

Z = 4

Mo $K\alpha$ radiation

 $0.14 \times 0.08 \times 0.02 \; \rm mm$

 $\mu = 1.86 \text{ mm}^-$

T = 130 K

OPEN 👌 ACCESS

Crystal structure of 1-mesityl-3-methyl-4phenyl-1*H*-1,2,3-triazol-3-ium iodide

Daniel Canseco-González, Juventino J. García* and Marcos Flores-Alamo

Facultad de Química, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Mexico City, 04510, Mexico. *Correspondence e-mail: juvent@unam.mx

Received 1 December 2015; accepted 5 December 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the cation of the title salt, $C_{18}H_{20}N_3^+\cdot I^-$, the mesityl and phenyl rings are inclined to the central triazolium ring by 61.39 (16) and 30.99 (16)°, respectively, and to one another by 37.75 (15)°. In the crystal, molecules are linked *via* C-H···I hydrogen bonds, forming slabs parallel to the *ab* plane. Within the slabs there are weak π - π interactions present involving the mesityl and phenyl rings [inter-centroid distances are 3.8663 (18) and 3.8141 (18) Å].

Keywords: crystal structure; triazolium salt; mesityl group; C $-H\cdots$ l hydrogen bonds.

CCDC reference: 1440705

1. Related literature

For classical Arduengo-type imidazol-2-ylidene *N*-heterocyclic carbenes (NHCs), see: Arduengo *et al.* (1995); Mathew *et al.* (2008). For similar 1-mesityl-3-methyl-4-phenyl-1*H*-1,2,3triazol-3-ium structures and some complexes, see: Saravanakumar *et al.* (2011); Hohloch *et al.* (2011, 2013); Shaik *et al.* (2013).

 $M_r = 405.27$

Experimental
 Crystal data
 C₁₈H₂₀N₃⁺·I[−]

Monoclinic, $P2_1/n$ a = 7.6704 (3) Å b = 9.9341 (3) Å c = 22.8541 (10) Å $\beta = 98.982$ (4)°

2.2. Data collection

 $V = 1720.09 (12) \text{ Å}^3$

Agilent Xcalibur Atlas Gemini	8948 measured reflections
diffractometer	4073 independent reflections
Absorption correction: analytical	3374 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Agilent, 2013)	$R_{\rm int} = 0.031$
$T_{\min} = 0.864, T_{\max} = 0.963$	

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.034$

 $wR(F^2) = 0.084$

S = 1.164073 reflections

203 parameters	
H-atom parameters constraine	d
$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10 $-$ H10 \cdots I1 ⁱ	0.95	3.12	4.049 (3)	168
C12 $-$ H12 A \cdots I1 ⁱⁱ	0.98	3.20	3.916 (3)	131
C12 $-$ H12 B \cdots I1	0.98	3.22	4.172 (3)	163

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: (*CrysAlis PRO*; Agilent, 2013); cell refinement: (*CrysAlis RED*; Agilent, 2013); data reduction: (*CrysAlis RED*; program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

DCG would like to thank DGAPA–UNAM for a postdoctoral fellowship. The authors thank Dr Alma Arévalo for her technical assistance. This work was supported financially by CONACYT (178265) and DGAPA-PAPIIT-IN-210613, which is gratefully acknowledged

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5254).

References

- Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
- Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hohloch, S., Scheiffele, D. & Sarkar, B. (2013). Eur. J. Inorg. Chem. pp. 3956-3965.
- Hohloch, S., Su, C. Y. & Sarkar, B. (2011). Eur. J. Inorg. Chem. pp. 3067–3075. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P.,

Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.

Mathew, P., Neels, A. & Albrecht, M. (2008). J. Am. Chem. Soc. 130, 13534– 13535.

data reports

Saravanakumar, R., Ramkumar, V. & Sankararaman, S. (2011). Organometallics, **30**, 1689–1694.

Shaik, J. B., Ramkumar, V., Varghese, B. & Sankararaman, S. (2013). Beilstein J. Org. Chem. 9, 698–704. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C**71**, 3–8.

supporting information

Acta Cryst. (2015). E71, o1041-o1042 [https://doi.org/10.1107/S2056989015023403]

Crystal structure of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

Daniel Canseco-González, Juventino J. García and Marcos Flores-Alamo

S1. Commentary

Mesoionic 1,2,3-triazol-5-ylidenes bear only one nitrogen adjacent to the carbene bonding site and are more basic than the classical Arduengo-type imidazol-2-ylidene NHCs (Arduengo *et al.*, 1995; Mathew *et al.*, 2008). This type of triazolylidene has recently been applied for the development of a variety of organometallic complexes, specially directed towards catalytic purposes (Saravanakumar *et al.*, 2011; Hohloch *et al.*, 2011,2013); Shaik *et al.*, 2013).

In the cation of the title salt, Fig. 1, the central triazolium ring (N1-N3/C10/C11) is inclined to the mesityl (C1-C6) and phenyl (C13-C18) rings by 61.39 (16) and 30.99 (16) °, respectively, while the two six-membered aromatic rings are inclined to one another by 37.75 (15) °.

In the crystal, molecules are linked *via* C—H···I hydrogen bonds forming slabs parallel to the *ab* plane (Table 1 and Fig. 2). Within the slabs there are slipped parallel π - π interactions present involving the mesityl and phenyl rings: Cg2···Cg3ⁱ = 3.8663 (18) Å [where Cg2 and Cg3 are the centroids of rings C1—C6 and C13—C18, interplanar distance = 3.6798 (13) Å, slippage = 1.595 Å; symmetry ocde: (i) - x + 3/2, y + 1/2, - z + 1/3], and Cg2···Cg3ⁱⁱ = 3.8141 (18) Å [interplanar distance = 3.5739 (13) Å, slippage = 1.797 Å; symmetry ocde: (ii) - x + 5/2, y + 1/2, -z + 1/2]; see Fig. 2.

S2. Synthesis and crystallization

Synthesis of 1-mesityl-4-phenyl-1,2,3-triazole

2-azido-1,3,5-trimethylbenzene (868 mg, 5.4 mmol), and phenylacetylene (1000 mg, 4.9 mmol) were suspended in a mixture of water (16.0 ml) and 'BuOH (16.0 mL). To the previous mixture CuSO₄ (10.6 mg, 0.05 mmol), and sodium ascorbate (97 mg, 0.50 mmol) were added and stirred for 24 hours at 100 °C. The reaction mixture was allowed to cool and 'BuOH was evaporated off. The resulted mixture was extracted with CH₂Cl₂ (2 × 100 mL). The combined organic phases were washed with water (2 × 60 mL), brine (2 × 50 mL), dried over MgSO₄ and evaporated to dryness. The residue was washed with pentane (50 mL) to afford the crude triazole as an off brown solid. The crude product was recrystallized from hot acetone to give the corresponding pure triazole (yield: 1100 mg, 85%). ¹H NMR (CDCl₃, 300 MHz): δ 7.93 (d, ³*J*_{HH} = 7.8 Hz, 2H, H_{ar}), 7.84 (s, 1H, H_{trz}), 7.47 (t, ³*J*_{HH} = 7.8 Hz, 2H, H_{ar}), 7.36 (t, ³*J*_{HH} = 7.5 Hz, 1H, H_{ar}), 7.01 (s, 2H, H_{mes}), 2.37 (s, 3H, ArCH₃), 2.02 (s, 6H, ArCH₃). ¹³C {¹H} NMR (CDCl₃, 75 MHz): δ 147.5 (Ctrz-Mes), 140.0, 135.1, 133.5, 130.4, 129.1 (5 × Car), 128.9 (Ctrz-H), 130.4, 128.8, 128.2 (3 × Car), 21.1 (Ar—CH₃), 17.3 (Ar—CH₃).

Synthesis of 1-mesityl-3-methyl-4-phenyl-1*H*-1,2,3-triazol-3-ium iodide

A solution of 1-mesityl-4-phenyl-1,2,3-triazole (500 mg, 1.3 mmol) in MeCN (12 ml) was added CH₃I (1.7 g, 12 mmol) and the mixture was stirred at 373 K for 48 h. The workup and purification were carried out according to the general method. The title compound was obtained as a white solid (yield: 612 mg, 80%). **Colourless plate-like crystals were obtained by ???? - please complete.** ¹H NMR (CDCl₃, 300 MHz): δ 8.86 (s, 1H, H_{trz}), 8.04 (m, 2H, Har), 7.58 (m, 3H, Har), 7.05 (s, 2H, Hmes), 4.58 (s, 3H, NCH3), 2.37 (s, 3H, ArCH3), 2.22 (s, 6H, ArCH3). ¹³C {¹H} NMR (CDCl₃, 75 MHz): δ 144.2 (Ctrz–Mes), 142.5, 134.4, 132.2, 130.4, 130.1, 129.9, 129.7, 121.2, (8 × Car), 40.7 (NCH3), 21.2 (Ar–

CH3), 18.5 (Ar—CH3). Anal. Calcd. for C18H20IN3 x 1 H2O (423.28): C 51.44, H 5.24, N 9.93. Found: C 51.44, H 4.34, N 10.17.

S3. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms: C—H = 0.95-0.98 Å with U_{iso} (H) = $1.5U_{eq}$ (C-methyl) and $1.2U_{eq}$ (C) for other H atoms.

Figure 1

The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A view along the *a* axis of the crystal packing of the title compound. The C—H···I hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.

1-Mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

Crystal data

 $\begin{array}{l} C_{18}H_{20}N_{3}^{+}\cdot I^{-}\\ M_{r}=405.27\\ \text{Monoclinic, }P2_{1}/n\\ \text{Hall symbol: -P 2yn}\\ a=7.6704 \ (3) \ \text{\AA}\\ b=9.9341 \ (3) \ \text{\AA}\\ c=22.8541 \ (10) \ \text{\AA}\\ \beta=98.982 \ (4)^{\circ}\\ V=1720.09 \ (12) \ \text{\AA}^{3}\\ Z=4 \end{array}$

F(000) = 808 $D_x = 1.565 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3748 reflections $\theta = 4.5-29.3^{\circ}$ $\mu = 1.86 \text{ mm}^{-1}$ T = 130 KPlate, colourless $0.14 \times 0.08 \times 0.02 \text{ mm}$ Data collection

Agilent Xcalibur Atlas Gemini diffractometer Graphite monochromator Detector resolution: 10.4685 pixels mm ⁻¹ ω scans Absorption correction: analytical (<i>CrysAlis RED</i> ; Agilent, 2013) $T_{\min} = 0.864, T_{\max} = 0.963$	8948 measured reflections 4073 independent reflections 3374 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 29.3^\circ, \ \theta_{min} = 3.4^\circ$ $h = -10 \rightarrow 9$ $k = -13 \rightarrow 12$ $l = -20 \rightarrow 30$
Refinement F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 0.4334P]$
S = 1.16	where $P = (F_o^2 + 2F_c^2)/3$
4073 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
203 parameters	$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.57$ e Å ⁻³
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.9473 (4)	0.6044 (3)	0.32285 (13)	0.0166 (6)
C2	1.0174 (4)	0.7345 (3)	0.32716 (13)	0.0166 (6)
C3	1.0440 (4)	0.7926 (3)	0.38314 (14)	0.0193 (7)
Н3	1.0952	0.8798	0.3878	0.023*
C4	0.9986 (4)	0.7281 (3)	0.43240 (14)	0.0207 (7)
C5	0.9244 (4)	0.6001 (3)	0.42536 (14)	0.0205 (7)
Н5	0.8905	0.5562	0.4587	0.025*
C6	0.8984 (4)	0.5345 (3)	0.37081 (13)	0.0178 (6)
C7	0.8235 (4)	0.3951 (3)	0.36552 (14)	0.0217 (7)
H7A	0.7477	0.3814	0.3958	0.033*
H7B	0.92	0.3293	0.3712	0.033*
H7C	0.7538	0.3832	0.3261	0.033*
C8	1.0311 (6)	0.7949 (4)	0.49185 (16)	0.0336 (9)
H8A	1.1237	0.7462	0.5179	0.05*
H8B	0.9222	0.7943	0.5093	0.05*
H8C	1.0687	0.8881	0.4873	0.05*
C9	1.0623 (4)	0.8130 (3)	0.27524 (15)	0.0224 (7)
H9A	1.1435	0.8862	0.2896	0.034*
H9B	0.9541	0.8507	0.2527	0.034*
H9C	1.1186	0.7533	0.2496	0.034*
C10	1.0035 (4)	0.4227 (3)	0.25127 (13)	0.0174 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10	1.0827	0.3672	0.2768	0.021*
C11	0.9446 (4)	0.4023 (3)	0.19207 (13)	0.0165 (6)
C12	0.7388 (4)	0.5467 (3)	0.11771 (13)	0.0193 (7)
H12A	0.8138	0.6043	0.0973	0.029*
H12B	0.6313	0.5958	0.1228	0.029*
H12C	0.707	0.4654	0.0942	0.029*
C13	0.9856 (4)	0.2918 (3)	0.15337 (14)	0.0185 (7)
C14	0.9941 (4)	0.3091 (3)	0.09329 (15)	0.0224 (7)
H14	0.9724	0.3951	0.0755	0.027*
C15	1.0344 (5)	0.2003 (3)	0.05942 (16)	0.0262 (8)
H15	1.0361	0.2112	0.0182	0.031*
C16	1.0722 (4)	0.0760 (3)	0.08598 (16)	0.0265 (8)
H16	1.1002	0.0018	0.0629	0.032*
C17	1.0694 (4)	0.0596 (3)	0.14553 (16)	0.0240 (7)
H17	1.0984	-0.0253	0.1635	0.029*
C18	1.0248 (4)	0.1657 (3)	0.17954 (15)	0.0207 (7)
H18	1.0207	0.153	0.2205	0.025*
I1	0.22531 (3)	0.67415 (2)	0.12660 (2)	0.02384 (9)
N1	0.8211 (3)	0.5913 (3)	0.22025 (11)	0.0174 (5)
N2	0.9259 (3)	0.5380 (2)	0.26597 (10)	0.0152 (5)
N3	0.8348 (3)	0.5089 (2)	0.17589 (11)	0.0157 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0163 (14)	0.0163 (15)	0.0157 (15)	0.0032 (13)	-0.0023 (11)	-0.0023 (13)
C2	0.0134 (14)	0.0184 (16)	0.0174 (15)	0.0047 (13)	0.0006 (11)	0.0015 (13)
C3	0.0193 (15)	0.0152 (15)	0.0223 (17)	0.0029 (13)	-0.0003 (12)	-0.0031 (13)
C4	0.0226 (16)	0.0223 (17)	0.0165 (16)	0.0075 (14)	0.0002 (12)	-0.0011 (14)
C5	0.0250 (16)	0.0217 (17)	0.0149 (15)	0.0047 (14)	0.0029 (12)	0.0048 (13)
C6	0.0167 (14)	0.0170 (15)	0.0189 (15)	0.0040 (13)	0.0005 (12)	0.0016 (13)
C7	0.0251 (16)	0.0163 (16)	0.0234 (17)	0.0000 (14)	0.0025 (13)	0.0055 (13)
C8	0.052 (2)	0.028 (2)	0.0201 (18)	0.0025 (18)	0.0015 (16)	-0.0050 (15)
C9	0.0242 (16)	0.0210 (17)	0.0214 (17)	-0.0020 (14)	0.0016 (13)	0.0014 (14)
C10	0.0198 (15)	0.0141 (15)	0.0177 (15)	0.0032 (13)	0.0010 (12)	0.0000 (12)
C11	0.0160 (14)	0.0130 (15)	0.0199 (16)	-0.0001 (12)	0.0014 (12)	-0.0003 (12)
C12	0.0232 (16)	0.0157 (16)	0.0163 (16)	0.0019 (13)	-0.0050 (12)	0.0008 (12)
C13	0.0156 (14)	0.0148 (15)	0.0242 (17)	0.0005 (13)	0.0006 (12)	-0.0021 (13)
C14	0.0246 (16)	0.0193 (17)	0.0225 (17)	0.0000 (14)	0.0013 (13)	-0.0035 (14)
C15	0.0267 (17)	0.0276 (19)	0.0244 (18)	-0.0022 (15)	0.0040 (14)	-0.0094 (15)
C16	0.0250 (17)	0.0199 (17)	0.035 (2)	-0.0024 (15)	0.0062 (14)	-0.0147 (15)
C17	0.0214 (16)	0.0141 (16)	0.036 (2)	0.0023 (14)	0.0021 (14)	-0.0059 (14)
C18	0.0194 (15)	0.0165 (16)	0.0255 (17)	-0.0009 (13)	0.0015 (13)	-0.0007 (14)
I1	0.02450 (13)	0.01763 (12)	0.03061 (14)	-0.00299 (9)	0.00815 (9)	-0.00440 (9)
N1	0.0191 (13)	0.0143 (13)	0.0179 (13)	0.0005 (11)	0.0004 (10)	-0.0018 (11)
N2	0.0171 (12)	0.0128 (12)	0.0143 (12)	0.0020 (11)	-0.0018 (10)	-0.0006 (10)
N3	0.0188 (12)	0.0112 (12)	0.0158 (12)	-0.0005 (11)	-0.0009 (10)	0.0000 (10)

Geometric parameters (Å, °)

C1—C6	1.397 (4)	C10—C11	1.373 (4)	
C1—C2	1.397 (4)	C10—H10	0.95	
C1—N2	1.444 (4)	C11—N3	1.367 (4)	
С2—С3	1.389 (4)	C11—C13	1.475 (4)	
С2—С9	1.504 (4)	C12—N3	1.465 (4)	
C3—C4	1.386 (5)	C12—H12A	0.98	
С3—Н3	0.95	C12—H12B	0.98	
C4—C5	1.392 (5)	C12—H12C	0.98	
C4—C8	1.498 (5)	C13—C14	1.395 (5)	
С5—С6	1.393 (4)	C13—C18	1.400 (4)	
С5—Н5	0.95	C14—C15	1.392 (5)	
C6—C7	1.497 (4)	C14—H14	0.95	
С7—Н7А	0.98	C15—C16	1.386 (5)	
С7—Н7В	0.98	C15—H15	0.95	
С7—Н7С	0.98	C16—C17	1.374 (5)	
C8—H8A	0.98	C16—H16	0.95	
C8—H8B	0.98	C17—C18	1.384 (4)	
C8—H8C	0.98	C17—H17	0.95	
С9—Н9А	0.98	C18—H18	0.95	
С9—Н9В	0.98	N1—N3	1.320 (3)	
С9—Н9С	0.98	N1—N2	1.325 (3)	
C10—N2	1.358 (4)			
C6—C1—C2	123.5 (3)	N2—C10—H10	126.9	
C6-C1-N2	118.2 (3)	C11—C10—H10	126.9	
C2C1N2	118.3 (3)	N3—C11—C10	104.3 (3)	
C3—C2—C1	116.7 (3)	N3—C11—C13	126.5 (3)	
С3—С2—С9	119.5 (3)	C10—C11—C13	129.2 (3)	
C1—C2—C9	123.9 (3)	N3—C12—H12A	109.5	
C4—C3—C2	122.4 (3)	N3—C12—H12B	109.5	
С4—С3—Н3	118.8	H12A—C12—H12B	109.5	
С2—С3—Н3	118.8	N3—C12—H12C	109.5	
C3—C4—C5	118.6 (3)	H12A—C12—H12C	109.5	
C3—C4—C8	120.3 (3)	H12B—C12—H12C	109.5	
C5—C4—C8	121.1 (3)	C14—C13—C18	119.4 (3)	
C4—C5—C6	122.0 (3)	C14—C13—C11	123.1 (3)	
С4—С5—Н5	119	C18—C13—C11	117.5 (3)	
С6—С5—Н5	119	C15—C14—C13	120.0 (3)	
C5—C6—C1	116.8 (3)	C15—C14—H14	120	
C5—C6—C7	120.3 (3)	C13—C14—H14	120	
C1—C6—C7	122.9 (3)	C16—C15—C14	119.8 (3)	
С6—С7—Н7А	109.5	C16—C15—H15	120.1	
С6—С7—Н7В	109.5	C14—C15—H15	120.1	
H7A—C7—H7B	109.5	C17—C16—C15	120.3 (3)	
С6—С7—Н7С	109.5	C17—C16—H16	119.8	
H7A—C7—H7C	109.5	C15—C16—H16	119.8	

Н7В—С7—Н7С	109.5	C16—C17—C18	120.6 (3)
C4—C8—H8A	109.5	С16—С17—Н17	119.7
C4—C8—H8B	109.5	C18—C17—H17	119.7
H8A—C8—H8B	109.5	C17—C18—C13	119.8 (3)
C4—C8—H8C	109.5	C17—C18—H18	120.1
H8A—C8—H8C	109.5	C13—C18—H18	120.1
H8B—C8—H8C	109.5	N3—N1—N2	104.3 (2)
С2—С9—Н9А	109.5	N1—N2—C10	112.2 (2)
С2—С9—Н9В	109.5	N1—N2—C1	119.8 (2)
H9A—C9—H9B	109.5	C10—N2—C1	128.0 (2)
С2—С9—Н9С	109.5	N1—N3—C11	113.1 (2)
Н9А—С9—Н9С	109.5	N1—N3—C12	116.7 (2)
Н9В—С9—Н9С	109.5	C11—N3—C12	130.2 (3)
N2-C10-C11	106.2 (3)		
C6—C1—C2—C3	2.3 (4)	C18—C13—C14—C15	2.5 (5)
N2—C1—C2—C3	-177.0 (3)	C11—C13—C14—C15	179.7 (3)
C6—C1—C2—C9	-177.0 (3)	C13—C14—C15—C16	-2.3 (5)
N2—C1—C2—C9	3.8 (4)	C14—C15—C16—C17	0.2 (5)
C1—C2—C3—C4	-2.1 (4)	C15—C16—C17—C18	1.6 (5)
C9—C2—C3—C4	177.2 (3)	C16—C17—C18—C13	-1.3 (5)
C2—C3—C4—C5	0.3 (5)	C14—C13—C18—C17	-0.7 (5)
C2—C3—C4—C8	179.6 (3)	C11—C13—C18—C17	-178.0 (3)
C3—C4—C5—C6	1.4 (5)	N3—N1—N2—C10	-0.7 (3)
C8—C4—C5—C6	-177.9 (3)	N3—N1—N2—C1	178.6 (2)
C4—C5—C6—C1	-1.2 (4)	C11—C10—N2—N1	0.5 (4)
C4—C5—C6—C7	178.0 (3)	C11—C10—N2—C1	-178.8 (3)
C2-C1-C6-C5	-0.7 (4)	C6—C1—N2—N1	119.6 (3)
N2—C1—C6—C5	178.6 (3)	C2-C1-N2-N1	-61.0 (4)
C2—C1—C6—C7	-180.0 (3)	C6-C1-N2-C10	-61.2 (4)
N2—C1—C6—C7	-0.7 (4)	C2-C1-N2-C10	118.1 (3)
N2-C10-C11-N3	0.0 (3)	N2—N1—N3—C11	0.7 (3)
N2-C10-C11-C13	-179.4 (3)	N2—N1—N3—C12	-176.8 (2)
N3—C11—C13—C14	33.1 (5)	C10-C11-N3-N1	-0.5 (3)
C10-C11-C13-C14	-147.6 (3)	C13—C11—N3—N1	179.0 (3)
N3-C11-C13-C18	-149.6 (3)	C10-C11-N3-C12	176.7 (3)
C10-C11-C13-C18	29.7 (5)	C13—C11—N3—C12	-3.9 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10…I1 ⁱ	0.95	3.12	4.049 (3)	168
C12—H12A…I1 ⁱⁱ	0.98	3.20	3.916 (3)	131
C12—H12 <i>B</i> …I1	0.98	3.22	4.172 (3)	163

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*.