data reports

open 👌 access

Crystal structure of 13-phenyl-2,3,4,13tetrahydro-1*H*-indazolo[1,2-*b*]phthalazine-1,6,11-trione

Esma Lamera,^a Saida Benzerka,^b Abdelmalek Bouraiou,^a Sofiane Bouacida,^{a,c}* Hocine Merazig,^a Aissa Chibani,^a Marc Le Borgne^d and Zouhair Bouaziz^d

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale CHEMS, Université des Frères Mentouri, Constantine 25000, Algeria, ^bLaboratoire de Synthèse des Molécules d'Intérêts Biologiques, Université des Frères Mentouri, Constantine 25000, Algeria, ^cDépartement Sciences de la Matière, Université Oum El Bouaghi, 04000, Algeria, and ^dUniversité de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Biomolécules Cancer et Chimiorésistances, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France. *Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 3 December 2015; accepted 6 December 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, $C_{21}H_{16}N_2O_3$, consists of an indazolone moiety, bearing a phenyl group, fused to a phthalazine ring system (r.m.s. deviation = 0.018 Å). The phenyl ring is almost normal to the mean plane of the five-membered ring of the indazolone moiety, making a dihedral angle of 89.64 (7)°. The six-membered ring of the indazolone moiety has an envelope conformation, with the central methylene C atom as the flap. In the crystal, molecules are linked *via* C–H···O hydrogen bonds, forming slabs parallel to the *bc* plane. The slabs are linked *via* C–H··· π and π - π interactions [the shortest intercentroid distance involving rings of pyrazolophthalazine moieties is 3.6430 (8) Å], forming a three-dimensional structure.

Keywords: crystal structure; indazolo; phthalazine-trione; C—H···O hydrogen bonds; π – π interactions.

CCDC reference: 1440831

1. Related literature

For application of phthalazine derivatives see: Mosaddegh & Hassankhani (2011); Hasaninejed *et al.* (2012); Keshipour *et al.* (2012). For the synthesis of this class of compounds, see: Carling *et al.* (2004); Cashman & Ghirmai (2009); Hall *et al.* (1992, 2001); Bouraiou *et al.* (2015); Nomoto *et al.* (1990). For the synthesis of the title compound, see: Bouraiou *et al.* (2015); Khurana & Magoo (2009); Nagarapu *et al.* (2009).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{21}H_{16}N_2O_3 \\ M_r = 344.36 \\ \text{Monoclinic, } P2_1/c \\ a = 8.9028 \ (2) \ \text{\AA} \\ b = 11.4507 \ (3) \ \text{\AA} \\ c = 17.0274 \ (4) \ \text{\AA} \\ \beta = 104.618 \ (1)^\circ \end{array}$

2.2. Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{min} = 0.957, T_{max} = 0.986$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.182$ S = 1.12

4873 reflections

Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K $0.13 \times 0.09 \times 0.05 \text{ mm}$

V = 1679.64 (7) Å³

4873 measured reflections 4873 independent reflections 3617 reflections with $I > 2\sigma(I)$

235 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.6 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C2–C7 ring.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5\cdots O2^{i}$ $C9-H9\cdots O3^{ii}$ $C18-H18\cdots Ca^{3^{iii}}$	0.93 0.98 0.93	2.59 2.54 2.68	3.488 (2) 3.501 (2) 3.552 (2)	163 165 156
Symmetry codes: (i $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.	(-x+1, y)	$z = \frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x + 1, -y$	+1, -z; (iii)

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

Thanks are due to MESRS and DG-RSDT (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et la

Direction Générale de la Recherche – Algérie) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5255).

References

- Bouraiou, A., Bouacida, S., Merazig, H., Chibani, A. & Bouaziz, Z. (2015). *Acta Cryst.* E71, o604–o605.
- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

- Carling, R. W., Moore, K. W., Street, L. J., Wild, D., Isted, C., Leeson, P. D., Thomas, S., O'Connor, D., McKernan, R. M., Quirk, K., Cook, S. M., Atack, J. R., Wafford, K. A., Thompson, S. A., Dawson, G. R., Ferris, P. & Castro, J. L. (2004). J. Med. Chem. 47, 1807–1822.
- Cashman, J. R. & Ghirmai, S. (2009). Bioorg. Med. Chem. 17, 6890-6897.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hall, I. H., Covington, D. W., Wheaton, J. R., Izydore, R. A. & Zhou, X. (2001). *Pharmazie*, **56**, 168–174.
- Hall, I. H., Hall, E. S. & Wong, O. T. (1992). Anticancer Drugs, 3, 55-62.
- Hasaninejed, A., Kazerooni, M. R. & Zare, A. (2012). Catal. Today, 196, 148– 155.
- Keshipour, S., Shojaei, S. & Shaabani, A. (2012). Tetrahedron, 68, 6141-6145.
- Khurana, J. M. & Magoo, D. (2009). Tetrahedron Lett. 50, 7300-7303.
- Mosaddegh, E. & Hassankhani, A. (2011). Tetrahedron Lett. 52, 488-490.
- Nagarapu, L., Bantu, R. & Mereyala, H. B. (2009). J. Heterocycl. Chem. 46, 728–731.
- Nomoto, Y., Obase, H., Takai, H., Teranishi, M., Nakamura, J. & Kubo, K. (1990). *Chem. Pharm. Bull.* **38**, 2179–2183.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2015). E71, o1036–o1037 [https://doi.org/10.1107/S2056989015023452]

Crystal structure of 13-phenyl-2,3,4,13-tetrahydro-1*H*-indazolo[1,2*b*]phthalazine-1,6,11-trione

Esma Lamera, Saida Benzerka, Abdelmalek Bouraiou, Sofiane Bouacida, Hocine Merazig, Aissa Chibani, Marc Le Borgne and Zouhair Bouaziz

S1. Comments

Phthalazine derivatives have been reported to act as anticonvulsants (Carling *et al.* 2004), potential inhibitors of serotonin reuptake (Cashman & Ghirmai, 2009), anti-proliferative agents against different human and murine tumor cells (Hall *et al.*, 1992, 2001) and vasorelaxant agents (Nomoto *et al.* 1990). Therefore, a number of synthetic methods have been developed in recent years to uncover a variety of new reagents for the synthesis of phthalazine derivatives (Mosaddegh & Hassankhani, 2011; Hasaninejed *et al.*, 2012; Keshipour *et al.*, 2012). In previous work, we have reported the synthesis and structure heterocyclic compounds bearing a phthalazine unit (Bouraiou *et al.*, 2015). Herein, we describe the synthesis and crystal structure of the title indazolo phthalazine-trione derivative, resulting from the reaction of phthalhydrazide, cyclohexa-1,3-dione and benzaldehyde in the presence of catalytic amounts of sulfuric acid.

The title compound, Fig. 1, consists of an indazolone moiety, bearing a phenyl group, fused to a phthalazine ring system [r.m.s. deviation = 0.018 Å]. The phenyl ring (C16—C21) is almost normal to the mean plane of the five-membered ring (N1/N2/C9/C10/C15) of the indazolone moiety with a dihedral angle of 89.64 (7)°. The six-membered ring of the indazolone moiety (C10—C15) has an envelope conformation with the central methylene C atom, C13, as the flap. In the crystal, molecules are linked via C—H…O hydrogen bonds forming slabs parallel to the *bc* plane (Table 1 and

Fig. 2). The slabs are linked via C—H··· π (Table 1) and slipped parallel π - π interactions [the shortest inter-centroid distance involves Cg2···Cg3ⁱ = 3.6430 (8) Å; Cg2 and Cg3 are the centroids of rings (N1/N2/C1/C2/C7/C8) and (C2—C7), respectively; inter-planar distance = 3.457 (5); slippage = 1.07 Å; symmetry code: (i) -x+1, -y, -z], forming a three-dimensional structure.

S2. Synthesis and crystallization

The title compound was synthesized in accordance with established methods (Khurana & Magoo, 2009; Bouraiou *et al.*, 2015). Spectroscopic results and physical properties are in agreement with literature reports (Nagarapu *et al.*, 2009). The solid obtained, was recrystallized in a hot CHCl₃/EtOAc/EtOH (1:1:1) mixture giving yellow crystals of the title compound. MS (ES-API): m/z [M+H]⁺ = 345.1; ¹H-NMR δ (ppm) (250 MHz, CDCl₃): 8.35–8.23 (m, 2H), 7.88–7.84 (m, 2H), 7.32–7.30 (m, 5H), 6.46 (s, 1H), 3.63–3.30 (m, 2H), 2.51–2.46 (m, 2H), 2.32–2.22 (m, 2H); ¹³C-NMR δ (ppm) (62.9 MHz, ₃): 192.6, 156.1, 154.3, 152.3, 136.4, 134.6, 133.6, 129.1, 129.0, 128.7, 128.0, 127.8, 127.2, 119.7, 65.0, 37.0, 24.6, 22.3.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located in difference Fourier maps but introduced in calculated positions and refined as riding atoms: C-H = 0.93-0.98 Å with

Figure 1

The molecule structure of the title compound, with atom labelling. Displacement are drawn at the 50% probability level.

Figure 2

A view along the *a* axis of the crystal packing of the title compound, showing the C—H…O hydrogen bonds as dashed lines (see Table 1).

13-Phenyl-2,3,4,13-tetrahydro-1H-indazolo[1,2-b]phthalazine-1,6,11-trione

Crystal data

C₂₁H₁₆N₂O₃ $M_r = 344.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.9028 (2) Å b = 11.4507 (3) Å c = 17.0274 (4) Å $\beta = 104.618$ (1)° V = 1679.64 (7) Å³ Z = 4

Data collection

Bruker APEXII diffractometer Radiation source: Enraf Nonius FR590 Graphite monochromator CCD rotation images, thick slices scans Absorption correction: multi-scan (*SADABS*; Bruker, 2011) $T_{min} = 0.957, T_{max} = 0.986$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.182$	neighbouring sites
<i>S</i> = 1.12	H-atom parameters constrained
4873 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1115P)^2 + 0.0058P]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.6 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 720

 $\theta = 3.0 - 30.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K

Prism, yellow

 $R_{\rm int} = 0$

 $h = -12 \rightarrow 12$

 $k = 0 \rightarrow 16$

 $l = 0 \rightarrow 23$

 $0.13 \times 0.09 \times 0.05 \text{ mm}$

4873 measured reflections 4873 independent reflections

 $\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$

3617 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.362 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4002 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.75069 (15)	0.02395 (11)	0.00764 (7)	0.0373 (3)	
C2	0.68676 (14)	-0.05024 (11)	0.06179 (7)	0.0350 (3)	
C3	0.69309 (16)	-0.17117 (12)	0.05347 (9)	0.0452 (3)	
H3	0.7353	-0.2031	0.0136	0.054*	

a.			0.10.40.5 (1.0)	0.0510(4)
C4	0.63708 (18)	-0.24340 (13)	0.10405 (10)	0.0519 (4)
H4	0.6422	-0.324	0.0986	0.062*
C5	0.57284 (17)	-0.19596 (15)	0.16328 (10)	0.0525 (4)
H5	0.5359	-0.245	0.1977	0.063*
C6	0.56360 (16)	-0.07659 (14)	0.17128 (9)	0.0455 (3)
H6	0.5189	-0.0454	0.2105	0.055*
C7	0.62114 (13)	-0.00234 (12)	0.12069 (7)	0.0359 (3)
C8	0.60888 (14)	0.12553 (12)	0.12975 (7)	0.0369 (3)
C9	0.66558 (13)	0.31891 (11)	0.07410 (7)	0.0332 (3)
H9	0.5574	0.3454	0.0611	0.04*
C10	0.73305 (14)	0.33728 (11)	0.00262 (7)	0.0350 (3)
C11	0.74291 (16)	0.44774 (12)	-0.03792 (8)	0.0425 (3)
C12	0.8090 (2)	0.43883 (17)	-0.11124 (11)	0.0664 (5)
H12A	0.7242	0.4281	-0.1592	0.08*
H12B	0.8599	0.5119	-0.1175	0.08*
C13	0.9230 (3)	0.34114 (17)	-0.10670 (12)	0.0689 (5)
H13A	1.0152	0.358	-0.0639	0.083*
H13B	0.9534	0.3375	-0.1575	0.083*
C14	0.85967 (17)	0.22277 (14)	-0.09042 (8)	0.0464 (3)
H14A	0.7873	0.1942	-0.1392	0.056*
H14B	0.9439	0.167	-0.0747	0.056*
C15	0.77933 (14)	0.23569 (11)	-0.02380 (7)	0.0347 (3)
C16	0.75871 (13)	0.37878 (11)	0.15078 (7)	0.0329 (3)
C17	0.91360 (15)	0.35115 (14)	0.18289 (8)	0.0455 (3)
H17	0.9599	0.2926	0.1593	0.055*
C18	1.00001 (17)	0.41101 (16)	0.25044 (8)	0.0532 (4)
H18	1.1036	0.3916	0.2723	0.064*
C19	0.93283 (19)	0.49868 (14)	0.28486 (8)	0.0504 (4)
H19	0.9917	0.5398	0.3291	0.06*
C20	0.7781 (2)	0.52582 (13)	0.25386 (8)	0.0510 (4)
H20	0.7319	0.5841	0.2778	0.061*
C21	0.69169 (16)	0.46548 (12)	0.18660 (8)	0.0414 (3)
H21	0.5875	0.4839	0.1656	0.05*
N1	0.74174 (12)	0.14291 (9)	0.02082 (6)	0.0351 (2)
N2	0.67235 (12)	0.19043 (10)	0.07981 (6)	0.0355 (2)
01	0.80699 (15)	-0.01280 (10)	-0.04590 (6)	0.0574 (3)
O2	0.54814 (13)	0.17285 (10)	0.17821 (6)	0.0539 (3)
03	0.69339 (14)	0.53847 (10)	-0.01668 (7)	0.0591 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0465 (6)	0.0302 (6)	0.0353 (6)	0.0009 (5)	0.0105 (5)	0.0003 (5)
C2	0.0378 (6)	0.0291 (6)	0.0350 (6)	-0.0002 (5)	0.0031 (4)	0.0034 (4)
C3	0.0509 (7)	0.0333 (7)	0.0476 (7)	0.0004 (6)	0.0055 (6)	0.0010 (5)
C4	0.0562 (8)	0.0319 (7)	0.0630 (9)	-0.0035 (6)	0.0064 (7)	0.0072 (6)
C5	0.0506 (7)	0.0452 (8)	0.0599 (9)	-0.0093 (7)	0.0109 (6)	0.0166 (7)
C6	0.0442 (7)	0.0452 (8)	0.0483 (7)	-0.0045 (6)	0.0139 (5)	0.0077 (6)

supporting information

C7	0.0345 (6)	0.0353 (7)	0.0359 (6)	-0.0030 (5)	0.0049 (4)	0.0035 (5)
C8	0.0389 (6)	0.0371 (7)	0.0362 (6)	-0.0031 (5)	0.0120 (4)	0.0007 (5)
C9	0.0361 (5)	0.0289 (6)	0.0347 (6)	0.0007 (5)	0.0093 (4)	-0.0005 (4)
C10	0.0397 (6)	0.0333 (7)	0.0314 (5)	-0.0019 (5)	0.0079 (4)	0.0008 (4)
C11	0.0483 (7)	0.0347 (7)	0.0437 (7)	-0.0015 (6)	0.0103 (5)	0.0054 (5)
C12	0.0946 (13)	0.0509 (10)	0.0660 (10)	0.0039 (9)	0.0433 (9)	0.0181 (8)
C13	0.0916 (13)	0.0537 (11)	0.0784 (11)	-0.0096 (9)	0.0530 (10)	0.0009 (9)
C14	0.0575 (8)	0.0435 (8)	0.0449 (7)	-0.0030 (7)	0.0254 (6)	-0.0026 (6)
C15	0.0395 (6)	0.0325 (6)	0.0325 (6)	-0.0035 (5)	0.0097 (4)	-0.0003 (5)
C16	0.0388 (6)	0.0304 (6)	0.0307 (5)	-0.0023 (5)	0.0110 (4)	0.0020 (4)
C17	0.0405 (6)	0.0532 (9)	0.0426 (6)	0.0032 (6)	0.0101 (5)	-0.0055 (6)
C18	0.0423 (7)	0.0717 (12)	0.0419 (7)	-0.0076 (7)	0.0037 (5)	0.0002 (7)
C19	0.0636 (9)	0.0497 (8)	0.0348 (6)	-0.0164 (7)	0.0068 (6)	-0.0031 (6)
C20	0.0734 (10)	0.0380 (7)	0.0417 (7)	0.0005 (7)	0.0145 (6)	-0.0052 (6)
C21	0.0491 (7)	0.0354 (7)	0.0399 (6)	0.0057 (6)	0.0115 (5)	0.0002 (5)
N1	0.0445 (5)	0.0300 (5)	0.0341 (5)	-0.0001 (4)	0.0159 (4)	-0.0015 (4)
N2	0.0449 (5)	0.0295 (5)	0.0362 (5)	-0.0021 (4)	0.0178 (4)	-0.0020 (4)
01	0.0895 (8)	0.0395 (6)	0.0544 (6)	0.0026 (6)	0.0389 (6)	-0.0047 (5)
O2	0.0670 (7)	0.0471 (7)	0.0603 (6)	-0.0031 (5)	0.0394 (5)	-0.0030 (5)
O3	0.0773 (8)	0.0356 (6)	0.0685 (7)	0.0087 (5)	0.0262 (6)	0.0081 (5)

Geometric parameters (Å, °)

C1-01	1.2206 (16)	C11—C12	1.512 (2)
C1—N1	1.3861 (16)	C12—C13	1.499 (3)
C1—C2	1.4700 (18)	C12—H12A	0.97
C2—C7	1.3942 (19)	C12—H12B	0.97
С2—С3	1.3945 (19)	C13—C14	1.520 (2)
C3—C4	1.375 (2)	C13—H13A	0.97
С3—Н3	0.93	C13—H13B	0.97
C4—C5	1.389 (3)	C14—C15	1.4932 (19)
C4—H4	0.93	C14—H14A	0.97
С5—С6	1.378 (2)	C14—H14B	0.97
С5—Н5	0.93	C15—N1	1.3951 (16)
С6—С7	1.3964 (18)	C16—C21	1.3775 (18)
С6—Н6	0.93	C16—C17	1.3857 (18)
С7—С8	1.4793 (19)	C17—C18	1.3921 (19)
C8—O2	1.2215 (16)	C17—H17	0.93
C8—N2	1.3554 (16)	C18—C19	1.373 (2)
C9—N2	1.4746 (17)	C18—H18	0.93
C9—C10	1.5019 (17)	C19—C20	1.381 (2)
C9—C16	1.5217 (16)	C19—H19	0.93
С9—Н9	0.98	C20—C21	1.3915 (19)
C10—C15	1.3487 (18)	C20—H20	0.93
C10-C11	1.4541 (18)	C21—H21	0.93
C11—O3	1.2187 (18)	N1—N2	1.4142 (14)
01—C1—N1	120.73 (12)	H12A—C12—H12B	107.6

01—C1—C2	124.48 (13)	C12—C13—C14	113.43 (16)
N1-C1-C2	114.78 (11)	C12—C13—H13A	108.9
C7—C2—C3	119.92 (13)	C14—C13—H13A	108.9
C7—C2—C1	121.51 (12)	C12—C13—H13B	108.9
C3—C2—C1	118.57 (13)	C14—C13—H13B	108.9
C4—C3—C2	120.21 (15)	H13A—C13—H13B	107.7
C4—C3—H3	119.9	C15—C14—C13	108.72 (12)
С2—С3—Н3	119.9	C15—C14—H14A	109.9
C3—C4—C5	120.01 (15)	C13—C14—H14A	109.9
C3—C4—H4	120	C15—C14—H14B	109.9
C5—C4—H4	120	C13—C14—H14B	109.9
C6—C5—C4	120.36 (14)	H14A—C14—H14B	108.3
С6—С5—Н5	119.8	C10-C15-N1	109.86 (11)
С4—С5—Н5	119.8	C10-C15-C14	125.73 (12)
C5—C6—C7	120.17 (15)	N1-C15-C14	124.41 (12)
С5—С6—Н6	119.9	C21—C16—C17	119.28 (12)
С7—С6—Н6	119.9	C21—C16—C9	120.10 (11)
C2—C7—C6	119.32 (13)	C17—C16—C9	120.54 (11)
С2—С7—С8	121.32 (11)	C16—C17—C18	120.07 (14)
С6—С7—С8	119.35 (12)	C16—C17—H17	120
O2—C8—N2	120.42 (13)	C18—C17—H17	120
O2—C8—C7	124.50 (12)	C19—C18—C17	120.21 (13)
N2	115.08 (11)	C19—C18—H18	119.9
N2-C9-C10	100.09 (10)	C17—C18—H18	119.9
N2—C9—C16	112.86 (9)	C18—C19—C20	120.09 (13)
C10—C9—C16	112.92 (10)	C18—C19—H19	120
N2—C9—H9	110.2	С20—С19—Н19	120
С10—С9—Н9	110.2	C19—C20—C21	119.60 (14)
С16—С9—Н9	110.2	C19—C20—H20	120.2
C15—C10—C11	122.13 (12)	C21—C20—H20	120.2
С15—С10—С9	111.58 (11)	C16—C21—C20	120.74 (13)
C11—C10—C9	126.22 (12)	C16—C21—H21	119.6
O3—C11—C10	122.07 (13)	C20—C21—H21	119.6
O3—C11—C12	123.22 (13)	C1—N1—C15	128.95 (11)
C10-C11-C12	114.58 (13)	C1—N1—N2	123.12 (11)
C13—C12—C11	114.02 (14)	C15—N1—N2	107.56 (10)
C13—C12—H12A	108.7	C8—N2—N1	124.10 (11)
C11—C12—H12A	108.7	C8—N2—C9	124.87 (11)
C13—C12—H12B	108.7	N1—N2—C9	110.79 (9)
C11—C12—H12B	108.7		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C2–C7 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…O2 ⁱ	0.93	2.59	3.488 (2)	163

			supporting information		
С9—Н9…ОЗ ^{іі}	0.98	2.54	3.501 (2)	165	
С18—Н18…Сд3ііі	0.93	2.68	3.552 (2)	156	

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+2, *y*+1/2, -*z*+1/2.