research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine

aLaboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens, France
*Correspondence e-mail: renald.david@u-picardie.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 October 2015; accepted 22 October 2015; online 4 November 2015)

The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)]n, was prepared under hydro­thermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetra­hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa­hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra­hedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)].

1. Chemical context

During the last century, transition metal phosphates have been studied intensively not only for their rich crystal- and magneto-chemistry (Kabbour et al., 2012[Kabbour, H., David, R., Pautrat, A., Koo, H.-J., Whangbo, M.-H., André, G. & Mentré, O. (2012). Angew. Chem. Int. Ed. 51, 11745-11749.]), but also for their various potential applications. For example, NH4MIIPO4·H2O phases, where M is a transition metal, are used as pigments for protective paint finishes on metals, as fire retardants in paints and plastics but may also be applied as catalysts, fertilizers and magnetic devices (Erskine et al., 1944[Erskine, A. M., Grimm, G. & Horning, S. C. (1944). Ind. Eng. Chem. 36, 456-460.]; Bridger et al., 1962[Bridger, G. L., Salutsky, M. L. & Starostka, R. W. (1962). J. Agric. Food Chem. 10, 181-188.]; Barros et al., 2006[Barros, N., Airoldi, C., Simoni, J. A., Ramajo, B., Espina, A. & García, J. R. (2006). Thermochim. Acta, 441, 89-95.]; Ramajo et al., 2009[Ramajo, B., Espina, A., Barros, N. & García, J. R. (2009). Thermochim. Acta, 487, 60-64.]). More recently, it was demonstrated by Goodenough and co-workers that in electrodes the presence of PO4 groups results in higher positive potentials (Padhi et al., 1997[Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. (1997). J. Electrochem. Soc. 144, 1609-1613.]), leading to an intensive research on LiFePO4, one of the most promising materials for the new generation of Li batteries (Ouvrard et al., 2013[Ouvrard, G., Zerrouki, M., Soudan, P., Lestriez, B., Masquelier, C., Morcrette, M., Hamelet, S., Belin, S., Flank, A. M. & Baudelet, F. (2013). J. Power Sources, 229, 16-21.]).

2. Structural commentary

The structure of the title compound, [Fe(PO4)(N2H4)], is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)] (Jia et al., 2011[Jia, L.-H., Li, R.-Y., Duan, Z.-M., Jiang, S.-D., Wang, B.-W., Wang, Z.-M. & Gao, S. (2011). Inorg. Chem. 50, 144-154.]). The FeIII atom is bound to four PO4 tetra­hedra and to two N atoms of hydrazine ligands, resulting in a slightly distorted FeO4N2 octa­hedron (Fig. 1[link]). The crystal structure consists of a three-dimensional network made up of FeIII atoms which are inter­connected through neutral hydrazine (N2H4) ligands and phosphate (PO43−) anions (Fig. 2[link]). If the phosphate and sulfate structures are isotypic, the presence of phosphate implies an oxidation state of +III for the transition metal compared to +II for the sulfate analogues. The replacement of sulfate for phosphate leads to a change in the coordination sphere of the metal. These differences are mainly associated with the metal–oxygen bond lengths. The average FeIII—O bond length is 1.97 Å for [Fe(PO4)(N2H4)] and the average CoII—O bond length is 2.12 Å for [Co(SO4)(N2H4)], whereas the average M—N bond lengths involving the N atom of the hydrazine ligand are similar, with values of 2.17 and 2.12 Å, respectively. As a consequence, the FeN2O4 octa­hedron is more distorted, appearing like an FeO4 square additionally bound by two trans hydrazine ligands in axial positions.

[Figure 1]
Figure 1
The coordination environment of the FeIII atom in the structure of [Fe(PO4)(N2H4)]. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z; (ii) 0.5-x, 0.5-y; (iii) −x, y + 0.5, 0.5-z; (iv) x + 0.5, −y, 0.5-z; (v) −x, −y, −z; (vi) x + 0.5, y + 0.5, −z; (vii) x, 0.5-y, z + 0.5; (viii) 0.5-x, y, z + 0.5.]
[Figure 2]
Figure 2
The crystal structure of [Fe(PO4)(N2H4)] in a projection along [001].

It should be noted that it seems rather surprising to stabilize FeIII with hydrazine, since the latter is a powerful reducing agent. Efforts are currently underway to obtain the title compound as a pure phase to perform magnetic measurements. It could be a way, by comparison with the results reported for [Co(SO4)(N2H4)] (Jia et al., 2011[Jia, L.-H., Li, R.-Y., Duan, Z.-M., Jiang, S.-D., Wang, B.-W., Wang, Z.-M. & Gao, S. (2011). Inorg. Chem. 50, 144-154.]), to study the ability of hydrazine to transmit magnetic coupling.

3. Supra­molecular features

The three-dimensional framework structure of [Fe(PO4)(N2H4)] is consolidated by N—H⋯O inter­actions between the hydrazine ligands and phosphate O atoms (Fig. 3[link]). One of the two hydrogen bonds is bifurcated. Considering the N⋯O distances and the values of the N—H⋯angles (Table 1[link]), this type of hydrogen bonding can be considered as moderately strong.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O1i 0.85 (3) 2.36 (2) 3.086 (2) 144 (2)
N—H1⋯O2ii 0.85 (3) 2.27 (3) 2.974 (2) 141 (2)
N—H2⋯O1iii 0.85 (3) 2.19 (3) 2.873 (2) 137 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal structure of [Fe(PO4)(N2H4)] in a projection along [100], emphasizing the hydrogen bonding between the components (black dotted lines). P atoms have been omitted for clarity.

4. Synthesis and crystallization

Iron(II) chloride tetra­hydrate (>99.0%, Sigma–Aldrich), hydrazine monohydrate (99+%) and KH2PO4 (both VWR Inter­national) were used as received without further purification. Iron(II) chloride tetra­hydrate (2 g) was dissolved in water (20 ml) before adding hydrazine monohydrate (2 ml). The obtained solution was stirred for 5 min. Then, KH2PO4 (11.5 g) was added. After 10 min of stirring for homogenization, the obtained solution (15 ml) was incorporated in a 23 ml autoclave. The autoclave was then heated at 433 K for 10 h before being cooled to room temperature at a rate of 10 K h−1. The obtained mixture, consiting of orange crystals of the title phase and yellow crystals of an additional phase, was washed with water. The obtained crystals were very small (around 20 µm) and well isolated from the others. Details of the composition and structure of the yellow crystals will be described in a forthcoming article.

5. Refinement details

Crystal data, data collection and structure refinements are summarized in Table 2[link]. All H atoms were located in a difference Fourier map and were refined freely with isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(PO4)(N2H4)]
Mr 182.87
Crystal system, space group Orthorhombic, Pccn
Temperature (K) 293
a, b, c (Å) 6.3114 (13), 7.6680 (15), 8.6485 (18)
V3) 418.55 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.89
Crystal size (mm) 0.05 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.668, 0.746
No. of measured, independent and observed [I > 3σ(I)] reflections 13820, 601, 457
Rint 0.065
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 3σ(F2)], wR(F2), S 0.020, 0.027, 1.46
No. of reflections 601
No. of parameters 47
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.40, −0.33
Computer programs: APEX2and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) and DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petrićek et al., 2014); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: JANA2006 (Petrićek et al., 2014).

Poly[(µ2-hydrazine)(µ4-phosphato)iron(III)] top
Crystal data top
[Fe(PO4)(N2H4)]F(000) = 364
Mr = 182.87Dx = 2.902 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2128 reflections
a = 6.3114 (13) Åθ = 4.2–26.9°
b = 7.6680 (15) ŵ = 3.89 mm1
c = 8.6485 (18) ÅT = 293 K
V = 418.55 (15) Å3Parallelepiped, orange
Z = 40.05 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
457 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.065
phi scanθmax = 30.6°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 98
Tmin = 0.668, Tmax = 0.746k = 1010
13820 measured reflectionsl = 1212
601 independent reflections
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.020All H-atom parameters refined
wR(F) = 0.027Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.46(Δ/σ)max = 0.006
601 reflectionsΔρmax = 0.40 e Å3
47 parametersΔρmin = 0.33 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0604 (2)0.30096 (17)0.36016 (16)0.0093 (4)
Fe0000.00652 (11)
P0.250.250.25868 (8)0.00567 (17)
O20.1898 (2)0.09269 (19)0.15978 (16)0.0111 (4)
N0.2656 (3)0.1556 (2)0.0781 (2)0.0103 (5)
H10.306 (4)0.132 (3)0.169 (3)0.024 (7)*
H20.364 (4)0.139 (3)0.012 (3)0.020 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0089 (6)0.0090 (7)0.0099 (7)0.0001 (5)0.0032 (5)0.0013 (5)
Fe0.00692 (19)0.0059 (2)0.00678 (19)0.00013 (13)0.00010 (16)0.00054 (16)
P0.0059 (3)0.0053 (3)0.0057 (3)0.0001 (3)00
O20.0135 (6)0.0096 (7)0.0101 (7)0.0003 (5)0.0030 (6)0.0033 (6)
N0.0110 (8)0.0074 (8)0.0123 (9)0.0017 (7)0.0012 (8)0.0010 (7)
Geometric parameters (Å, º) top
O1—Fei1.9843 (14)P—O2iii1.5268 (15)
O1—P1.5346 (15)N—Niv1.461 (2)
Fe—O21.9621 (15)N—H10.85 (3)
Fe—O2ii1.9621 (15)N—H20.85 (3)
P—O21.5268 (15)
Fei—O1—P133.97 (8)O1—P—O2iii108.25 (7)
O1v—Fe—O1vi180.0 (5)O1iii—P—O2108.25 (7)
O1v—Fe—O288.09 (6)O1iii—P—O2iii109.13 (7)
O1v—Fe—O2ii91.91 (6)O2—P—O2iii111.85 (9)
O1vi—Fe—O291.91 (6)Fe—O2—P146.37 (9)
O1vi—Fe—O2ii88.09 (6)Niv—N—H1104.6 (18)
O2—Fe—O2ii180.0 (5)Niv—N—H2104.2 (18)
O1—P—O1iii110.23 (8)H1—N—H2112 (2)
O1—P—O2109.13 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O1iv0.85 (3)2.36 (2)3.086 (2)144 (2)
N—H1···O2vii0.85 (3)2.27 (3)2.974 (2)141 (2)
N—H2···O1viii0.85 (3)2.19 (3)2.873 (2)137 (2)
Symmetry codes: (iv) x+1/2, y+1/2, z; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z1/2.
 

Acknowledgements

The RS2E (French Network on Electrochemical Energy Storage) and ANR (Labex STORE-EX; grant No. ANR-10-LABX-0076) are acknowledged for funding of the X-ray diffractometer.

References

First citationBarros, N., Airoldi, C., Simoni, J. A., Ramajo, B., Espina, A. & García, J. R. (2006). Thermochim. Acta, 441, 89–95.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBridger, G. L., Salutsky, M. L. & Starostka, R. W. (1962). J. Agric. Food Chem. 10, 181–188.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErskine, A. M., Grimm, G. & Horning, S. C. (1944). Ind. Eng. Chem. 36, 456–460.  CrossRef CAS Google Scholar
First citationJia, L.-H., Li, R.-Y., Duan, Z.-M., Jiang, S.-D., Wang, B.-W., Wang, Z.-M. & Gao, S. (2011). Inorg. Chem. 50, 144–154.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKabbour, H., David, R., Pautrat, A., Koo, H.-J., Whangbo, M.-H., André, G. & Mentré, O. (2012). Angew. Chem. Int. Ed. 51, 11745–11749.  Web of Science CrossRef CAS Google Scholar
First citationOuvrard, G., Zerrouki, M., Soudan, P., Lestriez, B., Masquelier, C., Morcrette, M., Hamelet, S., Belin, S., Flank, A. M. & Baudelet, F. (2013). J. Power Sources, 229, 16–21.  Web of Science CrossRef CAS Google Scholar
First citationPadhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. (1997). J. Electrochem. Soc. 144, 1609–1613.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRamajo, B., Espina, A., Barros, N. & García, J. R. (2009). Thermochim. Acta, 487, 60–64.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds