

open 👌 access

Crystal structure of 8-iodoquinolinium tetrachloridoaurate(III)

Benard O. Onserio, Sem Raj Tamang and James D. Hoefelmeyer*

Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA. *Correspondence e-mail: jhoefelm@usd.edu

Received 3 November 2015; accepted 25 November 2015

Edited by M. Weil, Vienna University of Technology, Austria

The structure of the title salt, $(C_9H_7IN)[AuCl_4]$, is comprised of planar 8-iodoquinolinium cations (r.m.s. deviation = 0.05 Å) and square-planar tetrachloridoaurate(III) anions. The asymmetric unit contains one 8-iodoquinolinium cation and two halfs of [AuCl₄]⁻ anions, in each case with the central Au^{III} atom located on an inversion center. Intermolecular halogenhalogen contacts were found between centrosymmetric pairs of I [3.6178 (4) Å] and Cl atoms [3.1484 (11), 3.3762 (13), and 3.4935 (12) Å]. Intermolecular N-H···Cl and C-H···Cl hydrogen bonding is also found in the structure. These interactions lead to the formation of a three-dimensional network. Additionally, there is an intramolecular N-H···I hydrogen bond between the aromatic iminium and iodine. There are no aurophilic interactions or short contacts between I and Au atoms, and there are no notable π -stacking interactions between the aromatic cations.

Keywords: crystal structure; 8-iodoquinolinium cation; tetrachloridoaurate anion; salt structure.

CCDC reference: 1438910

1. Related literature

There are only two reported structures containing the 8-iodoquinolinium cation, *viz.* 8-iodoquinolinium chloride dihydrate (Son & Hoefelmeyer, 2008*a*) and 8-iodoquinolinium triiodide tetrahydrofuran solvate (Son & Hoefelmeyer, 2008*b*). Recently, the zwitterionic 8-iodoquinoline *N*-oxide was also reported (Hwang *et al.*, 2014).

AuCl₄⁻

2. Experimental

2.1. Crystal data

 $\begin{array}{l} (C_{9}H_{7}IN)[AuCl_{4}]\\ M_{r}=594.82\\ Triclinic, P\overline{1}\\ a=7.6299~(5)~\mathring{A}\\ b=7.8609~(5)~\mathring{A}\\ c=11.7125~(7)~\mathring{A}\\ \alpha=80.160~(1)^{\circ}\\ \beta=78.143~(1)^{\circ} \end{array}$

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.174, T_{max} = 0.573$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.040$ S = 1.042482 reflections 152 parameters $V = 676.52 (7) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 13.92 \text{ mm}^{-1}$ T = 100 K $0.16 \times 0.11 \times 0.04 \text{ mm}$

 $\gamma = 85.178 \ (1)^{\circ}$

6855 measured reflections 2482 independent reflections 2407 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=1.19\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.94\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H99 \cdots Cl3^{i}$ $N1 - H99 \cdots I1$ $C2 - H2 \cdots Cl1^{ii}$ $C3 - H3 \cdots Cl1^{iii}$	0.80 (5) 0.80 (5) 0.93 0.93	2.62 (5) 2.81 (5) 2.79 2.81	3.287 (3) 3.264 (3) 3.493 (4) 3.722 (4)	142 (4) 118 (4) 133 168

Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x + 1, y + 1, z; (iii) -x + 2, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrea *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acknowledgements

Purchase of the X-ray diffractometer was made possible by funding from the National Science Foundation (grant No. EPS-0554609).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5236).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hwang, H., Kim, J., Jeong, J. & Chang, S. (2014). J. Am. Chem. Soc. 136, 10770–10776.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Son, J.-H. & Hoefelmeyer, J. D. (2008a). Acta Cryst. E64, 02076. Son, J.-H. & Hoefelmeyer, J. D. (2008b). Acta Cryst. E64, 02077.

supporting information

Acta Cryst. (2015). E71, m261–m262 [https://doi.org/10.1107/S2056989015022574]

Crystal structure of 8-iodoquinolinium tetrachloridoaurate(III)

Benard O. Onserio, Sem Raj Tamang and James D. Hoefelmeyer

S1. Synthesis and crystallization

In a 4 ml vial, $HAuCl_4 \cdot 3H_2O$ (0.12 g, 0.33 mmol), 8-iodoquinoline (0.10 g, 0.39 mmol) and acetonitrile (2 ml) were combined and sonicated for 30 minutes. The 4 ml vial was placed in a 20 ml vial with 5 ml diethylether. Diffusion of the ether vapor into the solution within the smaller vial gave yellow-green crystals, mostly with a cuboid-like form.

S2. Refinement

C-bound H atoms were placed in ideal positions and refined as riding atoms (C—H = 0.93 Å; $U_{iso}(H) = 1.2U_{eq}(H)$). The H atom bound to the N atom was located from a difference map and refined freely. The highest remaining electron density peak was located 0.20 Å from H6. A transmission factor of 0.62 was calculated using the ratio of T_{min} (0.4593) to T_{max} (0.7452) taken from the absorption correction output file, whereas experimental T_{min} (0.174) and T_{max} (0.573) give a transmission factor of 0.30.

Figure 1

The expanded asymmetric unit of the crystal shown with intermolecular halogen—halogen contacts and hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 - x, 2 - y, 2 - z; (ii) 2 - x, -y, 1 - z; (iii) 1 - x, -1 - y, 1 - z; (iv) -x, -y - 1, -z; (v) x + 1, y + 1, z + 1; (vi) x + 1, y + 1, z; (vii) -x + 2, -y, -z + 1.]

Figure 2

The centrosymmetric unit cell of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3

Examination of the nearest distances (Å) between iodine and Au—Cl bond centroids. These distances are beyond the sum of the van der Waals radii of the atoms.

8-Iodoquinolinium tetrachloridoaurate(III)

Crystal data

(C ₉ H ₇ IN)[AuCl ₄]	Z = 2
$M_r = 594.82$	F(000) = 536
Triclinic, P1	$D_{\rm x} = 2.920 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.6299 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 7.8609 (5) Å	Cell parameters from 5508 reflections
c = 11.7125 (7) Å	$\theta = 2.6 - 25.6^{\circ}$
$\alpha = 80.160 \ (1)^{\circ}$	$\mu = 13.92 \text{ mm}^{-1}$
$\beta = 78.143 \ (1)^{\circ}$	T = 100 K
$\gamma = 85.178 \ (1)^{\circ}$	Plate, light green
V = 676.52 (7) Å ³	$0.16 \times 0.11 \times 0.04 \text{ mm}$
Data collection	
Bruker APEXII CCD	2482 independent reflections
diffractometer	2407 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.024$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 1.8^\circ$
(SADABS; Bruker, 2009)	$h = -9 \rightarrow 9$
$T_{\min} = 0.174, \ T_{\max} = 0.573$	$k = -9 \rightarrow 9$
6855 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.016$	and constrained refinement
$wR(F^2) = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.019P)^2 + 0.5573P]$
<i>S</i> = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2482 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
152 parameters	$\Delta \rho_{\rm max} = 1.19 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.54637 (3)	0.86196 (3)	0.88748 (2)	0.01671 (7)
Au2	0.0000	0.0000	0.0000	0.01009 (6)
Aul	0.5000	0.0000	0.5000	0.00870 (6)
C13	0.07524 (11)	0.00792 (10)	-0.20000 (7)	0.01714 (17)
Cl2	0.20893 (10)	0.01686 (10)	0.47699 (7)	0.01590 (17)
Cl4	0.00376 (12)	-0.29552 (11)	0.02554 (8)	0.01672 (18)
C8	0.5841 (5)	0.6220 (4)	0.8290 (3)	0.0137 (7)
C7	0.4426 (5)	0.5185 (5)	0.8453 (3)	0.0167 (8)
H7	0.3321	0.5507	0.8887	0.020*
C6	0.4621 (5)	0.3624 (5)	0.7968 (3)	0.0201 (8)
H6	0.3655	0.2923	0.8092	0.024*
C5	0.6244 (5)	0.3160 (5)	0.7317 (3)	0.0173 (8)
Н5	0.6359	0.2155	0.6982	0.021*
C10	0.7737 (5)	0.4170 (4)	0.7144 (3)	0.0136 (7)
C4	0.9432 (5)	0.3733 (5)	0.6493 (3)	0.0163 (7)
H4	0.9589	0.2741	0.6142	0.020*
N1	0.9009 (4)	0.6662 (4)	0.7494 (3)	0.0146 (6)
C9	0.7541 (5)	0.5716 (5)	0.7656 (3)	0.0134 (7)
Cl1	0.49806 (11)	-0.29443 (10)	0.53814 (8)	0.01473 (17)
C3	1.0864 (5)	0.4757 (5)	0.6369 (3)	0.0172 (8)
Н3	1.1983	0.4458	0.5942	0.021*
C2	1.0612 (5)	0.6228 (5)	0.6887 (3)	0.0166 (8)
H2	1.1569	0.6925	0.6812	0.020*
H99	0.890 (6)	0.755 (6)	0.776 (4)	0.026 (12)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01797 (12)	0.01529 (12)	0.01717 (12)	0.00269 (9)	-0.00223 (9)	-0.00651 (9)
Au2	0.01106 (10)	0.00938 (10)	0.01044 (10)	-0.00048 (7)	-0.00355 (7)	-0.00150 (7)

supporting information

Au1	0.00681 (9)	0.01063 (10)	0.00881 (10)	0.00010 (7)	-0.00208 (7)	-0.00155 (7)
Cl3	0.0245 (4)	0.0160 (4)	0.0109 (4)	-0.0024 (3)	-0.0030 (3)	-0.0017 (3)
Cl2	0.0086 (4)	0.0191 (4)	0.0211 (4)	0.0000 (3)	-0.0055 (3)	-0.0036 (3)
Cl4	0.0233 (4)	0.0104 (4)	0.0166 (4)	-0.0010 (3)	-0.0040 (4)	-0.0020 (3)
C8	0.0163 (17)	0.0134 (17)	0.0117 (17)	0.0026 (14)	-0.0041 (14)	-0.0028 (13)
C7	0.0180 (18)	0.0184 (18)	0.0124 (17)	-0.0002 (14)	-0.0022 (14)	-0.0001 (14)
C6	0.025 (2)	0.0210 (19)	0.0133 (18)	0.0035 (16)	-0.0067 (15)	0.0009 (15)
C5	0.027 (2)	0.0131 (17)	0.0139 (18)	-0.0024 (15)	-0.0092 (15)	-0.0016 (14)
C10	0.0198 (18)	0.0127 (17)	0.0077 (16)	0.0013 (14)	-0.0048 (14)	0.0014 (13)
C4	0.0235 (19)	0.0133 (17)	0.0130 (17)	0.0058 (14)	-0.0080 (15)	-0.0021 (14)
N1	0.0164 (15)	0.0125 (15)	0.0153 (15)	0.0006 (12)	-0.0041 (12)	-0.0024 (12)
C9	0.0177 (17)	0.0125 (17)	0.0098 (16)	0.0008 (13)	-0.0067 (14)	0.0027 (13)
Cl1	0.0150 (4)	0.0115 (4)	0.0176 (4)	-0.0005 (3)	-0.0037 (3)	-0.0014 (3)
C3	0.0138 (17)	0.0234 (19)	0.0117 (17)	0.0055 (15)	-0.0005 (14)	-0.0007 (14)
C2	0.0159 (18)	0.0173 (18)	0.0159 (18)	-0.0029 (14)	-0.0053 (14)	0.0026 (14)

Geometric parameters (Å, °)

		A	
11—C8	2.093 (3)	С6—Н6	0.9300
Au2—Cl3	2.2857 (8)	C5—C10	1.404 (5)
Au2—Cl3 ⁱ	2.2857 (8)	С5—Н5	0.9300
Au2—Cl4 ⁱ	2.2894 (8)	C10—C4	1.407 (5)
Au2—Cl4	2.2895 (8)	С10—С9	1.429 (5)
Au1—Cl1 ⁱⁱ	2.2817 (8)	C4—C3	1.381 (5)
Au1—Cl1	2.2817 (8)	C4—H4	0.9300
Au1—Cl2 ⁱⁱ	2.2818 (8)	N1—C2	1.331 (5)
Au1—Cl2	2.2818 (8)	N1—C9	1.360 (5)
C8—C7	1.369 (5)	N1—H99	0.80 (4)
C8—C9	1.418 (5)	C3—C2	1.377 (5)
C7—C6	1.422 (5)	С3—Н3	0.9300
С7—Н7	0.9300	С2—Н2	0.9300
C6—C5	1.371 (5)		
Cl3—Au2—Cl3 ⁱ	180.0	C6-C5-C10	121.4 (3)
Cl3—Au2—Cl4 ⁱ	90.15 (3)	С6—С5—Н5	119.3
Cl3 ⁱ —Au2—Cl4 ⁱ	89.85 (3)	С10—С5—Н5	119.3
Cl3—Au2—Cl4	89.85 (3)	C5—C10—C4	123.3 (3)
Cl3 ⁱ —Au2—Cl4	90.15 (3)	C5—C10—C9	118.8 (3)
Cl4 ⁱ —Au2—Cl4	180.0	C4—C10—C9	117.9 (4)
Cl1 ⁱⁱ —Au1—Cl1	180.0	C3—C4—C10	120.9 (3)
Cl1 ⁱⁱ —Au1—Cl2 ⁱⁱ	90.54 (3)	С3—С4—Н4	119.6
Cl1—Au1—Cl2 ⁱⁱ	89.46 (3)	C10—C4—H4	119.6
Cl1 ⁱⁱ —Au1—Cl2	89.46 (3)	C2—N1—C9	123.7 (3)
Cl1—Au1—Cl2	90.54 (3)	C2—N1—H99	118 (3)
Cl2 ⁱⁱ —Au1—Cl2	180.0	C9—N1—H99	118 (3)
C7—C8—C9	119.9 (3)	N1	122.7 (3)
C7—C8—I1	120.2 (3)	N1—C9—C10	117.9 (3)
C9—C8—I1	119.8 (3)	C8—C9—C10	119.4 (3)

supporting information

C8—C7—C6	121.0 (3)	C2—C3—C4	119.0 (3)
С8—С7—Н7	119.5	С2—С3—Н3	120.5
С6—С7—Н7	119.5	С4—С3—Н3	120.5
C5—C6—C7	119.5 (4)	N1—C2—C3	120.6 (3)
С5—С6—Н6	120.3	N1—C2—H2	119.7
С7—С6—Н6	120.3	С3—С2—Н2	119.7
C/C0H0	120.3	C3-C2-H2	119.7

Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H99…C13 ⁱⁱⁱ	0.80 (5)	2.62 (5)	3.287 (3)	142 (4)
N1—H99…I1	0.80 (5)	2.81 (5)	3.264 (3)	118 (4)
C2—H2···Cl1 ^{iv}	0.93	2.79	3.493 (4)	133
C3—H3····Cl1 ^v	0.93	2.81	3.722 (4)	168

Symmetry codes: (iii) *x*+1, *y*+1, *z*+1; (iv) *x*+1, *y*+1, *z*; (v) -*x*+2, -*y*, -*z*+1.