organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-5-benz­yl­oxy-2-{[(4-nitro­phen­yl)imino]­meth­yl}phenol

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria
*Correspondence e-mail: g_nadir@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2015; accepted 19 November 2015; online 28 November 2015)

In the title compound, C20H16N2O4, the mol­ecule adopts an E conformation about the N=C bond. There is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. The nitro­benzene and benz­yloxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11)°, respectively, and to one another by 31.40 (12)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming zigzag chains along [001]. Within the chains there are C—H⋯π inter­actions present. The chains are linked via ππ inter­actions [inter-centroid distance = 3.7048 (15) Å], forming slabs parallel to the bc plane.

1. Related literature

For the use of Schiff bases in synthesis, see: Arora et al. (2002[Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611-1615.]). For thermochromic, photochromic, biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005[Khandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211-3217.]); Tarafder et al. (2002[Tarafder, M. T. H., Chew, K., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). Schiff bases have been reported to show anti­cancer activity (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]). For a related structure, see: Tzimopoulos et al. (2010[Tzimopoulos, D., Czapik, A., Gdaniec, M., Bakas, T., Isab, A. A., Varvogli, A.-C. & Akrivos, P. D. (2010). J. Mol. Struct. 965, 56-64.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H16N2O4

  • Mr = 348.35

  • Monoclinic, P 21 /c

  • a = 15.3407 (5) Å

  • b = 9.5618 (3) Å

  • c = 11.7616 (4) Å

  • β = 100.615 (1)°

  • V = 1695.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.01 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 14260 measured reflections

  • 3302 independent reflections

  • 2389 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 1.04

  • 3302 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.599 (2) 148
C9—H9⋯O2i 0.93 2.56 3.476 (2) 168
C10—H10⋯Cg3i 0.93 2.87 3.754 (2) 159
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Commentary top

Schiff bases are extremely useful in the preparation of various compounds (Arora et al., 2002), and have been shown to have photochromic and thermochromic properties (Hadjoudis et al., 1987). The importance of imine derivatives has increased due to the fact that they have been shown to have anti-cancer properties (Desai et al., 2001; Khandar et al., 2005). The presence of a nitro group in various molecules and Schiff base derivatives, especially in the p-position, has an influence on the effectiveness of bacteriostatics (Tarafder et al., 2002). The title Schiff base incorporates a nitro group in the p-position and herein we report on its synthesis and crystal structure.

The molecular structure of the title compound is show in Fig 1. The molecule adopts an E conformation about the N1C7 bond [1.284 (2) Å]. The nitro­benzene and benzyl­oxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11) °, respectively, and to one another by 31.40 (12) °. There is an intra­molecular O—H···N hydrogen bond forming an S(6) ring motif (Table 1).

In the crystal, molecules are linked via N—H···O hydrogen bonds forming zigzag chains along [001]. Within the chains there are C—H···π inter­actions present (Table 1 and Fig. 2). The chains are linked via slipped parallel ππ inter­actions forming slabs parallel to the bc plane [Cg3···Cg3i = 3.7048 (15) Å; Cg3 is the centroid of ring C15—C20; inter-planar distance = 3.600 (11) Å; slippage = 0.572 Å; symmetry code: (i) -x + 2, -y + 1, -z].

Synthesis and crystallisation top

A mixture of 4-nitro­benzene­amine and 4-benzyl­oxy-2-hy­droxy­benzaldehyde in ethanol or methanol was refluxed for 2 h. On completion of the reaction, the orange precipitate formed was crystallized in a mixture of tetra­hydro­furan and chloro­form (1:2), giving very small orange crystals after one week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Methine H atom H7 was freely refined. The OH and other C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93-1.00 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Related literature top

For the use of Schiff bases in synthesis, see: Arora et al. (2002). For thermochromic, photochromic, biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005); Tarafder et al. (2002); Hadjoudis et al. (1987). Schiff bases have been reported to show anticancer activity (Desai et al., 2001). For a related structure, see: Tzimopoulos et al. (2010).

Structure description top

Schiff bases are extremely useful in the preparation of various compounds (Arora et al., 2002), and have been shown to have photochromic and thermochromic properties (Hadjoudis et al., 1987). The importance of imine derivatives has increased due to the fact that they have been shown to have anti-cancer properties (Desai et al., 2001; Khandar et al., 2005). The presence of a nitro group in various molecules and Schiff base derivatives, especially in the p-position, has an influence on the effectiveness of bacteriostatics (Tarafder et al., 2002). The title Schiff base incorporates a nitro group in the p-position and herein we report on its synthesis and crystal structure.

The molecular structure of the title compound is show in Fig 1. The molecule adopts an E conformation about the N1C7 bond [1.284 (2) Å]. The nitro­benzene and benzyl­oxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11) °, respectively, and to one another by 31.40 (12) °. There is an intra­molecular O—H···N hydrogen bond forming an S(6) ring motif (Table 1).

In the crystal, molecules are linked via N—H···O hydrogen bonds forming zigzag chains along [001]. Within the chains there are C—H···π inter­actions present (Table 1 and Fig. 2). The chains are linked via slipped parallel ππ inter­actions forming slabs parallel to the bc plane [Cg3···Cg3i = 3.7048 (15) Å; Cg3 is the centroid of ring C15—C20; inter-planar distance = 3.600 (11) Å; slippage = 0.572 Å; symmetry code: (i) -x + 2, -y + 1, -z].

For the use of Schiff bases in synthesis, see: Arora et al. (2002). For thermochromic, photochromic, biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005); Tarafder et al. (2002); Hadjoudis et al. (1987). Schiff bases have been reported to show anticancer activity (Desai et al., 2001). For a related structure, see: Tzimopoulos et al. (2010).

Synthesis and crystallization top

A mixture of 4-nitro­benzene­amine and 4-benzyl­oxy-2-hy­droxy­benzaldehyde in ethanol or methanol was refluxed for 2 h. On completion of the reaction, the orange precipitate formed was crystallized in a mixture of tetra­hydro­furan and chloro­form (1:2), giving very small orange crystals after one week.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Methine H atom H7 was freely refined. The OH and other C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93-1.00 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1).
(E)-5-Benzyloxy-2-{[(4-nitrophenyl)imino]methyl}phenol top
Crystal data top
C20H16N2O4Z = 4
Mr = 348.35F(000) = 728
Monoclinic, P21/cDx = 1.364 Mg m3
a = 15.3407 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5618 (3) ŵ = 0.10 mm1
c = 11.7616 (4) ÅT = 293 K
β = 100.615 (1)°Block, orange
V = 1695.72 (10) Å30.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2389 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.020
Graphite monochromatorθmax = 26.0°, θmin = 2.8°
phi and ω scansh = 1818
14260 measured reflectionsk = 1011
3302 independent reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.5493P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H16N2O4V = 1695.72 (10) Å3
Mr = 348.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3407 (5) ŵ = 0.10 mm1
b = 9.5618 (3) ÅT = 293 K
c = 11.7616 (4) Å0.03 × 0.02 × 0.01 mm
β = 100.615 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2389 reflections with I > 2σ(I)
14260 measured reflectionsRint = 0.020
3302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
3302 reflectionsΔρmin = 0.13 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47868 (9)0.50409 (16)0.17069 (12)0.0717 (5)
O20.75000 (8)0.39891 (15)0.06771 (11)0.0637 (5)
O30.11551 (13)0.4282 (3)0.61135 (19)0.1135 (9)
O40.20529 (14)0.3185 (2)0.74236 (18)0.1087 (9)
N10.44170 (10)0.40083 (16)0.36061 (13)0.0544 (5)
N20.18708 (14)0.3734 (2)0.6477 (2)0.0786 (8)
C10.25402 (13)0.3766 (2)0.57425 (18)0.0618 (7)
C20.33415 (15)0.3141 (2)0.61163 (18)0.0701 (8)
C30.39794 (14)0.3190 (2)0.54255 (17)0.0676 (7)
C40.38141 (12)0.38758 (18)0.43716 (15)0.0528 (6)
C50.29945 (14)0.4494 (3)0.40209 (19)0.0735 (8)
C60.23565 (14)0.4436 (3)0.4701 (2)0.0792 (9)
C70.51738 (12)0.33921 (19)0.37785 (16)0.0525 (6)
C80.57800 (11)0.35446 (18)0.29908 (14)0.0483 (5)
C90.66038 (12)0.2898 (2)0.32123 (15)0.0568 (6)
C100.72109 (12)0.3028 (2)0.24852 (15)0.0567 (6)
C110.69764 (11)0.38241 (19)0.14824 (14)0.0500 (5)
C120.61596 (12)0.4477 (2)0.12285 (15)0.0543 (6)
C130.55691 (11)0.43658 (19)0.19724 (14)0.0508 (5)
C140.83798 (13)0.3485 (3)0.09251 (18)0.0690 (7)
C150.88052 (12)0.3718 (2)0.01124 (17)0.0624 (7)
C160.93985 (15)0.2759 (3)0.0378 (2)0.0834 (9)
C170.98237 (16)0.2974 (4)0.1306 (3)0.0970 (13)
C180.96510 (16)0.4138 (4)0.1971 (2)0.0912 (10)
C190.90594 (17)0.5082 (3)0.1720 (2)0.0876 (10)
C200.86397 (15)0.4885 (3)0.0794 (2)0.0762 (8)
H10.449530.489800.221380.1076*
H20.345740.268780.682770.0842*
H30.452450.275760.567160.0811*
H50.287260.495610.331370.0882*
H60.180520.484880.445440.0950*
H70.5357 (12)0.276 (2)0.4452 (17)0.062 (5)*
H90.675290.235600.387620.0681*
H100.776230.259600.266030.0680*
H120.600880.499340.055090.0652*
H14A0.838060.249600.110740.0829*
H14B0.871110.397550.158870.0829*
H160.951790.195520.006890.1000*
H171.022920.231830.147450.1165*
H180.993700.428300.259260.1093*
H190.893420.587530.217810.1051*
H200.823900.555080.062970.0914*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0639 (8)0.0925 (11)0.0626 (8)0.0249 (7)0.0218 (7)0.0220 (7)
O20.0551 (7)0.0892 (10)0.0499 (7)0.0068 (6)0.0181 (6)0.0035 (6)
O30.0819 (12)0.1413 (18)0.1321 (17)0.0066 (12)0.0585 (12)0.0054 (14)
O40.1263 (16)0.1218 (16)0.0952 (13)0.0091 (12)0.0656 (12)0.0136 (12)
N10.0550 (8)0.0608 (9)0.0494 (8)0.0015 (7)0.0149 (7)0.0025 (7)
N20.0811 (13)0.0727 (12)0.0937 (15)0.0168 (10)0.0470 (12)0.0127 (11)
C10.0665 (12)0.0587 (11)0.0671 (12)0.0115 (9)0.0302 (10)0.0083 (9)
C20.0811 (14)0.0734 (13)0.0615 (12)0.0013 (11)0.0279 (11)0.0114 (10)
C30.0662 (12)0.0766 (14)0.0640 (12)0.0102 (10)0.0226 (10)0.0130 (10)
C40.0555 (10)0.0540 (10)0.0512 (10)0.0028 (8)0.0158 (8)0.0027 (8)
C50.0669 (12)0.0925 (16)0.0651 (13)0.0143 (11)0.0225 (10)0.0187 (11)
C60.0610 (12)0.0987 (17)0.0827 (15)0.0133 (11)0.0258 (11)0.0124 (13)
C70.0574 (10)0.0537 (10)0.0476 (10)0.0012 (8)0.0132 (8)0.0031 (8)
C80.0526 (9)0.0518 (9)0.0416 (9)0.0008 (7)0.0117 (7)0.0008 (7)
C90.0600 (10)0.0633 (11)0.0470 (9)0.0056 (8)0.0098 (8)0.0098 (8)
C100.0519 (9)0.0671 (12)0.0514 (10)0.0083 (8)0.0106 (8)0.0041 (8)
C110.0505 (9)0.0587 (10)0.0419 (9)0.0026 (7)0.0118 (7)0.0051 (7)
C120.0589 (10)0.0625 (11)0.0423 (9)0.0056 (8)0.0112 (8)0.0074 (8)
C130.0513 (9)0.0547 (10)0.0468 (9)0.0047 (7)0.0103 (7)0.0018 (8)
C140.0561 (11)0.0931 (15)0.0595 (12)0.0055 (10)0.0148 (9)0.0024 (10)
C150.0484 (10)0.0841 (14)0.0569 (11)0.0077 (9)0.0152 (8)0.0163 (10)
C160.0680 (13)0.1007 (18)0.0825 (15)0.0113 (12)0.0169 (12)0.0093 (13)
C170.0651 (14)0.133 (3)0.0981 (19)0.0109 (15)0.0285 (14)0.0418 (19)
C180.0712 (14)0.140 (2)0.0700 (15)0.0268 (16)0.0326 (12)0.0273 (16)
C190.0902 (16)0.1022 (19)0.0783 (16)0.0157 (14)0.0366 (13)0.0003 (14)
C200.0745 (13)0.0841 (16)0.0766 (14)0.0000 (11)0.0316 (11)0.0042 (12)
Geometric parameters (Å, º) top
O1—C131.348 (2)C14—C151.503 (3)
O2—C111.359 (2)C15—C201.370 (3)
O2—C141.412 (2)C15—C161.368 (3)
O3—N21.221 (3)C16—C171.386 (4)
O4—N21.216 (3)C17—C181.358 (5)
N1—C41.410 (2)C18—C191.351 (4)
N1—C71.284 (2)C19—C201.376 (3)
O1—H10.8200C2—H20.9300
N2—C11.459 (3)C3—H30.9300
C1—C21.365 (3)C5—H50.9300
C1—C61.365 (3)C6—H60.9300
C2—C31.383 (3)C7—H71.00 (2)
C3—C41.384 (3)C9—H90.9300
C4—C51.382 (3)C10—H100.9300
C5—C61.375 (3)C12—H120.9300
C7—C81.436 (3)C14—H14A0.9700
C8—C131.419 (2)C14—H14B0.9700
C8—C91.388 (3)C16—H160.9300
C9—C101.381 (3)C17—H170.9300
C10—C111.394 (2)C18—H180.9300
C11—C121.382 (3)C19—H190.9300
C12—C131.375 (2)C20—H200.9300
C11—O2—C14118.78 (15)C17—C18—C19119.3 (2)
C4—N1—C7122.55 (16)C18—C19—C20120.8 (3)
C13—O1—H1109.00C15—C20—C19120.7 (2)
O3—N2—O4123.1 (2)C1—C2—H2120.00
O4—N2—C1118.9 (2)C3—C2—H2120.00
O3—N2—C1118.0 (2)C2—C3—H3120.00
N2—C1—C2119.38 (19)C4—C3—H3120.00
C2—C1—C6121.3 (2)C4—C5—H5119.00
N2—C1—C6119.32 (19)C6—C5—H5119.00
C1—C2—C3119.26 (19)C1—C6—H6120.00
C2—C3—C4120.63 (19)C5—C6—H6120.00
N1—C4—C3125.52 (17)N1—C7—H7121.3 (11)
N1—C4—C5116.02 (17)C8—C7—H7117.0 (11)
C3—C4—C5118.47 (18)C8—C9—H9119.00
C4—C5—C6121.0 (2)C10—C9—H9119.00
C1—C6—C5119.3 (2)C9—C10—H10121.00
N1—C7—C8121.71 (17)C11—C10—H10121.00
C7—C8—C13121.79 (16)C11—C12—H12120.00
C9—C8—C13117.59 (15)C13—C12—H12120.00
C7—C8—C9120.61 (16)O2—C14—H14A110.00
C8—C9—C10122.57 (17)O2—C14—H14B110.00
C9—C10—C11118.34 (17)C15—C14—H14A110.00
O2—C11—C10124.01 (16)C15—C14—H14B110.00
C10—C11—C12120.78 (16)H14A—C14—H14B108.00
O2—C11—C12115.18 (15)C15—C16—H16120.00
C11—C12—C13120.33 (16)C17—C16—H16120.00
O1—C13—C8121.03 (15)C16—C17—H17120.00
O1—C13—C12118.59 (16)C18—C17—H17120.00
C8—C13—C12120.37 (16)C17—C18—H18120.00
O2—C14—C15108.86 (17)C19—C18—H18120.00
C14—C15—C16119.5 (2)C18—C19—H19120.00
C16—C15—C20118.1 (2)C20—C19—H19120.00
C14—C15—C20122.3 (2)C15—C20—H20120.00
C15—C16—C17120.7 (3)C19—C20—H20120.00
C16—C17—C18120.3 (3)
C14—O2—C11—C108.6 (3)C13—C8—C9—C100.0 (3)
C14—O2—C11—C12173.28 (18)C7—C8—C13—O10.2 (3)
C11—O2—C14—C15177.00 (17)C7—C8—C13—C12179.20 (17)
C7—N1—C4—C35.8 (3)C9—C8—C13—O1179.10 (16)
C7—N1—C4—C5174.31 (19)C9—C8—C13—C121.5 (3)
C4—N1—C7—C8179.76 (16)C8—C9—C10—C111.0 (3)
O3—N2—C1—C2178.9 (2)C9—C10—C11—O2177.44 (17)
O3—N2—C1—C62.0 (3)C9—C10—C11—C120.6 (3)
O4—N2—C1—C22.2 (3)O2—C11—C12—C13179.08 (16)
O4—N2—C1—C6177.0 (2)C10—C11—C12—C130.9 (3)
N2—C1—C2—C3179.09 (18)C11—C12—C13—O1178.65 (17)
C6—C1—C2—C30.1 (3)C11—C12—C13—C82.0 (3)
N2—C1—C6—C5178.5 (2)O2—C14—C15—C16144.8 (2)
C2—C1—C6—C50.7 (4)O2—C14—C15—C2037.0 (3)
C1—C2—C3—C40.7 (3)C14—C15—C16—C17177.7 (2)
C2—C3—C4—N1179.10 (18)C20—C15—C16—C170.5 (4)
C2—C3—C4—C50.8 (3)C14—C15—C20—C19178.3 (2)
N1—C4—C5—C6179.7 (2)C16—C15—C20—C190.1 (3)
C3—C4—C5—C60.2 (3)C15—C16—C17—C180.5 (4)
C4—C5—C6—C10.5 (4)C16—C17—C18—C190.1 (4)
N1—C7—C8—C9178.26 (17)C17—C18—C19—C200.8 (4)
N1—C7—C8—C131.0 (3)C18—C19—C20—C150.7 (4)
C7—C8—C9—C10179.31 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.599 (2)148
C9—H9···O2i0.932.563.476 (2)168
C10—H10···Cg3i0.932.873.754 (2)159
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.599 (2)148
C9—H9···O2i0.932.563.476 (2)168
C10—H10···Cg3i0.932.873.754 (2)159
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit for their valuable assistance and MESRS (Algeria) for financial support.

References

First citationArora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611–1615.  CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKhandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211–3217.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationTzimopoulos, D., Czapik, A., Gdaniec, M., Bakas, T., Isab, A. A., Varvogli, A.-C. & Akrivos, P. D. (2010). J. Mol. Struct. 965, 56–64.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds