data reports

OPEN a ACCESS

Crystal structure of (9S,10S)-10-ethoxy-9-hvdroxy-6,6,9-trimethyl-3-pentyl-7,8,9,10-tetrahydro-6H-benzo[c]chromen-1-yl 4-methylbenzenesulfonate

Waseem Gul,^{a,b} Ahmed Galal,^a Mahmoud A. ElSohly^{b,c} and Paulo Carvalho^d*

^aNational Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA, ^bEl Sohly Laboratories Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA, ^cNational Center for Natural Products Research, Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA, and ^dSchool of Pharmacy, Notre Dame of Maryland University, 4701 North Charles Street, 21210, Baltimore, MD, USA. *Correspondence e-mail: pcarvalho@ndm.edu

Received 9 December 2015; accepted 14 December 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the structure of the title compound, $C_{30}H_{40}O_6S$, the cyclohexene and heterocyclic rings are linked by a double bond. The cyclohexene ring has a half-chair conformation (the methylene group adjacent to the hydroxy substituent lies above the remaining atoms) and the hydroxy and ethoxy groups have equatorial and bisectional dispositions, respectively. The heterocyclic ring has an envelope conformation (with the CMe_2 C atom being the flap). The dihedral angle between the aromatic rings is 53.88 (10)°. A long intramolecular C-H···S interaction is noted. In the molecular packing, hydroxy-O-H···O(sulfonate) hydrogen bonds lead to a helical chain along [010]. Connections between chains are of the type methyl-C-H $\cdot \cdot \cdot$ O(sulfonate) and lead to supramolecular layers that lie parallel to (001). The studied crystal was an inversion twin.

Keywords: crystal structure; hydrogen bonding; Δ^9 -THC tosylate; photooxygenation.

CCDC reference: 1442416

1. Related literature

For Δ^9 -THC tosylate, see: Ducker (2004); Gul *et al.* (2008). For a related process of photooxygenation, see: Motoyoshiya et al. (1999); Griesbeck et al. (2014). For unusually long sulfur hydrogen bonding, see: Huang et al. (2009).

2. Experimental

2.1. Crystal data

C30H40O6S $M_r = 528.68$ Monoclinic, P21 a = 9.909 (1) Å b = 10.2373 (10) Åc = 13.8402 (10) Å $\beta = 101.00 \ (1)^{\circ}$

2.2. Data collection

Bruker SMART CCD area-detector diffractometer 21062 measured reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.066$ S = 1.024984 reflections 342 parameters

V = 1378.2 (2) Å³

Cu $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.19 \text{ mm}$

4984 independent reflections 4834 reflections with $I > 2\sigma(I)$

 $\mu = 1.38 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.025$

Z = 2

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C9-H9···S1	0.98	2.94	3.687 (2)	134
$C10-H10B\cdots O5^{i}$	0.96	2.57	3.459 (2)	154
$O2-H2\cdots O6^{ii}$	0.82	2.22	3.014 (2)	165

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z$; (ii) $-x + 1, y + \frac{1}{2}, -z$.

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), POV-RAY (Cason, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004), publCIF (Westrip, 2010).

Acknowledgements

The authors thank the United States Department of Agriculture, Agriculture Research Service Specific Cooperative Agreement No. 58-6408-7-012, for partial support of this work. Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5416).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Cason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria. Australia.
- Ducker, J. R. (2004). US Patent No. 2006/0094774-A1.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

- Griesbeck, A. G., de Kiff, A. & Kleczka, M. (2014). Adv. Synth. Catal. 356, 2839–2845.
- Gul, W., Carvalho, P., Berberich, D. W., Avery, M. A. & ElSohly, M. A. (2008). Acta Cryst. E64, 01686.
- Huang, L., Massa, L., Karle, I. & Karle, J. (2009). Proc. Natl Acad. Sci. USA, 106, 3664–3669.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.
- Motoyoshiya, J., Okuda, Y., Matsuoka, I., Hayashi, S., Takaguchi, Y. & Aoyama, H. (1999). J. Org. Chem. 64, 493–497.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o1082–o1083 [https://doi.org/10.1107/S2056989015024044]

Crystal structure of (9*S*,10*S*)-10-ethoxy-9-hydroxy-6,6,9-trimethyl-3pentyl-7,8,9,10-tetrahydro-6*H*-benzo[*c*]chromen-1-yl 4-methylbenzenesulfonate

Waseem Gul, Ahmed Galal, Mahmoud A. ElSohly and Paulo Carvalho

S1. Experimental

 Δ^9 -THC tosylate was submitted to photooxygenation in dichloromethane/ethanol for 11 h and 30 min using *meso*-tetraphenylporphine in the presence of oxygen and light generated by a regular, incandescent light bulb, yielding the title compound, which was crystallized from ethyl acetate : hexanes 1:9, producing needle-like crystals

S1.1. Refinement

All H atoms were located in difference maps but were included in the model in the riding model approximation with O—H = 0.82 Å and C—H = 0.93-0.98 Å, and with Uiso = 1.5Ueq (O) for OH and Uiso=1.2-1.5Ueq(C).

Figure 1

Plot of the molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Partial plot of the unit cell contents of the title compound, showing an O6—H2…O2 intermolecular hydrogens bond and one long, intramolecular C9—H9…S1 hydrogen bond, both represented by light blue lines.

(9*S*,10*S*)-10-Ethoxy-9-hydroxy-6,6,9-trimethyl-3-pentyl-7,8,9,10-tetrahydro-6*H*-benzo[*c*]chromen-1-yl 4-methylbenzenesulfonate

Crystal data

 $C_{30}H_{40}O_6S$ $M_r = 528.68$ Monoclinic, P2₁ a = 9.909 (1) Å b = 10.2373 (10) Å c = 13.8402 (10) Å $\beta = 101.00 (1)^{\circ}$ $V = 1378.2 (2) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: X-ray φ and ω scans
21062 measured reflections
4984 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.066$ S = 1.024984 reflections F(000) = 568 $D_x = 1.274 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9903 reflections $\theta = 4.6-68.1^{\circ}$ $\mu = 1.38 \text{ mm}^{-1}$ T = 173 KNeedle, colourless $0.23 \times 0.20 \times 0.19 \text{ mm}$

4834 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 16$

342 parameters1 restraintHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.1558P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Twinning involves inversion, so Flack parameter cannot be determined

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin.

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
<u>S1</u>	0 33896 (5)	0 44735 (5)	0 19766 (3)	0.01720 (12)	
01	0.01053(14)	0.87882(14)	0.19700(3) 0.24328(10)	0.01720(12) 0.0163(3)	
02	0.54967 (16)	0.84850(17)	0.05710(11)	0.0269(4)	
62 H2	0.5600	0.8838	0.0058	0.040*	
03	0.47179 (14)	0.82165 (14)	0.25792 (10)	0.0174 (3)	
04	0.37762 (14)	0.56548 (14)	0.27376 (10)	0.0158 (3)	
05	0.20422 (16)	0.46627 (15)	0.14151 (10)	0.0247 (3)	
06	0.45457 (17)	0.44066 (17)	0.15025 (11)	0.0269 (3)	
C1	0.2680 (2)	0.6273 (2)	0.30887 (14)	0.0144 (4)	
C2	0.2306 (2)	0.5743 (2)	0.39227 (14)	0.0156 (4)	
H2A	0.2785	0.5035	0.4240	0.019*	
C3	0.1205 (2)	0.6281 (2)	0.42811 (14)	0.0163 (4)	
C4	0.0496 (2)	0.7316 (2)	0.37639 (14)	0.0164 (4)	
H4	-0.0246	0.7688	0.3986	0.020*	
C4A	0.0882 (2)	0.78021 (19)	0.29185 (14)	0.0147 (4)	
C5	0.0027 (2)	0.8815 (2)	0.13601 (14)	0.0169 (4)	
C5A	0.1471 (2)	0.8735 (2)	0.11459 (14)	0.0170 (4)	
C6	0.1735 (2)	0.9385 (3)	0.02247 (14)	0.0228 (4)	
H6A	0.1767	1.0324	0.0319	0.027*	
H6B	0.0984	0.9190	-0.0316	0.027*	
C7	0.3085 (2)	0.8924 (3)	-0.00372 (15)	0.0255 (5)	
H7A	0.2977	0.8036	-0.0284	0.031*	
H7B	0.3309	0.9474	-0.0555	0.031*	
C8	0.4260 (2)	0.8973 (2)	0.08512 (15)	0.0203 (4)	
C9	0.3933 (2)	0.7990 (2)	0.16179 (14)	0.0164 (4)	
H9	0.4138	0.7108	0.1410	0.020*	
C9A	0.2436 (2)	0.80314 (19)	0.17329 (14)	0.0150 (4)	
C9B	0.2036 (2)	0.7346 (2)	0.25771 (14)	0.0148 (4)	
C10	-0.0683 (2)	1.0112 (2)	0.10561 (15)	0.0201 (4)	
H10A	-0.1549	1.0139	0.1269	0.030*	
H10B	-0.0834	1.0196	0.0353	0.030*	
H10C	-0.0112	1.0816	0.1354	0.030*	
C11	-0.0845 (2)	0.7666 (2)	0.08950 (15)	0.0205 (4)	
H11A	-0.0413	0.6862	0.1141	0.031*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H11B	-0.0926	0.7697	0.0193	0.031*
H11C	-0.1742	0.7718	0.1058	0.031*
C12	0.4513 (3)	1.0345 (2)	0.12656 (18)	0.0277 (5)
H12A	0.5337	1.0353	0.1760	0.042*
H12B	0.3749	1.0612	0.1553	0.042*
H12C	0.4612	1.0937	0.0746	0.042*
C13	0.0733 (2)	0.5677 (2)	0.51606 (15)	0.0195 (4)
H13A	0.0891	0.4743	0.5152	0.023*
H13B	-0.0250	0.5813	0.5089	0.023*
C14	0.1441 (2)	0.6214 (2)	0.61665 (15)	0.0197 (4)
H14A	0.1119	0.5729	0.6680	0.024*
H14B	0.2424	0.6073	0.6246	0.024*
C15	0.1177 (2)	0.7662 (2)	0.62955 (15)	0.0215 (4)
H15A	0.0193	0.7816	0.6137	0.026*
H15B	0.1594	0.8151	0.5829	0.026*
C16	0.1730 (2)	0.8183 (2)	0.73286 (15)	0.0223 (5)
H16A	0.2713	0.8030	0.7495	0.027*
H16B	0.1302	0.7714	0.7799	0.027*
C17	0.1449 (3)	0.9644 (3)	0.74043 (16)	0.0333 (6)
H17A	0.1857	1.0110	0.6931	0.050*
H17B	0.1838	0.9946	0.8055	0.050*
H17C	0.0474	0.9793	0.7275	0.050*
C18	0.3399 (2)	0.31006 (19)	0.27416 (15)	0.0159 (4)
C19	0.4624 (2)	0.2741 (2)	0.33485 (15)	0.0185 (4)
H19	0.5419	0.3228	0.3360	0.022*
C20	0.4641 (2)	0.1648 (2)	0.39354 (15)	0.0202 (4)
H20	0.5454	0.1408	0.4353	0.024*
C21	0.3458 (2)	0.0896 (2)	0.39119 (15)	0.0186 (4)
C22	0.2245 (2)	0.1286 (2)	0.32967 (16)	0.0214 (5)
H22	0.1449	0.0797	0.3275	0.026*
C23	0.2205 (2)	0.2395 (2)	0.27151 (15)	0.0193 (4)
H23	0.1388	0.2659	0.2314	0.023*
C24	0.3507 (2)	-0.0315 (2)	0.45314 (16)	0.0265 (5)
H24A	0.3732	-0.1053	0.4165	0.040*
H24B	0.2625	-0.0452	0.4707	0.040*
H24C	0.4193	-0.0213	0.5118	0.040*
C25	0.6098 (2)	0.7735 (2)	0.27438 (16)	0.0229 (5)
H25A	0.6684	0.8324	0.2461	0.027*
H25B	0.6129	0.6880	0.2447	0.027*
C26	0.6567 (2)	0.7654 (3)	0.38428 (17)	0.0305 (5)
H26A	0.6577	0.8513	0.4122	0.046*
H26B	0.7476	0.7289	0.3991	0.046*
H26C	0.5948	0.7107	0.4116	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
S1	0.0244 (3)	0.0168 (2)	0.0111 (2)	0.0027 (2)	0.00518 (17)	-0.00065 (18)

supporting information

01	0.0180 (7)	0.0179 (7)	0.0134 (6)	0.0035 (6)	0.0041 (5)	-0.0009 (5)
O2	0.0259 (8)	0.0394 (9)	0.0193 (7)	0.0076 (7)	0.0136 (6)	0.0107 (7)
03	0.0158 (7)	0.0233 (7)	0.0133 (7)	0.0012 (6)	0.0030 (5)	0.0015 (5)
O4	0.0170 (7)	0.0160 (7)	0.0154 (7)	0.0019 (6)	0.0056 (6)	0.0006 (5)
05	0.0327 (8)	0.0238 (8)	0.0150 (6)	0.0034 (7)	-0.0024 (6)	-0.0019 (6)
O6	0.0393 (9)	0.0238 (7)	0.0222 (7)	0.0036 (7)	0.0177 (7)	-0.0009 (7)
C1	0.0149 (10)	0.0162 (9)	0.0121 (9)	-0.0014 (8)	0.0023 (8)	-0.0030 (7)
C2	0.0178 (10)	0.0152 (9)	0.0128 (9)	-0.0019 (8)	0.0007 (8)	-0.0005 (7)
C3	0.0196 (10)	0.0183 (9)	0.0110 (9)	-0.0065 (8)	0.0032 (8)	-0.0029 (7)
C4	0.0162 (10)	0.0197 (10)	0.0148 (9)	-0.0015 (8)	0.0065 (8)	-0.0037 (8)
C4A	0.0150 (9)	0.0149 (9)	0.0134 (9)	-0.0020 (8)	0.0009 (7)	-0.0034 (7)
C5	0.0186 (10)	0.0206 (9)	0.0111 (9)	0.0027 (8)	0.0017 (8)	-0.0006 (8)
C5A	0.0212 (11)	0.0168 (10)	0.0134 (9)	-0.0007 (8)	0.0040 (8)	-0.0003 (8)
C6	0.0218 (10)	0.0306 (11)	0.0163 (9)	0.0048 (10)	0.0042 (8)	0.0081 (9)
C7	0.0275 (12)	0.0356 (12)	0.0147 (9)	0.0060 (10)	0.0075 (9)	0.0089 (9)
C8	0.0195 (11)	0.0252 (11)	0.0183 (10)	0.0024 (9)	0.0090 (8)	0.0051 (8)
C9	0.0188 (10)	0.0187 (10)	0.0124 (9)	0.0026 (8)	0.0045 (8)	0.0005 (7)
C9A	0.0197 (10)	0.0149 (9)	0.0111 (9)	0.0005 (8)	0.0047 (8)	-0.0024 (7)
C9B	0.0163 (10)	0.0170 (9)	0.0109 (9)	-0.0025 (8)	0.0022 (7)	-0.0025 (7)
C10	0.0226 (11)	0.0206 (10)	0.0164 (9)	0.0045 (9)	0.0019 (8)	-0.0005 (8)
C11	0.0213 (11)	0.0214 (11)	0.0180 (9)	0.0004 (9)	0.0017 (8)	-0.0022 (8)
C12	0.0308 (13)	0.0252 (12)	0.0296 (12)	0.0010 (10)	0.0121 (10)	0.0091 (10)
C13	0.0213 (11)	0.0215 (10)	0.0172 (10)	-0.0026 (9)	0.0076 (8)	0.0008 (8)
C14	0.0194 (11)	0.0264 (11)	0.0143 (9)	-0.0011 (9)	0.0057 (8)	0.0035 (8)
C15	0.0240 (11)	0.0263 (11)	0.0143 (9)	-0.0029 (9)	0.0041 (8)	0.0044 (8)
C16	0.0226 (11)	0.0291 (12)	0.0152 (10)	-0.0007 (9)	0.0038 (8)	0.0025 (8)
C17	0.0470 (14)	0.0297 (13)	0.0193 (10)	-0.0033 (12)	-0.0036 (10)	-0.0003 (10)
C18	0.0205 (10)	0.0143 (9)	0.0139 (9)	0.0028 (8)	0.0055 (8)	-0.0023 (7)
C19	0.0154 (10)	0.0229 (11)	0.0178 (9)	-0.0017 (8)	0.0046 (8)	-0.0023 (8)
C20	0.0186 (10)	0.0247 (11)	0.0169 (9)	0.0033 (9)	0.0024 (8)	-0.0015 (8)
C21	0.0236 (11)	0.0180 (10)	0.0159 (9)	0.0007 (8)	0.0077 (8)	-0.0032 (8)
C22	0.0211 (11)	0.0194 (10)	0.0247 (11)	-0.0049 (8)	0.0071 (9)	-0.0048 (8)
C23	0.0179 (10)	0.0219 (11)	0.0177 (9)	0.0029 (9)	0.0021 (8)	-0.0025 (8)
C24	0.0340 (12)	0.0235 (12)	0.0231 (10)	-0.0001 (10)	0.0080 (9)	0.0020 (9)
C25	0.0169 (10)	0.0309 (12)	0.0220 (11)	0.0009 (9)	0.0064 (9)	0.0040 (9)
C26	0.0192 (11)	0.0478 (15)	0.0237 (11)	0.0032 (11)	0.0020 (9)	0.0053 (11)

Geometric parameters (Å, °)

<u>\$1—05</u>	1.4240 (16)	C11—H11B	0.9600	
S1—O6	1.4264 (15)	C11—H11C	0.9600	
S1—O4	1.6014 (15)	C12—H12A	0.9600	
S1-C18	1.759 (2)	C12—H12B	0.9600	
O1—C4A	1.366 (3)	C12—H12C	0.9600	
O1—C5	1.472 (2)	C13—C14	1.536 (3)	
O2—C8	1.443 (2)	C13—H13A	0.9700	
O2—H2	0.8200	C13—H13B	0.9700	
О3—С9	1.426 (2)	C14—C15	1.521 (3)	

O3—C25	1.431 (3)	C14—H14A	0.9700
O4—C1	1.421 (2)	C14—H14B	0.9700
C1—C2	1.388 (3)	C15—C16	1.527 (3)
C1—C9B	1.394 (3)	C15—H15A	0.9700
C2—C3	1.395 (3)	C15—H15B	0.9700
C2—H2A	0.9300	C16—C17	1.528 (3)
C3—C4	1.392 (3)	C16—H16A	0.9700
C3—C13	1.517 (3)	C16—H16B	0.9700
C4—C4A	1.391 (3)	С17—Н17А	0.9600
C4—H4	0.9300	C17—H17B	0.9600
C4A—C9B	1.398 (3)	C17—H17C	0.9600
C5—C5A	1.518 (3)	C18—C23	1.380 (3)
C_{5} — C_{10}	1 523 (3)	C18 - C19	1 387 (3)
C5-C11	1.526 (3)	C_{19} C_{20}	1.381(3)
C5A - C9A	1.320(3)	C19_H19	0.9300
C_{5A}	1.546 (3)	C_{20}	1 397 (3)
C6 C7	1.505 (3)	C_{20} H_{20}	0.0300
C6 H6A	0.0700	$C_{20} = 1120$	1.303(3)
	0.9700	$C_{21} = C_{22}$	1.595(3)
$C_0 = H_0 B$	0.9700	$C_{21} = C_{24}$	1.303(3)
C_{1}	1.324 (3)	C22—C23	1.388 (3)
$C/-\pi/A$	0.9700	C22—n22	0.9300
C^{μ} C^{μ} C^{μ}	0.9700	С25—Н25	0.9300
	1.520 (3)	C24—H24A	0.9600
	1.541 (3)	C24—H24B	0.9600
С9—С9А	1.523 (3)	C24—H24C	0.9600
С9—Н9	0.9800	C25—C26	1.506 (3)
С9А—С9В	1.480 (3)	C25—H25A	0.9700
C10—H10A	0.9600	C25—H25B	0.9700
C10—H10B	0.9600	C26—H26A	0.9600
C10—H10C	0.9600	C26—H26B	0.9600
C11—H11A	0.9600	C26—H26C	0.9600
O5—S1—O6	120.48 (9)	H11A—C11—H11C	109.5
O5—S1—O4	109.74 (8)	H11B—C11—H11C	109.5
O6—S1—O4	103.09 (9)	C8—C12—H12A	109.5
O5—S1—C18	109.51 (10)	C8—C12—H12B	109.5
O6—S1—C18	109.04 (10)	H12A—C12—H12B	109.5
O4—S1—C18	103.56 (8)	C8—C12—H12C	109.5
C4A—O1—C5	115.24 (15)	H12A—C12—H12C	109.5
C8—O2—H2	109.5	H12B—C12—H12C	109.5
C9—O3—C25	115.27 (15)	C3—C13—C14	115.09 (17)
C1O4S1	117.32 (12)	C3—C13—H13A	108.5
C2C1C9B	124.13 (19)	C14—C13—H13A	108.5
C2C1O4	116.98 (18)	C3—C13—H13B	108.5
C9B—C1—O4	118.88 (17)	C14—C13—H13B	108.5
C1—C2—C3	119.5 (2)	H13A—C13—H13B	107.5
C1—C2—H2A	120.2	C15—C14—C13	113.32 (18)
С3—С2—Н2А	120.2	C15—C14—H14A	108.9

C4—C3—C2	118.04 (18)	C13—C14—H14A	108.9
C4—C3—C13	121.37 (19)	C15—C14—H14B	108.9
C2—C3—C13	120.41 (19)	C13—C14—H14B	108.9
C4A—C4—C3	120.78 (18)	H14A—C14—H14B	107.7
C4A—C4—H4	119.6	C14—C15—C16	114.31 (18)
C3—C4—H4	119.6	C14—C15—H15A	108.7
O1—C4A—C4	117.27 (18)	C16—C15—H15A	108.7
O1—C4A—C9B	120.06 (17)	C14—C15—H15B	108.7
C4—C4A—C9B	122.64 (19)	C16—C15—H15B	108.7
O1—C5—C5A	109.00 (16)	H15A—C15—H15B	107.6
O1—C5—C10	103.17 (15)	C15—C16—C17	111.65 (19)
C5A-C5-C10	113.29 (17)	C15—C16—H16A	109.3
O1—C5—C11	109.13 (16)	C17—C16—H16A	109.3
C5A-C5-C11	110.76 (17)	C15—C16—H16B	109.3
C10—C5—C11	111.16 (16)	C17—C16—H16B	109.3
C9A—C5A—C6	122.14 (18)	H16A—C16—H16B	108.0
C9A—C5A—C5	120.03 (17)	С16—С17—Н17А	109.5
C6—C5A—C5	117.68 (17)	C16—C17—H17B	109.5
C5A—C6—C7	111.51 (18)	H17A—C17—H17B	109.5
С5А—С6—Н6А	109.3	C16—C17—H17C	109.5
С7—С6—Н6А	109.3	H17A—C17—H17C	109.5
С5А—С6—Н6В	109.3	H17B—C17—H17C	109.5
С7—С6—Н6В	109.3	C23—C18—C19	121.6 (2)
H6A—C6—H6B	108.0	C23—C18—S1	119.73 (16)
C8—C7—C6	111.56 (17)	C19—C18—S1	118.70 (16)
С8—С7—Н7А	109.3	C20—C19—C18	118.86 (19)
С6—С7—Н7А	109.3	С20—С19—Н19	120.6
С8—С7—Н7В	109.3	C18—C19—H19	120.6
С6—С7—Н7В	109.3	C19—C20—C21	121.07 (19)
H7A—C7—H7B	108.0	C19—C20—H20	119.5
O2—C8—C12	109.50 (18)	C21—C20—H20	119.5
O2—C8—C7	109.20 (17)	C22—C21—C20	118.61 (19)
C12—C8—C7	112.3 (2)	C22—C21—C24	121.0 (2)
O2—C8—C9	105.08 (16)	C20—C21—C24	120.4 (2)
C12—C8—C9	112.64 (17)	C23—C22—C21	121.0 (2)
C7—C8—C9	107.81 (18)	C23—C22—H22	119.5
O3—C9—C9A	105.46 (15)	C21—C22—H22	119.5
O3—C9—C8	112.79 (17)	C18—C23—C22	118.9 (2)
C9A—C9—C8	113.00 (17)	C18—C23—H23	120.5
О3—С9—Н9	108.5	С22—С23—Н23	120.5
С9А—С9—Н9	108.5	C21—C24—H24A	109.5
С8—С9—Н9	108.5	C21—C24—H24B	109.5
C5A—C9A—C9B	117.76 (18)	H24A—C24—H24B	109.5
C5A—C9A—C9	123.25 (18)	C21—C24—H24C	109.5
C9B—C9A—C9	118.82 (17)	H24A—C24—H24C	109.5
C1—C9B—C4A	114.59 (18)	H24B—C24—H24C	109.5
C1—C9B—C9A	127.53 (18)	O3—C25—C26	106.32 (17)
C4A—C9B—C9A	117.88 (18)	O3—C25—H25A	110.5

supporting information

C5-C10-H10A	109.5	C26—C25—H25A	110.5	
C5-C10-H10B	109.5	O3—C25—H25B	110.5	
H10A—C10—H10B	109.5	C26—C25—H25B	110.5	
C5-C10-H10C	109.5	H25A—C25—H25B	108.7	
H10A—C10—H10C	109.5	C25—C26—H26A	109.5	
H10B—C10—H10C	109.5	C25—C26—H26B	109.5	
C5-C11-H11A	109.5	H26A—C26—H26B	109.5	
C5-C11-H11B	109.5	C25—C26—H26C	109.5	
H11A—C11—H11B	109.5	H26A—C26—H26C	109.5	
C5—C11—H11C	109.5	H26B—C26—H26C	109.5	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
С9—Н9…S1	0.98	2.94	3.687 (2)	134	
C10—H10 <i>B</i> ···O5 ⁱ	0.96	2.57	3.459 (2)	154	
O2—H2…O6 ⁱⁱ	0.82	2.22	3.014 (2)	165	

Symmetry codes: (i) -*x*, *y*+1/2, -*z*; (ii) -*x*+1, *y*+1/2, -*z*.