

OPEN 🗟 ACCESS

Crystal structure of 4-(4-methoxyphenoxy)benzaldehyde

Andreas Schäfer, Ljuba Iovkova-Berends, Stefan Gilke, Paul Kossmann, Hans Preut* and Martin Hiersemann

Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany. *Correspondence e-mail: hans.preut@tu-dortmund.de

Received 25 November 2015; accepted 26 November 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

The title compound, $C_{14}H_{12}O_3$, was synthesized *via* the nucleophilic addition of 4-methoxyphenol to 4-fluorobenzaldehyde. The dihedral angle between the least-squares planes of the benzene rings is 71.52 (3)° and the C–O–C angle at the central O atom is 118.82 (8)°. In the crystal, weak C–H···O hydrogen bonds link the molecules to generate supramolecular layers in the *bc* plane. The layers are linked by weak C–H··· π interactions.

Keywords: crystal structure; nucleophilic aromatic substitution; benzaldehyde.

CCDC reference: 1439095

1. Related literature

For the synthesis of 4-(4-methoxyphenoxy)benzaldehyde in an undergraduate laboratory course, see: Taber & Brannick (2015). For the synthesis of 4-aryloxybenzaldehydes and acetophenones, see: Yeager & Schissel (1991).

2. Experimental

2.1. Crystal data C₁₄H₁₂O₃

 $M_r = 228.24$

Monoclinic, $P2_1/c$ a = 12.1297 (7) Å b = 7.6581 (4) Å c = 12.3577 (7) Å $\beta = 103.769$ (6)° V = 1114.92 (11) Å³

2.2. Data collection

Oxford Diffraction Xcalibur2 CCD
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffrac-
tion, 2008)
$T_{\min} = 0.808, T_{\max} = 1.000$

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.040$	155 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
2967 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.56 \times 0.40 \times 0.30 \text{ mm}$

10049 measured reflections

2967 independent reflections

2551 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^-$

T = 173 K

 $R_{\rm int} = 0.023$

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2-C7 and C8-C13 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13A\cdotsO1^{i}$	0.95	2.58	3.5129 (14)	167
$C7-H7A\cdots O1^{ii}$	0.95	2.56	3.2500 (14)	130
$C1 - H1A \cdots Cg1^{iii}$	0.95	2.73	3.5453 (12)	145
$C10-H10A\cdots Cg2^{iv}$	0.95	2.88	3.7465 (12)	152
Symmetry codes: $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2};$ (iv	(i) $-x + 2$ (i) $-x + 1, y + 1$	$, y - \frac{1}{2}, -z + \frac{1}{2};$ $\frac{1}{2}, -z - \frac{1}{2}.$	(ii) $x, -y +$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2008); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *SHELXP2014* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL2013* and *PLATON* (Spek, 2009).

Acknowledgements

The TU Dortmund is greatefully acknowledged for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5411).

References

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Taber, D. F. & Brannick, S. J. (2015). J. Chem. Educ. 92, 1261–1262.
Yeager, G. W. & Schissel, D. N. (1991). Synthesis, pp. 63–68.

supporting information

Acta Cryst. (2015). E71, o1021 [https://doi.org/10.1107/S2056989015022707]

Crystal structure of 4-(4-methoxyphenoxy)benzaldehyde

Andreas Schäfer, Ljuba Iovkova-Berends, Stefan Gilke, Paul Kossmann, Hans Preut and Martin Hiersemann

S1. Comment

As part of an evaluation of single step experiments for an undergraduate laboratory course, we came across a literature protocol that describes the preparation of crystalline 4-aryloxybenzaldehyde by nucleophilic aromatic substitution (Taber & Brannick, 2015). The reaction of 4-fluorobenzaldehyde (II) with 4-methoxyphenol (III) in the presence of potassium carbonate in dimethyl sulfoxide provided 4-(4-methoxyphenoxy)benzaldehyde (I) as large pale yellow crystals. The recrystallization of a small amount of (I) from *n*-heptane provided clear colourless crystals, suitable for X-ray analysis. In our hands, the literature protocol failed to deliver precipitated crude product upon dilution of the reaction mixture with water and subsequent drying on filter paper. Our modified protocol is characterized by a general aqueous work-up procedure, including extraction with brine for removal of dimethyl sulfoxide.

S2. Experimental

In a glass test tube (160x16 mm) 4-fluorobenzaldehyde (II) (C_7H_3FO , M = 124.11 g/mol, 250 mg, 2.01 mmol, 1 eq), 4methoxyphenol (III) ($C_7H_8O_2$, M = 124.14 g/mol, 250 mg, 2.01 mmol, 1 eq) and potassium carbonate (K_2CO_3 , M = 124.14 g/mol, 250 mg, 2.01 mmol, 1 eq) 138.20 g/mol, 550 mg, 3.98 mmol, 2 eq) were suspended in dimethyl sulfoxide (2 ml, 1 ml/mmol). The reaction mixture was heated to 413 K and stirred at this temperature for 45 min. After consumption of the starting materials, the oil bath was removed and the suspension was cooled to room temperature. The reaction mixture was diluted with water (6 ml, 3 ml/mmol) and stirred at ambient temperature for 30 min. The resulting suspension was transferred into a separatory funnel with water and then extracted with ethyl acetate (3x). The combined organic phases were extracted with saturated aqueous sodium chloride solution (5x) and dried over MgSO₄. After removal of the solvents under reduced pressure, the light brown viscous oil was dissolved in dichloromethane (2 ml) and transferred into a wide-necked flask. The solution was diluted with *n*-heptane (1 ml) and the solvent was allowed to evaporate over three days. Crystals slowly form and grow, coating the sides of the flask. The large pale yellow crystals were washed with *n*-heptane (1 ml) and dried in vacuo to deliver 4-(4-methoxyphenoxy)benzaldehyde (I) ($C_{14}H_{12}O_3$, M = 228.25 g/mol, 440 mg, 1.93 mmol, 96%). Recrystallization of a small amount of (I) from *n*-heptane by slow evaporation over one week provided clear colourless crystals. Rf 0.48 (cyclohexane/ethyl acetate 5/1); m.p. 323–325 K (n-heptane) [m.p. 332.5–333.5 K (n-hexane) (Yeager & Schissel, 1991)]; ¹H NMR (CDCl₃, 500 MHz) δ 3.83 (s, 3H), 6.92–6.95 (m, 2H), 6.99–7.05 (m, 4H), 7.81–7.83 (m, 2H), 9.90 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 55.8 (CH₃), 115.3 (CH), 116.9 (CH), 122.0 (CH), 131.0 (C), 132.1 (CH), 148.3 (C), 157.0 (C), 164.2 (C), 190.9 (CH); IR v 3005 (w), 2965 (w), 2835 (w), 2745 (w), 1680 (s), 1595 (m), 1575 (s), 1495 (s), 1440 (m), 1230 (s), 1195 (s), 1150 (s), 1100 (m), 1085 (s), 875 (m), 845 (m), 830 (s), 785 (s), 745 (m), 565 (m), 525 (m), 510 (s).

S3. Refinement

H-atoms attached to C, except those in CH₃, were placed in calculated positions (C—H = 0.95 Å and $U_{iso}(H) = 1.2$ $U_{eq}(C)$). CH₃ hydrogen atoms, which were taken from a Fourier map, were allowed to rotate but not to tip (C—H = 0.98 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$).

Figure 1

The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

4-(4-Methoxyphenoxy)benzaldehyde

b = 7.6581 (4) Å
c = 12.3577 (7) Å
$\beta = 103.769 \ (6)^{\circ}$
V = 1114.92 (11) Å ³

Z = 4 F(000) = 480 $D_x = 1.360 \text{ Mg m}^{-3}$ Melting point = 323–325 K	$\theta = 3.2-31.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K Block, colourless
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 10396 reflections	$0.56 \times 0.40 \times 0.30 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur2 CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 16.0560 pixels mm ⁻¹ ω und ψ scan Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008) $T_{\min} = 0.808, T_{\max} = 1.000$	10049 measured reflections 2967 independent reflections 2551 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -16 \rightarrow 16$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference map

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.04	H-atom parameters constrained
2967 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0604P)^2 + 0.2707P]$
155 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.22 \text{ e } \text{\AA}^{-3}$
0 restraints Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or equi	valent	isotropic	displ	acement	parameters	$(Å^2$?)
				1			1			1	A 6	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.04659 (7)	0.20198 (13)	0.46684 (7)	0.0345 (2)	
C1	1.03112 (9)	0.22947 (15)	0.36759 (9)	0.0254 (2)	
H1A	1.0880	0.2933	0.3435	0.030*	
02	0.65559 (6)	0.00429 (11)	0.03836 (6)	0.02476 (19)	
C2	0.93213 (9)	0.17254 (14)	0.28176 (8)	0.0207 (2)	
03	0.60491 (7)	0.07872 (11)	-0.41611 (6)	0.02479 (19)	
C3	0.84285 (9)	0.07946 (14)	0.30868 (8)	0.0207 (2)	
H3A	0.8453	0.0524	0.3842	0.025*	
C4	0.75139 (9)	0.02708 (14)	0.22570 (8)	0.0204 (2)	
H4A	0.6902	-0.0343	0.2440	0.025*	

C5	0.74924 (8)	0.06494 (13)	0.11433 (8)	0.0191 (2)
C6	0.83733 (9)	0.15660 (14)	0.08603 (8)	0.0225 (2)
H6A	0.8354	0.1817	0.0103	0.027*
C7	0.92811 (9)	0.21065 (14)	0.17041 (9)	0.0233 (2)
H7A	0.9884	0.2745	0.1522	0.028*
C8	0.65010 (9)	0.02527 (14)	-0.07551 (8)	0.0210 (2)
C9	0.56903 (9)	0.13878 (14)	-0.13564 (9)	0.0221 (2)
H9A	0.5228	0.2056	-0.0990	0.026*
C10	0.55637 (9)	0.15361 (14)	-0.24972 (9)	0.0221 (2)
H10A	0.5012	0.2310	-0.2916	0.027*
C11	0.62441 (8)	0.05530 (13)	-0.30341 (8)	0.0198 (2)
C12	0.70607 (9)	-0.05710 (14)	-0.24197 (9)	0.0228 (2)
H12A	0.7531	-0.1232	-0.2781	0.027*
C13	0.71864 (9)	-0.07229 (14)	-0.12726 (9)	0.0239 (2)
H13A	0.7739	-0.1491	-0.0849	0.029*
C14	0.66492 (10)	-0.03182 (16)	-0.47516 (9)	0.0280 (2)
H14A	0.7466	-0.0111	-0.4488	0.042*
H14B	0.6412	-0.0062	-0.5550	0.042*
H14C	0.6482	-0.1542	-0.4622	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0325 (4)	0.0469 (5)	0.0221 (4)	-0.0060 (4)	0.0023 (3)	-0.0031 (4)
C1	0.0219 (5)	0.0302 (6)	0.0241 (5)	-0.0030 (4)	0.0057 (4)	-0.0041 (4)
O2	0.0225 (4)	0.0336 (4)	0.0178 (4)	-0.0075 (3)	0.0041 (3)	0.0004 (3)
C2	0.0216 (5)	0.0215 (5)	0.0194 (5)	0.0002 (4)	0.0058 (4)	-0.0017 (4)
O3	0.0275 (4)	0.0287 (4)	0.0177 (4)	0.0030 (3)	0.0047 (3)	-0.0011 (3)
C3	0.0238 (5)	0.0228 (5)	0.0168 (4)	0.0009 (4)	0.0073 (4)	0.0002 (4)
C4	0.0205 (5)	0.0217 (5)	0.0211 (5)	-0.0012 (4)	0.0088 (4)	0.0007 (4)
C5	0.0194 (5)	0.0192 (5)	0.0187 (5)	0.0004 (3)	0.0042 (4)	-0.0005 (4)
C6	0.0256 (5)	0.0241 (5)	0.0185 (5)	-0.0027 (4)	0.0067 (4)	0.0034 (4)
C7	0.0236 (5)	0.0254 (5)	0.0222 (5)	-0.0046 (4)	0.0079 (4)	0.0013 (4)
C8	0.0209 (5)	0.0241 (5)	0.0175 (4)	-0.0053 (4)	0.0037 (4)	-0.0010 (4)
C9	0.0195 (5)	0.0233 (5)	0.0238 (5)	-0.0010 (4)	0.0061 (4)	-0.0044 (4)
C10	0.0192 (5)	0.0229 (5)	0.0227 (5)	0.0013 (4)	0.0020 (4)	-0.0011 (4)
C11	0.0205 (5)	0.0203 (5)	0.0183 (4)	-0.0035 (4)	0.0040 (4)	-0.0016 (4)
C12	0.0228 (5)	0.0234 (5)	0.0233 (5)	0.0023 (4)	0.0074 (4)	-0.0010 (4)
C13	0.0224 (5)	0.0249 (5)	0.0235 (5)	0.0023 (4)	0.0036 (4)	0.0033 (4)
C14	0.0323 (6)	0.0309 (6)	0.0232 (5)	0.0002 (5)	0.0115 (4)	-0.0027 (4)

Geometric parameters (Å, °)

01—C1	1.2142 (14)	С6—Н6А	0.9500
C1—C2	1.4664 (14)	C7—H7A	0.9500
C1—H1A	0.9500	C8—C13	1.3826 (15)
O2—C5	1.3711 (12)	C8—C9	1.3881 (15)
O2—C8	1.4021 (12)	C9—C10	1.3861 (14)

C2—C7	1 3962 (14)	С9—Н9А	0 9500
$C^2 - C^3$	1 4010 (14)	C10—C11	1 3959 (14)
03—C11	1 3678 (12)	C10—H10A	0.9500
03-014	1 4254 (13)	C_{11} C_{12}	1 3931 (14)
C3—C4	1 3791 (14)	C12-C13	1 3940 (14)
C3—H3A	0.9500	C12—H12A	0.9500
C4-C5	1 4006 (13)	C13—H13A	0.9500
C4—H4A	0.9500	C14—H14A	0.9800
C5-C6	1 3909 (14)	C14—H14B	0.9800
C6—C7	1 3873 (14)	C14—H14C	0.9800
00 07	1.5075 (14)		0.9000
01-C1-C2	125.60 (10)	C13—C8—O2	120.81 (9)
01—C1—H1A	117.2	C9-C8-O2	117.86 (9)
C2-C1-H1A	117.2	C10-C9-C8	119.25 (10)
$C_{5} - C_{2} - C_{8}$	118.82 (8)	C10—C9—H9A	120.4
C7-C2-C3	119.52 (9)	C8—C9—H9A	120.4
C7-C2-C1	118.77 (10)	C9-C10-C11	120.29 (9)
$C_{3}-C_{2}-C_{1}$	121 71 (9)	C9-C10-H10A	119.9
$C_{11} = 03 = C_{14}$	117.25 (8)	C11—C10—H10A	119.9
C4—C3—C2	120.13 (9)	03-C11-C12	124.34 (9)
C4—C3—H3A	119.9	O3-C11-C10	115.76 (9)
C2—C3—H3A	119.9	C12—C11—C10	119.89 (9)
C3—C4—C5	119.60 (9)	C11—C12—C13	119.82 (10)
C3—C4—H4A	120.2	C11—C12—H12A	120.1
C5—C4—H4A	120.2	C13—C12—H12A	120.1
O2—C5—C6	124.03 (9)	C8—C13—C12	119.54 (9)
O2—C5—C4	114.91 (9)	C8—C13—H13A	120.2
C6—C5—C4	121.05 (9)	С12—С13—Н13А	120.2
C7—C6—C5	118.78 (9)	O3—C14—H14A	109.5
С7—С6—Н6А	120.6	O3—C14—H14B	109.5
С5—С6—Н6А	120.6	H14A—C14—H14B	109.5
C6—C7—C2	120.91 (10)	O3—C14—H14C	109.5
С6—С7—Н7А	119.5	H14A—C14—H14C	109.5
С2—С7—Н7А	119.5	H14B—C14—H14C	109.5
C13—C8—C9	121.21 (9)		
O1—C1—C2—C7	-178.37 (11)	C5—O2—C8—C13	71.52 (13)
O1—C1—C2—C3	0.79 (18)	C5—O2—C8—C9	-112.38 (11)
C7—C2—C3—C4	-0.45 (16)	C13—C8—C9—C10	0.34 (15)
C1—C2—C3—C4	-179.60 (10)	O2—C8—C9—C10	-175.74 (9)
C2—C3—C4—C5	1.06 (16)	C8—C9—C10—C11	0.04 (15)
C8—O2—C5—C6	4.13 (15)	C14—O3—C11—C12	6.25 (15)
C8—O2—C5—C4	-175.51 (9)	C14—O3—C11—C10	-174.01 (9)
C3—C4—C5—O2	178.84 (9)	C9—C10—C11—O3	179.69 (9)
C3—C4—C5—C6	-0.82 (16)	C9—C10—C11—C12	-0.56 (15)
O2—C5—C6—C7	-179.68 (10)	O3—C11—C12—C13	-179.58 (9)
C4—C5—C6—C7	-0.06 (16)	C10-C11-C12-C13	0.69 (15)
C5—C6—C7—C2	0.69 (16)	C9—C8—C13—C12	-0.21 (16)

C3—C2—C7—C6	-0.44 (16)	O2—C8—C13—C12	175.76 (9)
C1—C2—C7—C6	178.74 (10)	C11—C12—C13—C8	-0.31 (16)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
C13—H13A…O1 ⁱ	0.95	2.58	3.5129 (14)	167
C7—H7A···O1 ⁱⁱ	0.95	2.56	3.2500 (14)	130
C1— $H1A$ ··· $Cg1$ ⁱⁱⁱ	0.95	2.73	3.5453 (12)	145
C10—H10 A ····Cg2 ^{iv}	0.95	2.88	3.7465 (12)	152

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+2, y+1/2, -z+1/2; (iv) -x+1, y+1/2, -z-1/2.