C2—H2C	0.9800	C18—H18A	0.9500
С3—НЗА	0.9800	C19—C20	1.385 (2)
С3—Н3В	0.9800	С19—Н19А	0.9500
С3—Н3С	0.9800	C20—C21	1.385 (2)
C4—H4A	0.9800	C20—H20A	0.9500
C4—H4B	0.9800	C21—C22	1.391 (2)
C4—H4C	0.9800	C21—H21A	0.9500
C5—H5A	0.9800	C22—H22A	0.9500
С5—Н5В	0.9800	C23—C24	1.401 (2)
C5—H5C	0.9800	C23—C28	1.408 (2)
C6—C7	1.520 (2)	C24—C25	1.393 (2)
С6—Н6А	0.9900	C24—H24A	0.9500
С6—Н6В	0.9900	C25—C26	1.382 (2)
С7—С8	1.527 (2)	С25—Н25А	0.9500
C7—H7A	0.9900	C26—C27	1.382 (2)
С7—Н7В	0.9900	C26—H26A	0.9500
C8—N4	1.4630 (17)	C27—C28	1.3925 (19)
C8—H8A	0.9900	С27—Н27А	0.9500
C8—H8B	0.9900	C28—H28A	0.9500
N4—C10	1.3777 (18)	C29—C34	1.404 (2)
N4—C9	1.4554 (18)	C29—C30	1.4066 (19)
С9—Н9А	0.9800	C30—C31	1.387 (2)
С9—Н9В	0.9800	С30—Н30А	0.9500
С9—Н9С	0.9800	C31—C32	1.385 (2)
C10—O1	1.2328 (17)	C31—H31A	0.9500
C10—N5	1.3835 (17)	C32—C33	1.389 (2)

N5—C12	1.4610 (19)	С32—Н32А	0.9500
N5—C11	1.4630 (18)	C33—C34	1.393 (2)
C11—H11A	0.9800	С33—Н33А	0.9500
C11—H11B	0.9800	C34—H34A	0.9500
C11—H11C	0.9800	C35—C40	1.401 (2)
C12—H12A	0.9800	C35—C36	1.4064 (19)
C12—H12B	0.9800	C36—C37	1.3952 (19)
C12—H12C	0.9800	С36—Н36А	0.9500
C13—C14	1.505 (2)	С37—С38	1.380(2)
C13—H13A	0.9900	С37—Н37А	0.9500
C13—H13B	0.9900	C38—C39	1.385 (2)
C14—O2	1.2004 (16)	С38—Н38А	0.9500
C14—O3	1.3296 (16)	C39—C40	1.3936 (19)
O3—C15	1.4570 (17)	С39—Н39А	0.9500
C15—C16	1.495 (2)	C40—H40A	0.9500
С15—Н15А	0.9900		
N2-C1-N1	120.32 (12)	O3—C15—C16	106.90 (12)
N2—C1—N3	120.64 (12)	O3—C15—H15A	110.3
N1-C1-N3	119.04 (11)	С16—С15—Н15А	110.3
C1—N1—C2	123.21 (12)	O3—C15—H15B	110.3
C1—N1—C3	121.94 (12)	C16—C15—H15B	110.3
C2-N1-C3	114.78 (12)	H15A—C15—H15B	108.6
C1—N2—C5	122.62 (12)	C15—C16—H16A	109.5
C1—N2—C4	122.24 (12)	C15—C16—H16B	109.5
C5—N2—C4	115.11 (11)	H16A—C16—H16B	109.5
C1—N3—C13	119.79 (11)	C15—C16—H16C	109.5
C1—N3—C6	121.67 (11)	H16A—C16—H16C	109.5
C13 - N3 - C6	117.64 (11)	H16B—C16—H16C	109.5
N1—C2—H2A	109.5	C_{35} B1 - C17	108.95 (11)
N1—C2—H2B	109.5	C35—B1—C29	111.24 (11)
H2A—C2—H2B	109.5	C17 - B1 - C29	108.33 (11)
N1—C2—H2C	109.5	C_{35} B1 $-C_{23}$	107.87 (11)
H2A-C2-H2C	109.5	C17 - B1 - C23	112.42 (11)
H2B-C2-H2C	109.5	C29—B1—C23	108.05 (11)
N1—C3—H3A	109.5	C_{22} C_{17} C_{18}	114.18 (13)
N1—C3—H3B	109.5	C22—C17—B1	123.43 (12)
H3A—C3—H3B	109.5	C18 - C17 - B1	122.23(12)
N1—C3—H3C	109.5	C19 - C18 - C17	123.13(13)
H3A-C3-H3C	109.5	C19—C18—H18A	118.4
H3B-C3-H3C	109.5	C17—C18—H18A	118.4
N2-C4-H4A	109.5	C_{20} C_{19} C_{18}	120.55(13)
N2—C4—H4B	109.5	C20—C19—H19A	119.7
H4A—C4—H4B	109.5	C18—C19—H19A	119.7
N2—C4—H4C	109.5	C19—C20—C21	118.42 (14)
H4A—C4—H4C	109.5	C19—C20—H20A	120.8
H4B—C4—H4C	109.5	C21—C20—H20A	120.8
N2—C5—H5A	109.5	C20—C21—C22	120.35 (14)

N2—C5—H5B	109.5	C20—C21—H21A	119.8
H5A—C5—H5B	109.5	C22—C21—H21A	119.8
N2—C5—H5C	109.5	C21—C22—C17	123.34 (13)
H5A—C5—H5C	109.5	C21—C22—H22A	118.3
H5B—C5—H5C	109.5	C17—C22—H22A	118.3
N3—C6—C7	112.52 (11)	C24—C23—C28	114.65 (12)
N3—C6—H6A	109.1	C24—C23—B1	124.43 (12)
С7—С6—Н6А	109.1	C28—C23—B1	120.84 (12)
N3—C6—H6B	109.1	C25—C24—C23	122.61 (14)
С7—С6—Н6В	109.1	C25—C24—H24A	118.7
H6A—C6—H6B	107.8	C23—C24—H24A	118.7
C6—C7—C8	114.54 (12)	C26—C25—C24	120.71 (14)
С6—С7—Н7А	108.6	С26—С25—Н25А	119.6
С8—С7—Н7А	108.6	С24—С25—Н25А	119.6
С6—С7—Н7В	108.6	C27—C26—C25	118.69 (13)
С8—С7—Н7В	108.6	C27—C26—H26A	120.7
H7A—C7—H7B	107.6	C25—C26—H26A	120.7
N4-C8-C7	113 07 (12)	$C_{26} - C_{27} - C_{28}$	120.00(14)
N4-C8-H8A	109.0	C26—C27—H27A	120.00 (11)
C7 - C8 - H8A	109.0	$C_{28} = C_{27} = H_{27A}$	120.0
N4-C8-H8B	109.0	$C_{20} = C_{21} = C_{23}$	123.0 123.21(14)
C7 - C8 - H8B	109.0	$C_{27} = C_{28} = H_{28A}$	118.4
$H_{8A} \subset S H_{8B}$	107.8	$C_{23} = C_{23} = H_{28A}$	118.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0 123.77(12)	$C_{25} - C_{26} - H_{26} - H_{26}$	110.4
C10 N4 C9	123.77(12) 118.04(12)	$C_{24} = C_{29} = C_{30}$	114.41(13) 122.27(12)
C10 $N4$ $C8$	116.94(12)	$C_{24} = C_{29} = B_1$	122.57(12)
$C_9 = N_4 = C_8$	110.18 (11)	$C_{30} = C_{29} = B_1$	123.15(12)
N4—C9—H9A	109.5	$C_{31} = C_{30} = C_{29}$	123.08 (13)
N4—C9—H9B	109.5	C31—C30—H30A	118.5
Н9А—С9—Н9В	109.5	C29—C30—H30A	118.5
N4—C9—H9C	109.5	C32—C31—C30	120.59 (14)
H9A—C9—H9C	109.5	С32—С31—Н31А	119.7
H9B—C9—H9C	109.5	С30—С31—Н31А	119.7
O1—C10—N4	121.81 (12)	C31—C32—C33	118.52 (14)
O1—C10—N5	121.83 (13)	C31—C32—H32A	120.7
N4—C10—N5	116.34 (13)	С33—С32—Н32А	120.7
C10—N5—C12	120.06 (12)	C32—C33—C34	119.99 (14)
C10—N5—C11	116.06 (12)	С32—С33—Н33А	120.0
C12—N5—C11	112.09 (12)	С34—С33—Н33А	120.0
N5—C11—H11A	109.5	C33—C34—C29	123.39 (13)
N5—C11—H11B	109.5	С33—С34—Н34А	118.3
H11A—C11—H11B	109.5	C29—C34—H34A	118.3
N5—C11—H11C	109.5	C40—C35—C36	114.96 (12)
H11A—C11—H11C	109.5	C40—C35—B1	122.18 (12)
H11B—C11—H11C	109.5	C36—C35—B1	122.81 (12)
N5—C12—H12A	109.5	C37—C36—C35	122.58 (13)
N5—C12—H12B	109.5	С37—С36—Н36А	118.7
H12A—C12—H12B	109.5	С35—С36—Н36А	118.7
N5—C12—H12C	109.5	C38—C37—C36	120.38 (13)
			× /

	100 5	C29 C27 1127A	110.0
H12A - C12 - H12C	109.5	$C_{30} - C_{37} - H_{37A}$	119.0
H12B-C12-H12C	109.5	$C_{30} = C_{37} = H_{37} A$	119.8
N3-C13-C14	112.41 (11)	$C_{37} = C_{38} = C_{39}$	119.02 (13)
N3—C13—H13A	109.1	C37—C38—H38A	120.5
C14—C13—H13A	109.1	С39—С38—Н38А	120.5
N3—C13—H13B	109.1	C38—C39—C40	119.96 (14)
C14—C13—H13B	109.1	С38—С39—Н39А	120.0
H13A—C13—H13B	107.9	С40—С39—Н39А	120.0
O2—C14—O3	125.09 (14)	C39—C40—C35	123.10 (13)
O2—C14—C13	125.70 (13)	C39—C40—H40A	118.5
O3—C14—C13	109.19 (11)	C35—C40—H40A	118.5
C14—O3—C15	117.58 (11)		
N2-C1-N1-C2	-146.94(13)	C18—C17—C22—C21	1.1 (2)
N3-C1-N1-C2	33.4 (2)	B1-C17-C22-C21	176.50 (13)
N_2 —C1—N1—C3	298(2)	C_{35} B1 - C_{23} - C_{24}	-9423(15)
$N_3 - C_1 - N_1 - C_3$	-14978(13)	C17 = B1 = C23 = C24	25.92 (18)
N1 C1 N2 C5	33.0(2)	C_{29} B1 C_{23} C_{24}	$145 \ 41 \ (13)$
$N_1 - C_1 - N_2 - C_3$ $N_2 - C_1 - N_2 - C_5$	-147.38(14)	$C_{23} = B_1 = C_{23} = C_{24}$	1+3.+1(13) 82 30 (15)
$N_3 = C_1 = N_2 = C_3$	147.36(14) 144.01(14)	C_{33} B_{1} C_{23} C_{28}	157 47 (12)
N1 - C1 - N2 - C4	-144.91(14)	C17 - B1 - C23 - C28	-137.47(12)
$N_3 = C_1 = N_2 = C_4$	34.7(2)	$C_{29} = B_1 = C_{23} = C_{28}$	-37.98(10)
N2 - C1 - N3 - C13	-136.39(13)	$C_{28} = C_{23} = C_{24} = C_{25}$	3.1 (2)
NI-CI-N3-CI3	43.24 (19)	BI-C23-C24-C25	1/9.88 (13)
N2-C1-N3-C6	32.45 (19)	C23—C24—C25—C26	-0.4 (2)
N1—C1—N3—C6	-147.92 (13)	C24—C25—C26—C27	-2.3 (2)
C1—N3—C6—C7	128.32 (14)	C25—C26—C27—C28	1.9 (2)
C13—N3—C6—C7	-62.61 (16)	C26—C27—C28—C23	1.0 (2)
N3—C6—C7—C8	-62.20 (16)	C24—C23—C28—C27	-3.4 (2)
C6—C7—C8—N4	-67.10 (16)	B1-C23-C28-C27	179.65 (12)
C7-C8-N4-C10	99.05 (15)	C35—B1—C29—C34	-37.55 (17)
C7—C8—N4—C9	-92.53 (15)	C17—B1—C29—C34	-157.27 (12)
C9—N4—C10—O1	-154.18 (14)	C23—B1—C29—C34	80.68 (15)
C8—N4—C10—O1	13.3 (2)	C35—B1—C29—C30	145.51 (12)
C9—N4—C10—N5	24.7 (2)	C17—B1—C29—C30	25.78 (16)
C8—N4—C10—N5	-167.82 (13)	C23—B1—C29—C30	-96.26 (14)
Q1-C10-N5-C12	-133.66 (16)	C34—C29—C30—C31	0.94 (18)
N4—C10—N5—C12	47.47 (19)	B1-C29-C30-C31	178.11 (12)
01-C10-N5-C11	64(2)	C_{29} C_{30} C_{31} C_{32}	-10(2)
N4-C10-N5-C11	-17248(12)	C_{30} C_{31} C_{32} C_{33}	-0.12(19)
C1 N3 $C13$ $C14$	61.55(17)	C_{31} C_{32} C_{33} C_{34}	1.2(19)
$C_{1} = N_{3} = C_{13} = C_{14}$	-107.74(14)	$C_{31} = C_{32} = C_{33} = C_{34} = C_{30}$	-1.2(19)
$N_{2} = C_{13} = C_{14} = C_{14}$	107.74(14) -2.7(2)	$C_{32} = C_{33} = C_{34} = C_{23}$	1.3(2)
$N_{3} = C_{13} = C_{14} = O_{2}$	-3.7(2)	$C_{30} - C_{29} - C_{34} - C_{33}$	0.22(10)
$1N_{3} - C_{13} - C_{14} - C_{3}$	1/8.03(12)	D1 - U29 - U34 - U33	-1/0.9/(12)
02 - 014 - 03 - 015	-1.2(2)	$C_1 / B_1 - C_3 - C_4 0$	-91.78 (15)
C13—C14—O3—C15	177.14 (12)	C29—B1—C35—C40	148.86 (13)
C14—O3—C15—C16	1/6.18 (14)	C23—B1—C35—C40	30.52 (18)
C35—B1—C17—C22	156.72 (13)	C17—B1—C35—C36	85.35 (16)
C29—B1—C17—C22	-82.12 (15)	C29—B1—C35—C36	-34.01 (18)

$B1_C17_C18_C19$ $-176.82 (13)$ $C37_C38_C39_$ $C17_C18_C19_C20$ $0.1 (2)$ $C38_C39_$		-0.7(2)
C18—C19—C20—C21 1.5 (2) C36—C35- C19—C20—C21—C22 -1.8 (2) B1—C35- C20—C21—C22 -0.4 (2) C20-C21-	C39C40 0 C40C35 0 C40C39 -C40C39 1).3 (2)).2 (2) -0.3 (2) 177.04 (13)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C29–C34 and C35–C40 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
C11—H11 <i>B</i> …O1 ⁱ	0.98	2.73	3.687 (2)	165
C25—H25 <i>A</i> ···O2 ⁱⁱ	0.95	2.72	3.617 (2)	158
C27—H27 <i>A</i> ···O2 ⁱⁱⁱ	0.95	2.71	3.392 (2)	129
C12—H12 <i>C</i> … <i>Cg</i> 1	0.98	2.64	3.541 (2)	152
C13—H13 <i>A</i> ··· <i>Cg</i> 1	0.99	2.91	3.432 (2)	114
C5—H5 <i>A</i> ··· <i>C</i> g2	0.98	2.89	3.868 (2)	174
C16—H16 <i>B</i> ···· <i>Cg</i> 2	0.98	2.66	3.542 (2)	151

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*, -*z*+1.