metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(N-methyl­salicyl­aldiminato-κ2N,O)chromium(III)

aInstitute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: jhilbert@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 November 2015; accepted 1 December 2015; online 6 December 2015)

The crystal structure of the title compound, [Cr(C8H8NO)3], is isotypic with the vanadium(III) analogue. The asymmetric unit consists of one Cr3+ cation and three N-methyl­salicylaldiminate anions. The metal cation is octa­hedrally coordinated by three N,O-chelating N-methyl­salicylaldiminate ligands, leading to discrete and neutral complexes. In the crystal, neighbouring complexes are linked via C—H⋯O hydrogen-bonding inter­actions into chains propagating parallel to the c axis.

1. Related literature

This structure determination was undertaken as part of a project intending to synthesise chromium-containing thio­stannates, for which no compounds are known to date. Instead, the title compound was isolated. Its structure is isotypic with the vanadium(III) analogue reported recently by us (Hilbert et al., 2015[Hilbert, J., Kabus, S., Näther, C. & Bensch, W. (2015). Acta Cryst. E71, m225.]). For the structures of similar discrete vanadium complexes with N-methyl­salicylaldiminate as ligand, see: Cornman et al. (1997[Cornman, C. R., Geiser-Bush, K. M., Rowley, S. P. & Boyle, P. D. (1997). Inorg. Chem. 36, 6401-6408.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cr(C8H8NO)3]

  • Mr = 454.46

  • Monoclinic, P 21 /c

  • a = 7.7463 (2) Å

  • b = 25.4402 (8) Å

  • c = 11.1421 (3) Å

  • β = 102.659 (2)°

  • V = 2142.37 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 170 K

  • 0.28 × 0.2 × 0.06 mm

2.2. Data collection

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.841, Tmax = 0.972

  • 25422 measured reflections

  • 4665 independent reflections

  • 3991 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.07

  • 4665 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O11i 0.95 2.44 3.3154 (19) 154
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

All chemicals were commercially available. The title compound was serendipitously obtained under solvothermal conditions. For the synthesis 66.6 mg (0.25 mmol) CrCl3·6H2O (Merck, 95%), 29.7 mg (0.25 mmol) Sn (Fluka, 99.9%), 24.1 mg (0.75 mmol) S (Alfa Aesar, 99.5%) and 134.2 mg (0.5 mol) N,N-ethyl­enebis(salicyl­imine) (Alfa Aesar, 99%) were mixed in a glass tube (inner volume 11 ml) with 1.5 ml methyl­amine (abcr, 40% aqueous solution) and 0.5 ml water. The reaction slurry was tempered at 398 K for one day. After cooling to room temperature the crystalline product (dark red blocks) was filtered off, washed with water and ethanol and dried over silica gel.

Refinement top

The C-bound H atoms were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms.

Related literature top

This structure determination was undertaken as part of a project intending to synthesise chromium-containing thiostannates, for which no compounds are known to date. Instead, the title compound was isolated. Its structure is isotypic with the vanadium(III) analogue reported recently by us (Hilbert et al., 2015). For the structures of similar discrete vanadium complexes with N-methylsaldicylaldiminate as ligand, see: Cornman et al. (1997).

Structure description top

This structure determination was undertaken as part of a project intending to synthesise chromium-containing thiostannates, for which no compounds are known to date. Instead, the title compound was isolated. Its structure is isotypic with the vanadium(III) analogue reported recently by us (Hilbert et al., 2015). For the structures of similar discrete vanadium complexes with N-methylsaldicylaldiminate as ligand, see: Cornman et al. (1997).

Synthesis and crystallization top

All chemicals were commercially available. The title compound was serendipitously obtained under solvothermal conditions. For the synthesis 66.6 mg (0.25 mmol) CrCl3·6H2O (Merck, 95%), 29.7 mg (0.25 mmol) Sn (Fluka, 99.9%), 24.1 mg (0.75 mmol) S (Alfa Aesar, 99.5%) and 134.2 mg (0.5 mol) N,N-ethyl­enebis(salicyl­imine) (Alfa Aesar, 99%) were mixed in a glass tube (inner volume 11 ml) with 1.5 ml methyl­amine (abcr, 40% aqueous solution) and 0.5 ml water. The reaction slurry was tempered at 398 K for one day. After cooling to room temperature the crystalline product (dark red blocks) was filtered off, washed with water and ethanol and dried over silica gel.

Refinement details top

The C-bound H atoms were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound in a view along [100]. C—H···O hydrogen bonds are shown as dashed lines. For clarity, all H atoms except those that participate in hydrogen bonding were omitted.
Tris(N-methylsalicylaldiminato-κ2N,O)chromium(III) top
Crystal data top
[Cr(C8H8NO)3]F(000) = 948
Mr = 454.46Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7463 (2) ÅCell parameters from 25422 reflections
b = 25.4402 (8) Åθ = 1.6–27.0°
c = 11.1421 (3) ŵ = 0.57 mm1
β = 102.659 (2)°T = 170 K
V = 2142.37 (11) Å3Block, red
Z = 40.28 × 0.2 × 0.06 mm
Data collection top
Stoe IPDS-1
diffractometer
3991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
phi–scansθmax = 27.0°, θmin = 1.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
h = 99
Tmin = 0.841, Tmax = 0.972k = 3232
25422 measured reflectionsl = 1414
4665 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.4287P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4665 reflectionsΔρmax = 0.32 e Å3
283 parametersΔρmin = 0.41 e Å3
Crystal data top
[Cr(C8H8NO)3]V = 2142.37 (11) Å3
Mr = 454.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7463 (2) ŵ = 0.57 mm1
b = 25.4402 (8) ÅT = 170 K
c = 11.1421 (3) Å0.28 × 0.2 × 0.06 mm
β = 102.659 (2)°
Data collection top
Stoe IPDS-1
diffractometer
4665 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
3991 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.972Rint = 0.030
25422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
4665 reflectionsΔρmin = 0.41 e Å3
283 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.61749 (3)0.34539 (2)0.42884 (2)0.02599 (9)
C10.7885 (2)0.43007 (6)0.59566 (15)0.0326 (3)
C20.6253 (2)0.45158 (6)0.61013 (15)0.0329 (3)
C30.6253 (3)0.49641 (7)0.68446 (16)0.0392 (4)
H30.51560.51100.69250.047*
C40.7796 (3)0.51944 (7)0.74539 (18)0.0455 (4)
H40.77710.54930.79620.055*
C50.9405 (3)0.49834 (8)0.73162 (19)0.0468 (5)
H51.04820.51420.77300.056*
C60.9450 (3)0.45480 (7)0.65863 (18)0.0415 (4)
H61.05610.44120.65060.050*
O10.80043 (15)0.38808 (5)0.52894 (11)0.0343 (3)
C70.4555 (2)0.42962 (7)0.55375 (15)0.0334 (3)
H70.35470.44750.56880.040*
N10.42562 (18)0.38859 (5)0.48548 (12)0.0302 (3)
C80.2410 (2)0.37274 (8)0.43983 (18)0.0387 (4)
H8A0.16270.39830.46670.058*
H8B0.22210.33790.47250.058*
H8C0.21470.37140.34980.058*
C110.38538 (19)0.25243 (6)0.34655 (14)0.0281 (3)
C120.4286 (2)0.22699 (6)0.46229 (15)0.0302 (3)
C130.3594 (2)0.17682 (7)0.47646 (18)0.0385 (4)
H130.38670.16050.55500.046*
C140.2529 (3)0.15077 (7)0.3791 (2)0.0438 (4)
H140.21060.11640.38940.053*
C150.2085 (2)0.17586 (7)0.26552 (18)0.0388 (4)
H150.13460.15840.19790.047*
C160.2704 (2)0.22570 (7)0.24959 (15)0.0328 (3)
H160.23490.24240.17180.039*
O110.44612 (14)0.29877 (4)0.32539 (10)0.0301 (2)
C170.5348 (2)0.25136 (6)0.57088 (14)0.0294 (3)
H170.54760.23240.64580.035*
N110.61359 (17)0.29600 (5)0.57646 (12)0.0287 (3)
C180.6981 (2)0.31436 (7)0.70060 (15)0.0362 (4)
H18A0.67700.28880.76160.054*
H18B0.64800.34840.71600.054*
H18C0.82580.31810.70700.054*
C210.6776 (2)0.39336 (6)0.19948 (15)0.0305 (3)
C220.8195 (2)0.35940 (6)0.19177 (15)0.0317 (3)
C230.9048 (3)0.36486 (8)0.09236 (17)0.0408 (4)
H231.00240.34280.08880.049*
C240.8505 (3)0.40106 (8)0.00151 (18)0.0493 (5)
H240.90830.40380.06510.059*
C250.7087 (3)0.43397 (8)0.00799 (17)0.0470 (5)
H250.67000.45920.05500.056*
C260.6242 (3)0.43040 (7)0.10408 (16)0.0384 (4)
H260.52810.45330.10640.046*
O210.59264 (15)0.39170 (5)0.28869 (11)0.0342 (3)
C270.8836 (2)0.31882 (6)0.28005 (15)0.0302 (3)
H270.98140.29890.26670.036*
N210.82298 (17)0.30641 (5)0.37540 (12)0.0283 (3)
C280.9138 (2)0.26427 (7)0.45369 (15)0.0351 (4)
H28A1.01360.25160.42070.053*
H28B0.83110.23530.45560.053*
H28C0.95770.27770.53730.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.02573 (14)0.02790 (14)0.02495 (14)0.00027 (9)0.00689 (10)0.00001 (9)
C10.0375 (9)0.0301 (8)0.0303 (8)0.0046 (7)0.0078 (7)0.0021 (6)
C20.0394 (9)0.0311 (8)0.0289 (8)0.0008 (7)0.0093 (7)0.0010 (6)
C30.0511 (11)0.0333 (9)0.0344 (9)0.0033 (8)0.0121 (8)0.0010 (7)
C40.0645 (13)0.0341 (9)0.0382 (10)0.0060 (9)0.0122 (9)0.0060 (7)
C50.0529 (11)0.0411 (10)0.0443 (10)0.0143 (9)0.0062 (9)0.0079 (8)
C60.0386 (9)0.0411 (10)0.0449 (10)0.0073 (8)0.0096 (8)0.0057 (8)
O10.0300 (6)0.0348 (6)0.0388 (6)0.0032 (5)0.0096 (5)0.0074 (5)
C70.0347 (8)0.0357 (9)0.0321 (8)0.0048 (7)0.0122 (7)0.0004 (7)
N10.0282 (7)0.0336 (7)0.0301 (7)0.0001 (5)0.0090 (5)0.0017 (5)
C80.0268 (8)0.0446 (10)0.0448 (10)0.0004 (7)0.0086 (7)0.0032 (8)
C110.0244 (7)0.0308 (8)0.0296 (8)0.0010 (6)0.0072 (6)0.0019 (6)
C120.0252 (7)0.0328 (8)0.0327 (8)0.0007 (6)0.0064 (6)0.0007 (6)
C130.0360 (9)0.0347 (9)0.0439 (10)0.0008 (7)0.0067 (7)0.0060 (7)
C140.0397 (10)0.0343 (9)0.0565 (12)0.0079 (7)0.0083 (9)0.0014 (8)
C150.0304 (8)0.0398 (9)0.0454 (10)0.0040 (7)0.0068 (7)0.0102 (8)
C160.0269 (7)0.0397 (9)0.0315 (8)0.0003 (6)0.0056 (6)0.0051 (7)
O110.0322 (6)0.0318 (6)0.0257 (5)0.0021 (4)0.0049 (4)0.0007 (4)
C170.0271 (7)0.0338 (8)0.0275 (7)0.0038 (6)0.0064 (6)0.0058 (6)
N110.0270 (6)0.0348 (7)0.0240 (6)0.0011 (5)0.0046 (5)0.0017 (5)
C180.0379 (9)0.0432 (9)0.0253 (8)0.0029 (7)0.0021 (7)0.0011 (7)
C210.0331 (8)0.0304 (8)0.0288 (8)0.0057 (6)0.0086 (6)0.0009 (6)
C220.0324 (8)0.0331 (8)0.0305 (8)0.0056 (6)0.0089 (7)0.0035 (6)
C230.0446 (10)0.0431 (10)0.0393 (10)0.0030 (8)0.0192 (8)0.0038 (8)
C240.0616 (13)0.0546 (12)0.0380 (10)0.0041 (10)0.0247 (9)0.0027 (9)
C250.0630 (13)0.0457 (11)0.0337 (9)0.0023 (9)0.0136 (9)0.0093 (8)
C260.0440 (10)0.0356 (9)0.0359 (9)0.0003 (7)0.0098 (7)0.0050 (7)
O210.0364 (6)0.0345 (6)0.0348 (6)0.0048 (5)0.0145 (5)0.0061 (5)
C270.0254 (7)0.0330 (8)0.0328 (8)0.0017 (6)0.0076 (6)0.0063 (6)
N210.0261 (6)0.0286 (6)0.0298 (7)0.0003 (5)0.0050 (5)0.0026 (5)
C280.0330 (8)0.0376 (9)0.0338 (8)0.0077 (7)0.0052 (7)0.0013 (7)
Geometric parameters (Å, º) top
Cr1—O211.9318 (11)C13—H130.9500
Cr1—O11.9337 (12)C14—C151.391 (3)
Cr1—O111.9563 (11)C14—H140.9500
Cr1—N12.0557 (13)C15—C161.381 (3)
Cr1—N212.0705 (13)C15—H150.9500
Cr1—N112.0752 (13)C16—H160.9500
C1—O11.316 (2)C17—N111.285 (2)
C1—C61.409 (2)C17—H170.9500
C1—C21.419 (2)N11—C181.471 (2)
C2—C31.410 (2)C18—H18A0.9800
C2—C71.440 (2)C18—H18B0.9800
C3—C41.370 (3)C18—H18C0.9800
C3—H30.9500C21—O211.3077 (19)
C4—C51.396 (3)C21—C261.413 (2)
C4—H40.9500C21—C221.415 (2)
C5—C61.379 (3)C22—C231.415 (2)
C5—H50.9500C22—C271.437 (2)
C6—H60.9500C23—C241.365 (3)
C7—N11.282 (2)C23—H230.9500
C7—H70.9500C24—C251.395 (3)
N1—C81.465 (2)C24—H240.9500
C8—H8A0.9800C25—C261.375 (3)
C8—H8B0.9800C25—H250.9500
C8—H8C0.9800C26—H260.9500
C11—O111.3098 (19)C27—N211.291 (2)
C11—C161.415 (2)C27—H270.9500
C11—C121.416 (2)N21—C281.462 (2)
C12—C131.407 (2)C28—H28A0.9800
C12—C171.445 (2)C28—H28B0.9800
C13—C141.380 (3)C28—H28C0.9800
O21—Cr1—O193.11 (5)C12—C13—H13119.2
O21—Cr1—O1187.64 (5)C13—C14—C15118.72 (17)
O1—Cr1—O11175.79 (5)C13—C14—H14120.6
O21—Cr1—N188.36 (5)C15—C14—H14120.6
O1—Cr1—N190.60 (5)C16—C15—C14120.98 (16)
O11—Cr1—N193.56 (5)C16—C15—H15119.5
O21—Cr1—N2190.36 (5)C14—C15—H15119.5
O1—Cr1—N2185.55 (5)C15—C16—C11121.43 (16)
O11—Cr1—N2190.31 (5)C15—C16—H16119.3
N1—Cr1—N21175.87 (5)C11—C16—H16119.3
O21—Cr1—N11173.59 (5)C11—O11—Cr1131.59 (10)
O1—Cr1—N1191.09 (5)N11—C17—C12126.65 (14)
O11—Cr1—N1188.52 (5)N11—C17—H17116.7
N1—Cr1—N1186.75 (5)C12—C17—H17116.7
N21—Cr1—N1194.80 (5)C17—N11—C18115.80 (13)
O1—C1—C6118.97 (16)C17—N11—Cr1125.89 (11)
O1—C1—C2123.49 (15)C18—N11—Cr1118.19 (10)
C6—C1—C2117.53 (15)N11—C18—H18A109.5
C3—C2—C1119.56 (16)N11—C18—H18B109.5
C3—C2—C7116.92 (16)H18A—C18—H18B109.5
C1—C2—C7123.51 (15)N11—C18—H18C109.5
C4—C3—C2121.68 (18)H18A—C18—H18C109.5
C4—C3—H3119.2H18B—C18—H18C109.5
C2—C3—H3119.2O21—C21—C26118.70 (15)
C3—C4—C5118.94 (17)O21—C21—C22123.61 (15)
C3—C4—H4120.5C26—C21—C22117.69 (15)
C5—C4—H4120.5C21—C22—C23119.31 (16)
C6—C5—C4120.81 (18)C21—C22—C27123.58 (14)
C6—C5—H5119.6C23—C22—C27117.11 (16)
C4—C5—H5119.6C24—C23—C22121.71 (18)
C5—C6—C1121.47 (18)C24—C23—H23119.1
C5—C6—H6119.3C22—C23—H23119.1
C1—C6—H6119.3C23—C24—C25118.99 (17)
C1—O1—Cr1130.42 (11)C23—C24—H24120.5
N1—C7—C2127.12 (15)C25—C24—H24120.5
N1—C7—H7116.4C26—C25—C24121.00 (18)
C2—C7—H7116.4C26—C25—H25119.5
C7—N1—C8117.74 (14)C24—C25—H25119.5
C7—N1—Cr1124.64 (11)C25—C26—C21121.27 (17)
C8—N1—Cr1117.55 (11)C25—C26—H26119.4
N1—C8—H8A109.5C21—C26—H26119.4
N1—C8—H8B109.5C21—O21—Cr1131.04 (11)
H8A—C8—H8B109.5N21—C27—C22127.26 (15)
N1—C8—H8C109.5N21—C27—H27116.4
H8A—C8—H8C109.5C22—C27—H27116.4
H8B—C8—H8C109.5C27—N21—C28117.13 (14)
O11—C11—C16119.08 (14)C27—N21—Cr1124.09 (11)
O11—C11—C12123.55 (14)C28—N21—Cr1118.66 (10)
C16—C11—C12117.36 (15)N21—C28—H28A109.5
C13—C12—C11119.80 (15)N21—C28—H28B109.5
C13—C12—C17117.14 (15)H28A—C28—H28B109.5
C11—C12—C17122.97 (15)N21—C28—H28C109.5
C14—C13—C12121.63 (17)H28A—C28—H28C109.5
C14—C13—H13119.2H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O11i0.952.443.3154 (19)154
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O11i0.952.443.3154 (19)153.7
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the State of Schleswig–Holstein.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCornman, C. R., Geiser-Bush, K. M., Rowley, S. P. & Boyle, P. D. (1997). Inorg. Chem. 36, 6401–6408.  Web of Science CSD CrossRef CAS Google Scholar
First citationHilbert, J., Kabus, S., Näther, C. & Bensch, W. (2015). Acta Cryst. E71, m225.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds