data reports

CRYSTALLOGRAPHIC COMMUNICATIONS open 👌 access

Crystal structure of N-[3-(dimethylazaniumyl)propyl]-N',N',N'',N''-tetramethyl-N-(N,N,N',N'-tetramethylformamidiniumyl)guanidinium dibromide hydroxide monohydrate

Ioannis Tiritiris and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

Received 12 December 2015; accepted 17 December 2015

Edited by J. Simpson, University of Otago, New Zealand

The asymmetric unit of the title hydrated salt $C_{15}H_{37}N_6^{3+}\cdot 2Br^-\cdot OH^-\cdot H_2O$, contains one cation, three partial-occupancy bromide ions, one hydroxide ion and one water molecule. Refinement of the site-occupancy factors of the three disordered bromide ions converges with occupancies 0.701 (2), 0.831 (2) and 0.456 (2) summing to approximately two bromide ions per formula unit. The structure was refined as a two-component inversion twin with volume fractions 0.109 (8):0.891 (8) for the two domains. The central C₃N unit of the bisamidinium ion is linked to the aliphatic propyl chain by a C-N single bond. The other two bonds in this unit have double-bond character as have the four C-N bonds to the outer NMe_2 groups. In contrast, the three C–N bonds to the central N atom of the (dimethylazaniumyl)propyl group have single-bond character. Delocalization of the two positive charges occurs in the N/C/N and C/N/C planes, while the third positive charge is localized on the dimethylammonium group. The crystal structure is stabilized by $O-H\cdots O$, $N-H\cdots Br$, O-H···Br and C-H···Br hydrogen bonds, forming a threedimensional network.

Keywords: crystal structure; bisamidinium salt; bromide; hydroxide; hydrate; hydrogen bonds.

CCDC reference: 1443022

1. Related literature

For the crystal structure of N,N,N',N'-tetramethylchloroformamidinium chloride, see: Tiritiris & Kantlehner (2008); for ethyltriphenylphosphonium bromide dihydrate, see: Betz & Gerber (2011); for N-[3-(dimethylamino)propyl]-N- (N,N,N',N'-tetramethyl-formamidiniumyl)-N',N',N'',N''-tetramethylguanidinium bis(tetraphenylborate), see: Tiritiris & Kantlehner (2015). For the synthesis of N''-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethylguanidine, see: Tiritiris & Kantlehner (2012).

2. Experimental

2.1. Crystal data

 $C_{15}H_{37}N_6^{3+}\cdot 1.988Br^-\cdot OH^-\cdot H_2O$ $M_r = 495.37$ Monoclinic, $P2_1$ a = 9.1584 (6) Å b = 12.2932 (7) Å c = 10.6633 (6) Å $\beta = 97.454$ (3)°

 $V = 1190.39 (12) Å^{3}$ Z = 2 Mo K\alpha radiation \mu = 3.40 mm^{-1} T = 100 K 0.41 \times 0.29 \times 0.25 mm

25793 measured reflections

 $R_{\rm int} = 0.033$

7244 independent reflections

6391 reflections with $I > 2\sigma(I)$

2.2. Data collection

Bruker Kappa APEXII DUO diffractometer Absorption correction: multi-scan (Blessing, 1995)

(Incsting, 1993) $T_{\min} = 0.334, T_{\max} = 0.481$

2.3. Refinement $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.031$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ $wR(F^2) = 0.069$ S = 0.99Absolute structure: refined as an 7244 reflections inversion twin 265 parameters Absolute structure parameter: 0.109 (8) 1 restraint H atoms treated by a mixture of independent and constrained refinement

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N6–H6···Br3 ⁱ	0.86 (4)	2.18 (4)	3.038 (4)	172 (3)
$O2-H18\cdots O1^{ii}$	0.86 (5)	1.96 (4)	2.825 (4)	179 (3)
O2−H17···Br1 ⁱⁱⁱ	0.80 (5)	2.48 (4)	3.273 (4)	171 (3)
$C2-H2A\cdots Br2^{iv}$	0.98	2.87	3.650 (4)	137
$C3-H3A\cdots Br1^{v}$	0.98	2.72	3.688 (4)	170
$C5-H5C\cdots Br3^{vi}$	0.98	2.69	3.594 (4)	153
$C7 - H7B \cdot \cdot \cdot Br3^{ii}$	0.98	2.67	3.498 (4)	142
C8−H8C···Br1	0.98	2.87	3.805 (4)	160
$C11 - H11A \cdots Br3^{vi}$	0.99	2.70	3.618 (4)	154
C12−H12A···Br1 ⁱⁱⁱ	0.99	2.75	3.649 (4)	151
C14−H14C···Br1 ⁱⁱⁱ	0.98	2.78	3.743 (4)	167
$C15-H15B\cdots Br1^{ii}$	0.98	2.86	3.676 (4)	142

Symmetry codes: (i) x, y - 1, z + 1; (ii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iii) x - 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + 2$; (v) $-x + 1, y + \frac{1}{2}, -z + 1$; (vi) $-x, y - \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL2014*.

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5490).

References

- Betz, R. & Gerber, T. (2011). Acta Cryst. E67, o1950.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.
- Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685-698.
- Tiritiris, I. & Kantlehner, W. (2015). Acta Cryst. E71, o1045-o1046.

Acta Cryst. (2015). E71, o1078–o1079 [https://doi.org/10.1107/S2056989015024305]

Crystal structure of N-[3-(dimethylazaniumyl)propyl]-N',N',N'',N'',N''-tetramethyl-N-(N,N,N',N'-tetramethylformamidiniumyl)guanidinium dibromide hydroxide monohydrate

Ioannis Tiritiris and Willi Kantlehner

S1. Comment

N''-[3-(dimethylamino)propyl]-N.N.''. N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012) reacts with one equivalent of N,N,N',N'- tetramethylchloroformamidinium chloride (Tiritiris & Kantlehner, 2008), yielding N-[3-(dimethylamino)propyl]- N-(N,N,N',N'-tetramethyl-formamidinio)- N',N',N'',N''-tetramethylguanidinium dichloride as the product. As expected, on protonation with acid, the terminal 3-(dimethylamino)propyl group can be converted into a 3-(dimethylammonio)propyl group and a triply charged cationic species is formed. The crystal structure presented here is the first structural study of a tricationic nonasubstituted bisamidinium salt. The asymmetric unit contains one cation, three partial occupancy bromide ions, one hydroxide ion and one water molecule (Fig. 1). The sites of the disordered bromine atoms are not fully occupied, the refinement of their site occupation factors converges to Br = [Br1 + Br2 + Br3] = [0.701 (2) +0.831(2) + 0.456(2) = 1.988(2) resulting in approximately two bromide ions per formula unit. Prominent bond parameters in the bisamidinium ion are: N5-C6 = 1.390 (3) Å, N5-C1 = 1.399 (4) Å, N5-C11 = 1.494 (4) Å, indicating the N–C single- and double-bond character of the central C_3N unit. The C–N–C angles are 119.6 (3)°, 119.8 (2)° and 120.4 (2)°, signalling a nearly ideal trigonal-planar arangement about the central N5 nitrogen atom by the C1, C6 and C11 carbon atoms. These carbon atoms are further bound to the N1, N2, N3 and N4 nitrogen atoms and the resulting C-N bonds show double-bond character with bond lengths in the range 1.326 (4) Å to 1.335 (4) Å. The N-C-N angles range from 118.7 (3)° to 122.5 (3)°, again indicating almost ideal trigonal-planar surroundings of both carbon centres by the nitrogen atoms. The dihedral angle between the N1/C1/N2 and N3/C6/N4 planes is 70.1 (3)°. Structural data for the cation agree very well with those from the crystal structure analysis of N-[3-(dimethylamino)propyl]- N-(N,N,N',N'-tetramethyl-formamidinio)- N', N'', N''-tetramethylguanidinium bis(tetraphenylborate) (Tiritiris & Kantlehner, 2015). Two of the positive charges are delocalized in the N1/C1/N2, N3/C6/N4 and C1/N5/C6, planes the third positive charge is localized on the dimethylammonium group. The N-C bond lengths in the terminal ammonium group are in a range from 1.492 (4) to 1.494 (4) Å. A strong N-H…Br hydrogen bond forms between the hydrogen atom H6 of the ammonium group and one of the bromide ions (Br3) $[d(H \cdots Br) = 2.18 (4) \text{ Å}, (Tab.1)]$. O-H···O hydrogen bonds $[d(H \cdots O) = 1.96 (4)$ Å, (Table 1)] between the water molecule and the hydroxide ion and O-H…Br hydrogen bonds between the water molecule and the bromide ion $[d(H \cdot \cdot \cdot Br) = 2.48 (4) \text{ Å}$, (Table 1)] are also observed (Fig. 2). In addition, C-H \cdot \cdot \cdot Br interactions are apparent between the bisamidimium hydrogen atoms of $-N(CH_3)_2$ and $-CH_2$ groups and the bromide ions $[d(H \cdots Br) = 2.67 - 2.87 \text{ Å}, (Tab.1)]$, forming a three-dimensional network (Fig. 3). Similar H…Br distances have been observed in the crystal structure of ethyltriphenylphosphonium bromide dihydrate (Betz & Gerber, 2011) for both the O-H…Br and C–H…Br hydrogen bonds.

S2. Experimental

The title compound was prepared by treating an aqueous solution of N-[3-(dimethylamino)propyl]-N-(N,N,N', N'-tetramethyl-formamidinio)-N',N',N'',N'',N''- tetramethylguanidinium dichloride with hydrobromic acid (48 wt.% in H₂O). After slow evaporation of the water at ambient temperature, colorless single crystals of the title compound emerged.

S3. Refinement

🕙 Br2

The O-bound and N-bound H atoms were located in a difference Fourier map and were refined freely [O-H = 0.75 (5) - 0.86 (5) Å; N-H = 0.86 (4) Å]. The title compound crystallizes in the non-centrosymmetric space group $P2_i$; the crystal was refined as a 2-component inversion twin using the matrix $[-1\ 0\ 0\ 0\ -1\ 0\ 0\ 0\ -1]$ with a volume fraction of 0.109 (8):0.891 (8) for the two domains. The positions of the bromide ions were not fully occupied and their site occupancy factors were refined and converged to Br1 = 0.701 (2), Br2 = 0.831 (2), Br3 = 0.456 (2). The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C-N bond to best fit the experimental electron density, with $U_{iso}(H)$ set to $1.5U_{eq}(C)$ and d(C-H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C-H) = 0.99 Å (H atoms in CH₂ groups) and were refined using a riding model, with $U_{iso}(H)$ set to $1.2\ U_{eq}(C)$.

Figure 1

The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded hydrogen atoms are omitted for the sake of clarity.

Figure 2

N—H…Br, O—H…Br and O—H…O hydrogen bonds (black dashed lines) in the crystal structure of the title compound (*ac* view).

Figure 3

Molecular packing of the title compound (*bc* view). The N—H…Br, O—H…Br, O—H…O and C—H…Br hydrogen bonds are depicted by black dashed lines.

 $k = -17 \rightarrow 17$

 $l = -15 \rightarrow 15$

N-[3-(Dimethylazaniumyl)propyl]-N',N',N'',N''-tetramethyl-N-(N,N,N',N'-

tetramethylformamidiniumyl)guanidinium dibromide hydroxide monohydrate

Crystal data

$C_{15}H_{37}N_6^{3+} \cdot 1.988Br^{-} \cdot OH^{-} \cdot H_2O$	F(000) = 515.2
$M_r = 495.37$	$D_{\rm x} = 1.382 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 9.1584 (6) Å	Cell parameters from 25793 reflections
b = 12.2932(7) Å	$\theta = 1.9 - 30.5^{\circ}$
c = 10.6633 (6) Å	$\mu = 3.40 \text{ mm}^{-1}$
$\beta = 97.454(3)^{\circ}$	T = 100 K
V = 1190.39 (12) Å ³	Prism, colorless
Z = 2	$0.41 \times 0.29 \times 0.25 \text{ mm}$
Data collection	
Bruker Kappa APEXII DUO	25793 measured reflections
diffractometer	7244 independent reflections
Radiation source: fine-focus sealed tube	6391 reflections with $I > 2\sigma(I)$
Triumph monochromator	$R_{\rm int} = 0.033$
φ scans, and ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 12$

(Blessing, 1995)

 $T_{\min} = 0.334, T_{\max} = 0.481$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent
$wR(F^2) = 0.069$	and constrained refinement
S = 0.99	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2]$
7244 reflections	where $P = (F_o^2 + 2F_c^2)/3$
265 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: refined as an inversion twin
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.109 (8)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystal was refined as a 2-component inversion twin.

Fractional atomic coordinates	and isotropic or	equivalent isotropic d	isplacement	parameters	$(Å^2)$
				p	(/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.93762 (4)	0.22807 (3)	0.49250 (4)	0.01601 (14)	0.701 (2)
Br2	0.53705 (4)	0.94972 (3)	0.87115 (3)	0.01916 (12)	0.831 (2)
Br3	0.05637 (7)	0.84749 (5)	0.00432 (6)	0.0171 (2)	0.456 (2)
01	0.7750 (3)	0.7662 (2)	0.8224 (3)	0.0300 (6)	
H16	0.720 (5)	0.809 (4)	0.831 (4)	0.033 (13)*	
C1	0.3100 (3)	0.4939 (2)	0.7726 (2)	0.0129 (6)	
N1	0.4205 (3)	0.5645 (2)	0.7784 (2)	0.0150 (5)	
N2	0.1715 (3)	0.5246 (2)	0.7743 (2)	0.0158 (5)	
C2	0.5739 (3)	0.5375 (3)	0.8281 (3)	0.0196 (6)	
H2A	0.5747	0.4800	0.8919	0.029*	
H2B	0.6231	0.6023	0.8668	0.029*	
H2C	0.6258	0.5122	0.7588	0.029*	
C3	0.4007 (4)	0.6751 (2)	0.7265 (3)	0.0205 (6)	
H3A	0.3067	0.6796	0.6712	0.031*	
H3B	0.4814	0.6922	0.6777	0.031*	
H3C	0.4009	0.7274	0.7959	0.031*	
C4	0.1345 (4)	0.6237 (3)	0.8414 (3)	0.0234 (7)	
H4A	0.2218	0.6491	0.8965	0.035*	
H4B	0.0558	0.6074	0.8926	0.035*	
H4C	0.1013	0.6804	0.7797	0.035*	
C5	0.0433 (3)	0.4656 (3)	0.7104 (3)	0.0182 (6)	
H5A	0.0770	0.4034	0.6643	0.027*	

	0.0150	0 51 4 4	0.6500	0.007*
H5B	-0.0150	0.5144	0.0508	0.027*
	-0.0175	0.4390	0.7734	0.027°
	0.4443(3)	0.3470(2)	0.0899 (3)	0.0118(3)
IN 5	0.5575(5)	0.20815(19)	0.7292(2)	0.0141(5)
N4	0.4440(3)	0.3922(2)	0.5757(2)	0.0146 (5)
C/	0.5991 (3)	0.2503 (3)	0.8627 (3)	0.0182 (6)
H/A	0.5651	0.3081	0.9152	0.02/*
H7B	0.7069	0.2514	0.8704	0.027*
H/C	0.5661	0.1796	0.8909	0.027*
C8	0.5846 (4)	0.1889 (2)	0.6400 (3)	0.0194 (6)
H8A	0.5175	0.1916	0.5606	0.029*
H8B	0.5832	0.1157	0.6763	0.029*
H8C	0.6848	0.2064	0.6234	0.029*
C9	0.3103 (3)	0.4361 (3)	0.5014 (3)	0.0187 (6)
H9A	0.2244	0.3945	0.5200	0.028*
H9B	0.3193	0.4304	0.4110	0.028*
H9C	0.2983	0.5126	0.5236	0.028*
C10	0.5804 (3)	0.4063 (3)	0.5171 (3)	0.0203 (6)
H10A	0.6647	0.3800	0.5752	0.031*
H10B	0.5941	0.4835	0.4990	0.031*
H10C	0.5729	0.3646	0.4381	0.031*
N5	0.3413 (3)	0.38281 (19)	0.7657 (2)	0.0113 (5)
C11	0.2721 (3)	0.3039 (2)	0.8469 (3)	0.0126 (5)
H11A	0.1924	0.3411	0.8846	0.015*
H11B	0.3469	0.2800	0.9169	0.015*
C12	0.2085 (3)	0.2040 (2)	0.7739 (3)	0.0149 (6)
H12A	0.1152	0.2233	0.7209	0.018*
H12B	0.2786	0.1771	0.7178	0.018*
C13	0.1805 (3)	0.1162 (2)	0.8688 (3)	0.0141 (6)
H13A	0.2761	0.0846	0.9054	0.017*
H13B	0.1352	0.1501	0.9385	0.017*
N6	0.0827 (3)	0.0267 (2)	0.8125 (2)	0.0159 (5)
H6	0.084 (4)	-0.022(3)	0.870 (4)	0.032 (11)*
C14	-0.0748(3)	0.0601 (3)	0.7838 (3)	0.0254 (7)
H14A	-0.1061	0.0957	0.8581	0.038*
H14B	-0.1359	-0.0043	0.7621	0.038*
H14C	-0.0857	0.1109	0.7123	0.038*
C15	0.1372 (4)	-0.0259(3)	0.7013 (3)	0.0246 (7)
H15A	0.1264	0.0247	0.6297	0.037*
H15B	0.0797	-0.0918	0.6783	0.037*
H15C	0 2412	-0.0452	0 7229	0.037*
02	0.2652(3)	0 1697 (2)	0.4200(3)	0.0299 (6)
H17	0.185 (6)	0.107(2)	0.442(4)	0.0255(0)
H18	0.105(0)	0.177(-7) 0.200(4)	0.772(T)	0.049(14)*
1110	0.232 (3)	0.200 (4)	0.340 (3)	0.049 (14)

Atomic displacement parameters $(Å^2)$	
--	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.0157 (2)	0.0191 (2)	0.0127 (2)	-0.00070 (16)	-0.00014 (14)	0.00164 (16)
Br2	0.01885 (18)	0.01493 (17)	0.02373 (19)	0.00227 (15)	0.00287 (13)	0.00258 (15)
Br3	0.0172 (4)	0.0156 (4)	0.0191 (4)	0.0025 (2)	0.0050 (3)	0.0041 (2)
O1	0.0258 (13)	0.0279 (14)	0.0368 (15)	-0.0011 (11)	0.0059 (11)	-0.0102 (11)
C1	0.0176 (14)	0.0119 (13)	0.0090 (12)	0.0003 (11)	0.0016 (10)	-0.0012 (10)
N1	0.0173 (12)	0.0124 (12)	0.0149 (12)	-0.0028 (10)	0.0005 (9)	0.0002 (10)
N2	0.0184 (13)	0.0124 (12)	0.0173 (12)	0.0015 (10)	0.0043 (10)	0.0000 (10)
C2	0.0197 (15)	0.0169 (15)	0.0203 (15)	-0.0047 (12)	-0.0048 (12)	0.0008 (12)
C3	0.0268 (17)	0.0121 (14)	0.0220 (15)	-0.0028 (12)	0.0005 (13)	0.0022 (12)
C4	0.0311 (18)	0.0163 (15)	0.0245 (16)	0.0071 (14)	0.0105 (14)	-0.0020 (13)
C5	0.0131 (13)	0.0179 (17)	0.0234 (15)	0.0016 (11)	0.0017 (11)	0.0031 (12)
C6	0.0112 (12)	0.0109 (13)	0.0132 (13)	-0.0017 (10)	0.0013 (10)	-0.0036 (10)
N3	0.0135 (12)	0.0125 (12)	0.0161 (12)	0.0005 (9)	0.0015 (9)	-0.0014 (9)
N4	0.0159 (12)	0.0147 (12)	0.0133 (11)	0.0010 (10)	0.0029 (9)	0.0010 (10)
C7	0.0149 (14)	0.0190 (16)	0.0188 (14)	0.0017 (11)	-0.0044 (11)	0.0018 (12)
C8	0.0216 (16)	0.0151 (14)	0.0222 (15)	0.0066 (12)	0.0057 (12)	0.0000 (12)
C9	0.0231 (15)	0.0188 (16)	0.0137 (13)	0.0035 (13)	0.0000 (11)	0.0026 (12)
C10	0.0224 (16)	0.0199 (15)	0.0210 (15)	-0.0015 (12)	0.0112 (13)	-0.0003 (12)
N5	0.0123 (11)	0.0099 (11)	0.0118 (11)	-0.0025 (9)	0.0018 (9)	-0.0016 (9)
C11	0.0149 (13)	0.0109 (13)	0.0124 (12)	-0.0010 (10)	0.0032 (10)	0.0016 (10)
C12	0.0169 (14)	0.0139 (14)	0.0137 (13)	-0.0055 (11)	0.0016 (11)	0.0007 (10)
C13	0.0163 (14)	0.0116 (13)	0.0138 (13)	-0.0018 (11)	-0.0007 (11)	0.0010(11)
N6	0.0167 (12)	0.0121 (12)	0.0182 (12)	-0.0019 (10)	-0.0010 (10)	0.0032 (10)
C14	0.0135 (14)	0.0285 (18)	0.0328 (19)	-0.0045 (13)	-0.0023 (13)	0.0104 (15)
C15	0.0351 (19)	0.0179 (18)	0.0201 (15)	-0.0014 (13)	0.0008 (14)	-0.0047 (12)
O2	0.0250 (14)	0.0323 (14)	0.0315 (14)	0.0052 (11)	-0.0001 (11)	0.0046 (12)

Geometric parameters (Å, °)

O1—H16	0.75 (5)	C8—H8A	0.9800
C1—N2	1.326 (4)	C8—H8B	0.9800
C1—N1	1.329 (4)	C8—H8C	0.9800
C1—N5	1.399 (4)	С9—Н9А	0.9800
N1—C3	1.471 (4)	С9—Н9В	0.9800
N1—C2	1.474 (4)	С9—Н9С	0.9800
N2—C5	1.470 (4)	C10—H10A	0.9800
N2—C4	1.474 (4)	C10—H10B	0.9800
C2—H2A	0.9800	C10—H10C	0.9800
C2—H2B	0.9800	N5—C11	1.494 (4)
C2—H2C	0.9800	C11—C12	1.528 (4)
С3—НЗА	0.9800	C11—H11A	0.9900
С3—Н3В	0.9800	C11—H11B	0.9900
С3—НЗС	0.9800	C12—C13	1.523 (4)
C4—H4A	0.9800	C12—H12A	0.9900
C4—H4B	0.9800	C12—H12B	0.9900

C4—H4C	0.9800	C13—N6	1.494 (4)
С5—Н5А	0.9800	C13—H13A	0.9900
С5—Н5В	0.9800	C13—H13B	0.9900
C5—H5C	0.9800	N6—C15	1.492 (4)
C6—N3	1.328 (4)	N6—C14	1.493 (4)
C6—N4	1.335 (4)	N6—H6	0.86 (4)
C6—N5	1.390 (3)	C14—H14A	0.9800
N3—C8	1.465 (4)	C14—H14B	0.9800
N3—C7	1 478 (4)	C14 - H14C	0.9800
N4—C9	1 472 (4)	C15—H15A	0.9800
N4_C10	1.172(1) 1.477(4)	C15_H15B	0.9800
C7 - H7A	0.9800	C15—H15C	0.9800
C7 H7B	0.9800	O2 H17	0.9000
C7_H7C	0.9800	$O_2 = H18$	0.80(5)
с/—п/с	0.9800	02—н18	0.80 (3)
N2—C1—N1	122.5 (3)	H8B—C8—H8C	109.5
N2-C1-N5	118 8 (3)	N4—C9—H9A	109.5
N1 - C1 - N5	118.7(3)	N4_C9_H9B	109.5
C1 - N1 - C3	1221(3)	H9A - C9 - H9B	109.5
C1 - N1 - C2	122.1(3) 123.6(2)	N4_C9_H9C	109.5
$C_1 = N_1 = C_2$	125.0(2) 114 1 (2)	H9A - C9 - H9C	109.5
$C_1 = N_2 = C_5$	114.1(2) 124.1(2)	HOR CO HOC	109.5
C1 N2 C4	124.1(2) 1215(3)	$M = C_1 = M_1 C_2$	109.5
$C_1 = N_2 = C_4$	121.3(3) 114.4(2)	N4 C10 H10P	109.5
$C_3 - N_2 - C_4$	114.4 (2)		109.5
NI-C2-H2A	109.5	HIUA—CIO—HIUB	109.5
$NI - C_2 - H_2B$	109.5		109.5
H2A—C2—H2B	109.5	H10A - C10 - H10C	109.5
NI—C2—H2C	109.5	HI0B—CI0—HI0C	109.5
H2A—C2—H2C	109.5	C6—N5—C1	119.6 (2)
H2B—C2—H2C	109.5	C6—N5—C11	120.4 (2)
N1—C3—H3A	109.5	C1—N5—C11	119.8 (2)
N1—C3—H3B	109.5	N5—C11—C12	112.9 (2)
НЗА—СЗ—НЗВ	109.5	N5—C11—H11A	109.0
N1—C3—H3C	109.5	C12—C11—H11A	109.0
НЗА—СЗ—НЗС	109.5	N5—C11—H11B	109.0
НЗВ—СЗ—НЗС	109.5	C12—C11—H11B	109.0
N2—C4—H4A	109.5	H11A—C11—H11B	107.8
N2—C4—H4B	109.5	C13—C12—C11	108.5 (2)
H4A—C4—H4B	109.5	C13—C12—H12A	110.0
N2—C4—H4C	109.5	C11—C12—H12A	110.0
H4A—C4—H4C	109.5	C13—C12—H12B	110.0
H4B—C4—H4C	109.5	C11—C12—H12B	110.0
N2—C5—H5A	109.5	H12A—C12—H12B	108.4
N2—C5—H5B	109.5	N6-C13-C12	113.5 (2)
H5A—C5—H5B	109.5	N6-C13-H13A	108.9
N2—C5—H5C	109.5	C12—C13—H13A	108.9
H5A—C5—H5C	109.5	N6-C13-H13B	108.9
H5B—C5—H5C	109.5	C12—C13—H13B	108.9

N3—C6—N4	121.1 (3)	H13A—C13—H13B	107.7
N3—C6—N5	120.1 (3)	C15—N6—C14	111.7 (3)
N4—C6—N5	118.7 (3)	C15—N6—C13	113.2 (2)
C6—N3—C8	121.0 (2)	C14—N6—C13	113.1 (2)
C6—N3—C7	124.2 (2)	C15—N6—H6	107 (3)
C8—N3—C7	114.7 (2)	C14—N6—H6	105 (3)
C6—N4—C9	123.1 (2)	C13—N6—H6	106 (3)
C6—N4—C10	122.1 (2)	N6-C14-H14A	109.5
C9—N4—C10	114.8 (2)	N6—C14—H14B	109.5
N3—C7—H7A	109.5	H14A—C14—H14B	109.5
N3—C7—H7B	109.5	N6—C14—H14C	109.5
H7A—C7—H7B	109.5	H14A—C14—H14C	109.5
N3—C7—H7C	109.5	H14B—C14—H14C	109.5
H7A—C7—H7C	109.5	N6—C15—H15A	109.5
H7B—C7—H7C	109.5	N6—C15—H15B	109.5
N3—C8—H8A	109.5	H15A—C15—H15B	109.5
N3—C8—H8B	109.5	N6—C15—H15C	109.5
H8A—C8—H8B	109.5	H15A—C15—H15C	109.5
N3—C8—H8C	109.5	H15B—C15—H15C	109.5
H8A—C8—H8C	109.5	H17—O2—H18	101 (4)
N2-C1-N1-C3	-30.6 (4)	N5-C6-N4-C10	148.0 (3)
N5—C1—N1—C3	150.0 (3)	N3—C6—N5—C1	140.6 (3)
N2-C1-N1-C2	153.9 (3)	N4—C6—N5—C1	-41.9 (4)
N5—C1—N1—C2	-25.5 (4)	N3—C6—N5—C11	-34.9 (4)
N1-C1-N2-C5	149.2 (3)	N4—C6—N5—C11	142.5 (3)
N5-C1-N2-C5	-31.4 (4)	N2-C1-N5-C6	139.8 (3)
N1-C1-N2-C4	-30.2 (4)	N1-C1-N5-C6	-40.8 (4)
N5—C1—N2—C4	149.2 (3)	N2-C1-N5-C11	-44.6 (4)
N4—C6—N3—C8	-32.5 (4)	N1-C1-N5-C11	134.8 (3)
N5—C6—N3—C8	144.8 (3)	C6—N5—C11—C12	-51.0 (3)
N4—C6—N3—C7	148.6 (3)	C1—N5—C11—C12	133.5 (3)
N5—C6—N3—C7	-34.0 (4)	N5-C11-C12-C13	164.3 (2)
N3—C6—N4—C9	148.6 (3)	C11—C12—C13—N6	164.6 (2)
N5—C6—N4—C9	-28.8 (4)	C12-C13-N6-C15	55.4 (3)
N3—C6—N4—C10	-34.6 (4)	C12-C13-N6-C14	-73.0 (3)

Hydrogen-bond geometry (Å, °)

	ע ת	II 4		
D—H···A	D—H	H A	$D^{\dots}A$	$D - H \cdots A$
N6—H6···Br3 ⁱ	0.86 (4)	2.18 (4)	3.038 (4)	172 (3)
O2—H18…O1 ⁱⁱ	0.86 (5)	1.96 (4)	2.825 (4)	179 (3)
O2—H17…Br1 ⁱⁱⁱ	0.80 (5)	2.48 (4)	3.273 (4)	171 (3)
C2—H2A····Br2 ^{iv}	0.98	2.87	3.650 (4)	137
C3—H3A···Br1 ^v	0.98	2.72	3.688 (4)	170
C5—H5 <i>C</i> ···Br3 ^{vi}	0.98	2.69	3.594 (4)	153
C7—H7 <i>B</i> ···Br3 ⁱⁱ	0.98	2.67	3.498 (4)	142
C8—H8 <i>C</i> …Br1	0.98	2.87	3.805 (4)	160

C11—H11A····Br3 ^{vi}	0.99	2.70	3.618 (4)	154	
C12—H12A····Br1 ⁱⁱⁱ	0.99	2.75	3.649 (4)	151	
C14—H14 C ···Br1 ⁱⁱⁱ	0.98	2.78	3.743 (4)	167	
C15—H15 <i>B</i> ···Br1 ⁱⁱ	0.98	2.86	3.676 (4)	142	

Symmetry codes: (i) x, y-1, z+1; (ii) -x+1, y-1/2, -z+1; (iii) x-1, y, z; (iv) -x+1, y-1/2, -z+2; (v) -x+1, y+1/2, -z+1; (vi) -x, y-1/2, -z+1.