



open 👌 access

#### $C_9H_9N$ M = 1

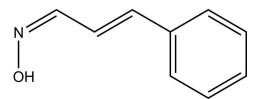
# Crystal structure of (1*Z*,2*E*)-cinnamaldehyde oxime

## Bernhard Bugenhagen,<sup>a</sup> Nuha Al Soom,<sup>b</sup> Yosef Al Jasem<sup>c</sup> and Thies Thiemann<sup>b</sup>\*

<sup>a</sup>Institute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, <sup>b</sup>Department of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and <sup>c</sup>Department of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates. \*Correspondence e-mail: thies@uaeu.ac.ae

Received 9 December 2015; accepted 11 December 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland


The title compound,  $C_9H_9NO$ , crystallized with two independent molecules (*A* and *B*) in the asymmetric unit. The conformation of the two molecules differs slightly with the phenyl ring in molecule *A*, forming a dihedral angle of 15.38 (12)° with the oxime group (O–N=C), compared to the corresponding angle of 26.29 (11)° in molecule *B*. In the crystal, the *A* and *B* molecules are linked head-to-head by O–H···N hydrogen bonds, forming -A-B-A-B- zigzag chains along [010]. Within the chains and between neighbouring chains there are C–H··· $\pi$  interactions present, forming a three-dimensional structure.

**Keywords:** crystal structure; cinnamaldehyde; oxime; conformers; O— $H \cdots N$  hydrogen bonding; C— $H \cdots \pi$  interactions.

CCDC reference: 1441984

#### 1. Related literature

For the other methods of preparation of the title compound, see: Mirjafari *et al.* (2011); Kitahara *et al.* (2008). For the uses of a such compound, see: Narsaiah & Nagaiah (2004); Jasem *et al.* (2014); Garton *et al.* (2010); Patil *et al.* (2012); Kaur *et al.* (2006); Boruah & Konwar (2012).



## 2. Experimental

### 2.1. Crystal data

| C <sub>9</sub> H <sub>9</sub> NO |
|----------------------------------|
| $M_r = 147.17$                   |
| Orthorhombic, Pbca               |
| $a = 10.231 (5) \text{\AA}$      |
| b = 7.584 (3) Å                  |
| c = 41.816 (18) Å                |
|                                  |

#### 2.2. Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
T<sub>min</sub> = 0.666, T<sub>max</sub> = 0.746
```

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$  $wR(F^2) = 0.113$ S = 1.103944 reflections 207 parameters Z = 16Mo K $\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K $0.2 \times 0.2 \times 0.1 \text{ mm}$ 

V = 3245 (2) Å<sup>3</sup>

34431 measured reflections 3944 independent reflections 3724 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.022$ 

| H atoms treated by a mixture of                            |
|------------------------------------------------------------|
| independent and constrained                                |
| refinement                                                 |
| $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ |

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C1A-C6A and C1B-C6B, respectively.

| $D - H \cdot \cdot \cdot A$  | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O1A - H1A \cdots N1B^{i}$   | 0.91 (2) | 1.85 (2)                | 2.755 (2)    | 174 (2)                              |
| $O1B-H1B\cdots N1A^{ii}$     | 0.92(2)  | 1.95 (2)                | 2.853 (2)    | 170 (2)                              |
| $C2A - H2A \cdots Cg1^{iii}$ | 0.95     | 2.70                    | 3.563 (2)    | 151                                  |
| $C5B-H5B\cdots Cg2^{iv}$     | 0.95     | 2.80                    | 3.508 (2)    | 132                                  |
| $C9B - H9B \cdots Cg2^{v}$   | 0.95     | 2.82                    | 3.717 (2)    | 159                                  |

Symmetry codes: (i)  $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2};$  (ii)  $x - \frac{1}{2}, y, -z + \frac{3}{2};$  (iii)  $-x + \frac{3}{2}, y - \frac{1}{2}, z;$  (iv)  $-x + \frac{1}{2}, y - \frac{1}{2}, z;$  (v)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$ .

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5260).

#### References

- Boruah, M. & Konwar, D. (2012). Synth. Commun. 42, 3261-3268.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Garton, N., Bailey, N., Bamford, M., Demont, E., Farre-Gutierrez, I., Hutley, G., Bravi, G. & Pickering, P. (2010). *Bioorg. Med. Chem. Lett.* 20, 1049–1054.
- Jasem, Y. A., Barkhad, M., Khazali, M. A., Butt, H. P., El-Khwass, N. A., Alazani, M., Hindawi, B., & Thiemann, T. (2014). J. Chem. Res. (S), 38, 80– 84

Kaur, J., Singh, B. & Singal, K. K. (2006). Chem. Heterocycl. Compd. 42, 818–822.

Kitahara, K., Toma, T., Shimokawa, J. & Fukuyama, T. (2008). Org. Lett. 10, 2259–2261.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Mirjafari, A., Mobarrez, N., O'Brien, R. A., Davis, J. H. Jr & Noei, J. (2011). C. R. Chim. 14, 1065–1070.

Narsaiah, A. V. & Nagaiah, K. (2004). Adv. Synth. Catal. 346, 1271-1274.

Patil, U. B., Kumthekar, K. R. & Nagarkar, J. M. (2012). *Tetrahedron Lett.* 53, 3706–3709.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

*Acta Cryst.* (2015). E71, o1063–o1064 [https://doi.org/10.1107/S2056989015023853]

## Crystal structure of (1*Z*,2*E*)-cinnamaldehyde oxime

## Bernhard Bugenhagen, Nuha Al Soom, Yosef Al Jasem and Thies Thiemann

### **S1. Structural commentary**

Many uses of cinnamaldehyde oxime have been reported, such as the conversion to cinnamonitrile (Narsaiah & Nagaiah 2004; Jasem *et al.* 2014), conversion to cinnamide (Garton *et al.* 2010), and as a starting material for *N*-heterocycles: tetrazole (Patil *et al.* 2012), isoxazoline (Kaur *et al.* 2006), and izoxazoline (Boruah & Konwar 2012).

The title compound, crystallized with two independent molecules A and B in the asymmetric unit (Fig. 1). The aromatic ring in molecule A (C1A—C6A) forms a dihedral angle of 15.38 (12)° with the oxime group (C9A/N1A/O1A), compared to a corresponding angle of 26.29 (11)° in molecule B. This conformational difference between molecules A and B is due to bond rotation, not only about bonds (C1—C7) and (C8—C9) but also of that of (C7—C8), where in molecule A the torsion angle C1—C7—C8—C9 is -174.32 (11)° while in molecule B the corresponding angle is -179.24 (11)°. The bond lengths, C7—C8, of molecules A and B are similar.

In the crystal, the A molecules align opposite B molecules, and they are linked via O—H···N hydrogen bonds forming -A—B—A—B- zigzag chains propagating along the *b* axis (Table 1 and Fig. 2). Adjacent molecules of the same type are tilted against each other, with the aromatic rings (C1—C6) being inclined to one another by 77.64 (2) and 59.04 (2)° for molecules A and B, respectively. In addition, adjacent molecules of the same type exhibit weak C—H.. $\pi$  (C2A— H2A···Cg1 and C5B—H5B···Cg2) contacts along the *b* axis direction (Table 1 and Fig. 2). Along the *c* axis, inversion related dimers stack with an offset of 11.47 (2) Å and connected via a weak C—H.. $\pi$  (C9B—H9B···Cg2) contact (Fig. 3 and Table 1).

### S2. Synthesis and crystallization

To a solution of cinnamaldehyde (1.32 g, 10 mmol) in ethanol (20 ml) was added drop wise a solution of hydroxylamine hydrochloride (2.74 g, 39.7 mmol) in water (7.5 ml), and the resulting mixture was stirred at 60 °C for 3 h. Thereafter, about half of the solvent was removed *in vacuo*, and the remaining reaction mixture was poured into water (50 ml) and extracted with CHCl<sub>3</sub> (3 × 20 ml). The combined organic layer was dried over anhydrous MgSO<sub>4</sub> and concentrated *in vacuo*. The residue was subjected to column chromatography (eluant: CH<sub>2</sub>Cl<sub>2</sub>) to yield the title compound as colourless needles (yield: 956 mg, 65%; m.p. 348 – 349 K). IR ( $v_{max}$ , KBr, cm<sup>-1</sup>) 3356, 1630, 1444, 1291, 987, 976, 955, 747, 691; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta_{H}$ ) 6.84 (1H, d, <sup>3</sup>*J* = 5.6 Hz), 7.28 – 7.55 (6H, m), 7.94 (1H, t, <sup>3</sup>*J* = 4.8 Hz);  $\delta_{C}$  (100.5 MHz, CDCl<sub>3</sub>) 121.5 (CH), 127.0 (2C, CH), 128.8 (2C, CH), 129.0 (CH), 135.7 (C<sub>quat</sub>), 139.2 (CH), 152.0 (CH). Crystals for X-ray analysis were grown from a solution in CH<sub>2</sub>Cl<sub>2</sub>/hexane (1:1, *v*/*v*) by slow evaporation of the solvents.

### **S3. Refinement**

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically (C—H = 0.95 Å) and allowed to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

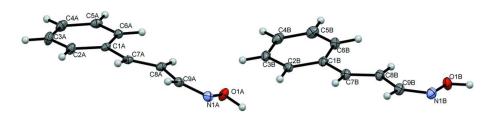
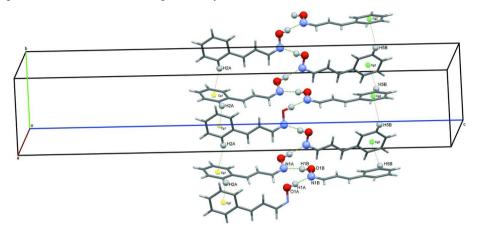




Figure 1

A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.



## Figure 2

A partial view along the *a* axis of the crystal packing of the title compound. The O—H…N hydrogen bonds, and the C— H… $\pi$  contacts between adjacent molecules are shown as dashed lines (see Table 1).

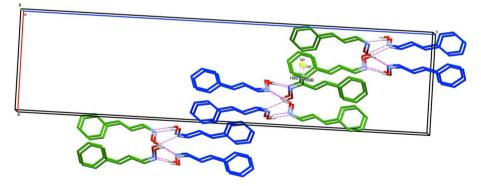



Figure 3

A view along the *b* axis of three stacked molecular motifs made of A (blue) and B (green) interconnected molecules forming chains along the *b* axis. The hydrogen bonds and C—H··· $\pi$  interactions are shown as dashed lines (see Table 1).

## (1*Z*,2*E*)-3-phenylprop-2-enal oxime

| Crystal data                     |                                             |
|----------------------------------|---------------------------------------------|
| C <sub>9</sub> H <sub>9</sub> NO | c = 41.816 (18)  Å                          |
| $M_r = 147.17$                   | $V = 3245 (2) Å^3$                          |
| Orthorhombic, Pbca               | Z = 16                                      |
| a = 10.231 (5)  Å                | F(000) = 1248                               |
| b = 7.584 (3) Å                  | $D_{\rm x} = 1.205 {\rm ~Mg} {\rm ~m}^{-3}$ |

Melting point: 348 K Mo *Ka* radiation,  $\lambda = 0.71073$  Å Cell parameters from 9623 reflections  $\theta = 2.2-28.4^{\circ}$ 

## Data collection

| Duiu conection                         |                                                                     |
|----------------------------------------|---------------------------------------------------------------------|
| Bruker APEXII CCD                      | 3944 independent reflections                                        |
| diffractometer                         | 3724 reflections with $I > 2\sigma(I)$                              |
| $\varphi$ and $\omega$ scans           | $R_{ m int} = 0.022$                                                |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 28.6^{\circ}, \ \theta_{\rm min} = 1.0^{\circ}$ |
| (SADABS; Bruker, 2013)                 | $h = -13 \rightarrow 13$                                            |
| $T_{\min} = 0.666, \ T_{\max} = 0.746$ | $k = -10 \rightarrow 10$                                            |
| 34431 measured reflections             | $l = -55 \rightarrow 53$                                            |
|                                        |                                                                     |

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                              |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent                |
| $R[F^2 > 2\sigma(F^2)] = 0.043$ | and constrained refinement                                 |
| $wR(F^2) = 0.113$               | $w = 1/[\sigma^2(F_o^2) + (0.0445P)^2 + 2.1543P]$          |
| S = 1.10                        | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 3944 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 207 parameters                  | $\Delta  ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$      |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\mu = 0.08 \text{ mm}^{-1}$ 

Block, colourless

 $0.2 \times 0.2 \times 0.1 \text{ mm}$ 

T = 100 K

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | X            | У             | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|-------------|-----------------------------|
| O1B | 0.27939 (9)  | 0.14918 (13)  | 0.83349 (2) | 0.0214 (2)                  |
| O1A | 0.57897 (9)  | 0.36622 (12)  | 0.60376 (2) | 0.0210 (2)                  |
| N1A | 0.65418 (10) | 0.21056 (14)  | 0.60658 (2) | 0.0172 (2)                  |
| N1B | 0.37727 (11) | 0.02042 (14)  | 0.83755 (2) | 0.0189 (2)                  |
| C9A | 0.66426 (11) | 0.12592 (16)  | 0.57973 (3) | 0.0162 (2)                  |
| H9A | 0.7096       | 0.0167        | 0.5804      | 0.019*                      |
| C7A | 0.65649 (11) | 0.10018 (15)  | 0.52143 (3) | 0.0146 (2)                  |
| H7A | 0.7135       | 0.0024        | 0.5242      | 0.017*                      |
| C1A | 0.62383 (11) | 0.14952 (15)  | 0.48805 (3) | 0.0137 (2)                  |
| C6A | 0.52038 (11) | 0.26618 (15)  | 0.48030(3)  | 0.0152 (2)                  |
| H6A | 0.4665       | 0.3124        | 0.4968      | 0.018*                      |
| C2B | 0.50012 (12) | -0.04774 (16) | 0.69394 (3) | 0.0171 (2)                  |
| H2B | 0.5770       | -0.1114       | 0.6993      | 0.021*                      |
| C5A | 0.49730 (12) | 0.31367 (16)  | 0.44838 (3) | 0.0182 (2)                  |
| H5A | 0.4278       | 0.3920        | 0.4434      | 0.022*                      |
| C7B | 0.44406 (12) | -0.04211 (15) | 0.75192 (3) | 0.0167 (2)                  |
| H7B | 0.5154       | -0.1202       | 0.7552      | 0.020*                      |
| C2A | 0.70079 (12) | 0.08011 (17)  | 0.46297 (3) | 0.0189 (2)                  |
|     |              |               |             |                             |

| H2A | 0.7689       | -0.0008       | 0.4678      | 0.023*     |  |
|-----|--------------|---------------|-------------|------------|--|
| C8A | 0.61346 (11) | 0.18013 (15)  | 0.54843 (3) | 0.0152 (2) |  |
| H8A | 0.5502       | 0.2716        | 0.5471      | 0.018*     |  |
| C1B | 0.41218 (11) | 0.00325 (15)  | 0.71837 (3) | 0.0153 (2) |  |
| C3B | 0.47534 (13) | -0.00548 (17) | 0.66187 (3) | 0.0202 (3) |  |
| H3B | 0.5352       | -0.0408       | 0.6457      | 0.024*     |  |
| C5B | 0.27317 (13) | 0.13917 (17)  | 0.67760 (3) | 0.0224 (3) |  |
| H5B | 0.1963       | 0.2023        | 0.6720      | 0.027*     |  |
| C6B | 0.29760 (12) | 0.09644 (16)  | 0.70966 (3) | 0.0188 (2) |  |
| H6B | 0.2368       | 0.1303        | 0.7257      | 0.023*     |  |
| C4B | 0.36242 (14) | 0.08882 (17)  | 0.65358 (3) | 0.0228 (3) |  |
| H4B | 0.3461       | 0.1186        | 0.6319      | 0.027*     |  |
| C8B | 0.38138 (12) | 0.01692 (16)  | 0.77854 (3) | 0.0170 (2) |  |
| H8B | 0.3088       | 0.0942        | 0.7763      | 0.020*     |  |
| C9B | 0.42381 (13) | -0.03653 (16) | 0.81057 (3) | 0.0191 (2) |  |
| H9B | 0.4921       | -0.1212       | 0.8117      | 0.023*     |  |
| C4A | 0.57625 (13) | 0.24623 (18)  | 0.42372 (3) | 0.0220 (3) |  |
| H4A | 0.5607       | 0.2799        | 0.4022      | 0.026*     |  |
| C3A | 0.67797 (14) | 0.12902 (18)  | 0.43106 (3) | 0.0235 (3) |  |
| H3A | 0.7314       | 0.0828        | 0.4145      | 0.028*     |  |
| H1B | 0.248 (2)    | 0.163 (2)     | 0.8539 (4)  | 0.039 (5)* |  |
| H1A | 0.588 (2)    | 0.415 (3)     | 0.6235 (5)  | 0.048 (6)* |  |
|     |              |               |             |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|-------------|-------------|-------------|
| O1B | 0.0216 (4) | 0.0283 (5) | 0.0144 (4) | 0.0041 (4)  | 0.0037 (3)  | 0.0011 (3)  |
| O1A | 0.0301 (5) | 0.0197 (4) | 0.0131 (4) | 0.0029 (4)  | -0.0024 (3) | -0.0010 (3) |
| N1A | 0.0181 (5) | 0.0191 (5) | 0.0144 (5) | -0.0022 (4) | -0.0008(4)  | 0.0040 (4)  |
| N1B | 0.0237 (5) | 0.0183 (5) | 0.0146 (5) | -0.0013 (4) | -0.0001 (4) | 0.0023 (4)  |
| C9A | 0.0169 (5) | 0.0174 (5) | 0.0141 (5) | -0.0026 (4) | -0.0012 (4) | 0.0033 (4)  |
| C7A | 0.0143 (5) | 0.0136 (5) | 0.0159 (5) | -0.0011 (4) | -0.0030 (4) | 0.0012 (4)  |
| C1A | 0.0158 (5) | 0.0118 (5) | 0.0134 (5) | -0.0026 (4) | -0.0024 (4) | -0.0012 (4) |
| C6A | 0.0148 (5) | 0.0147 (5) | 0.0160 (5) | -0.0010 (4) | -0.0008(4)  | -0.0011 (4) |
| C2B | 0.0167 (5) | 0.0167 (5) | 0.0178 (5) | -0.0018 (4) | 0.0025 (4)  | -0.0009 (4) |
| C5A | 0.0179 (5) | 0.0171 (5) | 0.0195 (6) | -0.0008(4)  | -0.0054 (4) | 0.0022 (4)  |
| C7B | 0.0196 (5) | 0.0142 (5) | 0.0164 (5) | 0.0014 (4)  | 0.0010 (4)  | 0.0006 (4)  |
| C2A | 0.0206 (6) | 0.0189 (6) | 0.0172 (6) | 0.0051 (5)  | -0.0019 (4) | -0.0028 (4) |
| C8A | 0.0164 (5) | 0.0151 (5) | 0.0141 (5) | -0.0020 (4) | -0.0023 (4) | 0.0015 (4)  |
| C1B | 0.0189 (5) | 0.0125 (5) | 0.0144 (5) | -0.0018 (4) | 0.0019 (4)  | -0.0005 (4) |
| C3B | 0.0254 (6) | 0.0203 (6) | 0.0149 (5) | -0.0065 (5) | 0.0053 (5)  | -0.0020 (4) |
| C5B | 0.0265 (7) | 0.0189 (6) | 0.0218 (6) | 0.0021 (5)  | -0.0048 (5) | 0.0013 (5)  |
| C6B | 0.0211 (6) | 0.0179 (6) | 0.0175 (6) | 0.0020 (5)  | 0.0019 (4)  | -0.0010 (4) |
| C4B | 0.0324 (7) | 0.0207 (6) | 0.0152 (5) | -0.0065 (5) | -0.0032(5)  | 0.0023 (5)  |
| C8B | 0.0206 (5) | 0.0157 (5) | 0.0146 (5) | -0.0005 (4) | 0.0015 (4)  | 0.0009 (4)  |
| C9B | 0.0239 (6) | 0.0171 (6) | 0.0162 (5) | 0.0001 (5)  | 0.0007 (4)  | 0.0022 (4)  |
| C4A | 0.0290 (6) | 0.0236 (6) | 0.0133 (5) | -0.0014 (5) | -0.0052 (5) | 0.0011 (5)  |
| C3A | 0.0299 (7) | 0.0270 (7) | 0.0137 (5) | 0.0033 (5)  | 0.0015 (5)  | -0.0048 (5) |

Geometric parameters (Å, °)

|             |             |             | 0.0500      |
|-------------|-------------|-------------|-------------|
| C1A—C2A     | 1.4133 (17) | С6А—Н6А     | 0.9500      |
| C1A—C6A     | 1.4171 (16) | C6B—H6B     | 0.9500      |
| C1B—C6B     | 1.4166 (17) | C7A—C8A     | 1.3548 (17) |
| C2A—C3A     | 1.4043 (18) | C7A—C1A     | 1.4834 (16) |
| C2A—H2A     | 0.9500      | C7A—H7A     | 0.9500      |
| C2B—C3B     | 1.4020 (17) | C7B—C8B     | 1.3606 (17) |
| C2B—C1B     | 1.4152 (16) | C7B—C1B     | 1.4806 (17) |
| C2B—H2B     | 0.9500      | C7B—H7B     | 0.9500      |
| C3A—H3A     | 0.9500      | C8A—H8A     | 0.9500      |
| C3B—C4B     | 1.402 (2)   | C8B—C9B     | 1.4649 (17) |
| C3B—H3B     | 0.9500      | C8B—H8B     | 0.9500      |
| C4A—C3A     | 1.4027 (19) | C9A—C8A     | 1.4671 (16) |
| C4A—H4A     | 0.9500      | C9A—H9A     | 0.9500      |
| C4B—H4B     | 0.9500      | C9B—H9B     | 0.9500      |
| C5A—C4A     | 1.4063 (19) | N1A—C9A     | 1.2977 (16) |
| C5A—H5A     | 0.9500      | N1B—C9B     | 1.2985 (16) |
| C5B—C4B     | 1.4100 (19) | OIA—HIA     | 0.91 (2)    |
| C5B—C6B     | 1.4017 (18) | OIA—NIA     | 1.4141 (14) |
| C5B—H5B     | 0.9500      | O1B—H1B     | 0.917 (19)  |
| C6A—C5A     | 1.4026 (17) | O1B—N1B     | 1.4090 (14) |
| C1A—C2A—H2A | 119.5       | C5B—C4B—H4B | 120.1       |
| С1А—С6А—Н6А | 119.9       | C5B—C6B—H6B | 119.7       |
| C1A—C7A—H7A | 116.6       | C5B—C6B—C1B | 120.60 (11) |
| C1B—C6B—H6B | 119.7       | C6A—C5A—C4A | 120.52 (11) |
| C1B—C7B—H7B | 116.7       | C6A—C5A—H5A | 119.7       |
| C1B—C2B—H2B | 119.6       | C6A—C1A—C7A | 122.75 (10) |
| С2А—С3А—НЗА | 120.0       | C6B—C5B—C4B | 120.20 (12) |
| C2A—C1A—C6A | 118.62 (11) | C6B—C5B—H5B | 119.9       |
| C2A—C1A—C7A | 118.62 (11) | C6B—C1B—C7B | 122.82 (10) |
| C2B—C3B—C4B | 120.13 (11) | C7A—C8A—H8A | 119.9       |
| С2В—С3В—Н3В | 119.9       | C7A—C8A—C9A | 120.18 (11) |
| C2B—C1B—C6B | 118.47 (11) | C7B—C8B—C9B | 121.15 (12) |
| C2B—C1B—C7B | 118.71 (11) | C7B—C8B—H8B | 119.4       |
| СЗА—С4А—Н4А | 120.1       | C8A—C7A—C1A | 126.72 (11) |
| C3A—C4A—C5A | 119.75 (11) | C8A—C7A—H7A | 116.6       |
| C3A—C2A—H2A | 119.5       | С8А—С9А—Н9А | 116.4       |
| C3A—C2A—C1A | 120.94 (11) | C8B—C9B—H9B | 116.8       |
| C3B—C4B—H4B | 120.1       | C8B—C7B—C1B | 126.51 (11) |
| C3B—C4B—C5B | 119.72 (12) | C8B—C7B—H7B | 116.7       |
| C3B—C2B—C1B | 120.87 (12) | C9A—C8A—H8A | 119.9       |
| C3B—C2B—H2B | 119.6       | C9A—N1A—O1A | 112.58 (9)  |
| С4А—С3А—Н3А | 120.0       | C9B—C8B—H8B | 119.4       |
| C4A—C3A—C2A | 119.91 (11) | C9B—N1B—O1B | 112.73 (10) |
| С4А—С5А—Н5А | 119.7       | N1A—C9A—C8A | 127.25 (11) |
| C4B—C5B—H5B | 119.9       | N1A—C9A—H9A | 116.4       |
|             |             |             |             |

| C4B—C3B—H3B     | 119.9        | N1A—O1A—H1A     | 102.2 (13)   |
|-----------------|--------------|-----------------|--------------|
| C5A—C4A—H4A     | 120.1        | N1B—C9B—H9B     | 116.8        |
| С5А—С6А—Н6А     | 119.9        | N1B—C9B—C8B     | 126.41 (12)  |
| C5A—C6A—C1A     | 120.24 (11)  | N1B—O1B—H1B     | 102.2 (12)   |
|                 |              |                 |              |
| C1A—C2A—C3A—C4A | -1.0(2)      | C6A—C1A—C2A—C3A | 1.73 (18)    |
| C1A—C6A—C5A—C4A | 0.04 (18)    | C6B—C5B—C4B—C3B | 0.50 (19)    |
| C1A—C7A—C8A—C9A | -174.32 (11) | C7A—C1A—C2A—C3A | -177.00 (11) |
| C1B—C7B—C8B—C9B | -179.24 (11) | C7A—C1A—C6A—C5A | 177.43 (11)  |
| C1B—C2B—C3B—C4B | 0.13 (18)    | C7B—C8B—C9B—N1B | 175.07 (12)  |
| C2A—C1A—C6A—C5A | -1.24 (17)   | C7B—C1B—C6B—C5B | 178.75 (12)  |
| C2B—C3B—C4B—C5B | -0.73 (19)   | C8A—C7A—C1A—C2A | 165.01 (12)  |
| C2B—C1B—C6B—C5B | -0.92 (18)   | C8A—C7A—C1A—C6A | -13.66 (18)  |
| C3B—C2B—C1B—C6B | 0.69 (18)    | C8B—C7B—C1B—C6B | -9.56 (19)   |
| C3B—C2B—C1B—C7B | -179.00 (11) | C8B—C7B—C1B—C2B | 170.11 (12)  |
| C4B—C5B—C6B—C1B | 0.34 (19)    | N1A—C9A—C8A—C7A | 164.78 (12)  |
| C5A—C4A—C3A—C2A | -0.2 (2)     | O1A—N1A—C9A—C8A | 3.45 (17)    |
| C6A—C5A—C4A—C3A | 0.71 (19)    | O1B—N1B—C9B—C8B | -1.80 (18)   |
|                 |              |                 |              |

## Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1A-C6A and C1B-C6B, respectively.

| <i>D</i> —Н | $H \cdots A$                         | $D \cdots A$                                                                                                          | D—H···A                                                                                                                                                                                       |
|-------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.91 (2)    | 1.85 (2)                             | 2.755 (2)                                                                                                             | 174 (2)                                                                                                                                                                                       |
| 0.92 (2)    | 1.95 (2)                             | 2.853 (2)                                                                                                             | 170 (2)                                                                                                                                                                                       |
| 0.95        | 2.70                                 | 3.563 (2)                                                                                                             | 151                                                                                                                                                                                           |
| 0.95        | 2.80                                 | 3.508 (2)                                                                                                             | 132                                                                                                                                                                                           |
| 0.95        | 2.82                                 | 3.717 (2)                                                                                                             | 159                                                                                                                                                                                           |
|             | 0.91 (2)<br>0.92 (2)<br>0.95<br>0.95 | 0.91 (2)         1.85 (2)           0.92 (2)         1.95 (2)           0.95         2.70           0.95         2.80 | 0.91 (2)         1.85 (2)         2.755 (2)           0.92 (2)         1.95 (2)         2.853 (2)           0.95         2.70         3.563 (2)           0.95         2.80         3.508 (2) |

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x-1/2, y, -z+3/2; (iii) -x+3/2, y-1/2, z; (iv) -x+1/2, y-1/2, z; (v) -x+1, y-1/2, -z+3/2.