research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A 2:1 co-crystal of p-nitro­benzoic acid and N,N′-bis­­(pyridin-3-ylmeth­yl)ethanedi­amide: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2015; accepted 14 December 2015; online 1 January 2016)

The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di­amide mol­ecule is generated by crystallographic inversion symmetry, features a three-mol­ecule aggregate sustained by hydroxyl-O—H⋯N(pyrid­yl) hydrogen bonds. The p-nitro­benzoic acid mol­ecule is non-planar, exhibiting twists of both the carb­oxy­lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di­amide mol­ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di­amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol­ecule aggregates are linked into a linear supra­molecular ladder sustained by amide-N—H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C—H⋯O(amide) inter­actions, which, in turn, are connected into a three-dimensional architecture via ππ stacking inter­actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter­molecular inter­actions involving oxygen atoms as well as the ππ inter­actions.

1. Chemical context

Arguably, the most prominent motivation for the study of co-crystals relates to their potential applications in the pharmaceutical industry whereby co-crystals of active pharmaceutical ingredients (APIs) formed with generally regarded as safe (GRAS) co-crystal coformers might provide drugs with enhanced useful properties, e.g. stability, solubility, bioavailability, etc. (Aakeröy, 2015[Aakeröy, C. (2015). Acta Cryst. B71, 387-391.]; Almarsson & Zaworotko, 2004[Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]). Further impetus for investigating co-crystals relates to ascertaining reliable supra­molecular synthons that might be exploited to direct crystal growth, or at least aggregates within crystals (Mukherjee, 2015[Mukherjee, A. (2015). Cryst. Growth Des. 15, 3076-3085.]; Tiekink, 2014[Tiekink, E. R. T. (2014). Chem. Commun. 50, 11079-11082.]). Co-crystals of N,N′-bis­(pyridin-3-ylmeth­yl)ethanedi­amide, see Scheme, figured prominently in early investigations of halogen bonding (e.g. Goroff et al., 2005[Goroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891-1893.]) and also has been co-crystallized with carb­oxy­lic acids (e.g. Nguyen et al., 2001[Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.]). As a continuation of recent work related to the study of co-crystal formation of pyridyl-containing mol­ecules with carb­oxy­lic acids (Arman et al., 2013[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 295-303.]), the co-crystallization of N,N′-bis­(pyridin-3-ylmeth­yl)ethanedi­amide with p-nitro­benzoic acid was investigated, yielding the title 2:1 co-crystal. The results of this investigation are reported herein.

2. Structural commentary

The title co-crystal, Fig. 1[link], comprises a p-nitro­benzoic acid mol­ecule (hereafter, `acid') in a general position, and a N,N′-bis­(pyridin-3-ylmeth­yl)ethanedi­amide mol­ecule (hereafter, `di­amide') situated about a centre of inversion. This results in the 2:1 co-crystal stoichiometry.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structures comprising the 2:1 co-crystal in the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level: (a) p-nitro­benzoic acid and (b) N,N′-bis­(pyridin-3-ylmeth­yl)ethanedi­amide; unlabelled atoms are related by the symmetry operation 2 − x, 1 − y, 2 − z.

Twists are noted in the acid mol­ecule so that the dihedral angle between the benzene ring and the non-hydrogen atoms of the carb­oxy­lic acid group is 10.16 (9)°. The comparable angle involving the nitro group is 4.24 (4)°, consistent with a smaller twist. The substituents have a conrotatory disposition forming a dihedral angle of 13.50 (8)°. The crystal structure of the free acid was first reported almost fifty years ago (Sakore & Pant, 1966[Sakore, T. D. & Pant, L. M. (1966). Acta Cryst. 21, 715-719.]) and has been the subject of several subsequent investigations. The overall conformation for the acid in the title co-crystal matches the literature structures to a first approximation but it exhibits greater and smaller twists for the carb­oxy­lic acid and nitro groups, respectively, compared to those found in the two polymorphic forms of the free acid (A2/a: Tonogaki et al., 1993[Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.]; P21/m: Bolte, 2009[Bolte, M. (2009). Private communication to the CCDC, Cambridge, England.]), Table 1[link].

Table 1
Dihedral angles (°) for p-nitro­benzoic acid in the title co-crystal and in poylmorphic forms reported in the literature

Structure C6/CO2 C6/NO2 CO2/NO2 CSD refcodea Ref.
A2/a form 2.37 (3) 14.82 (3) 17.34 (4) NBZOAC04 Tonogaki et al. (1993[Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.])
P21/m form 0.80 (10) 12.89 (9) 11.47 (12) NBZOAC11 Bolte (2009[Bolte, M. (2009). Private communication to the CCDC, Cambridge, England.])
Co-crystal 10.16 (9) 4.24 (4) 13.50 (8) This work
Notes: (a) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

The di­amide features an essentially flat central residue with the r.m.s. deviation for the eight non-hydrogen atoms (O1, N2, C6 and C7, and symmetry equivalents) being 0.025 Å. This planar arrangement allows for the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds (Table 2[link]). The pyridyl rings lie to either side of this plane and occupy positions approximately perpendicular to the plane, forming dihedral angles of 77.22 (6)°. Overall, the mol­ecule has the shape of a distorted letter Z. A number of co-crystals of the di­amide have been described and salient geometric parameters for these are collated in Table 3[link]. All but one of these structures features a centrosymmetric di­amide mol­ecule. The range of dihedral angles between the central chromophore and the pendant pyridyl rings span the range 61.24 (5) to 84.6 (2)°. This conformational flexibility is reflected in the sole example of an organic salt of the di­amide where the two dihedral angles vary by approximately 18°, Table 3[link]. The other feature of these structures worth highlighting are the relatively long central C—C bond lengths, their length often resulting in a PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) alert. In the structures included in Table 3[link], the central C—C bond lengths vary from 1.515 (3) to 1.550 (17) Å, cf. 1.530 (3) Å in the title co-crystal.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.88 2.35 2.7116 (16) 104
O2—H2O⋯N1 0.87 (1) 1.75 (1) 2.6114 (17) 175 (2)
N2—H2N⋯O5ii 0.88 2.36 3.2010 (17) 159
C2—H2⋯O3 0.95 2.56 3.2062 (19) 125
C4—H4⋯O1iii 0.95 2.37 3.0016 (18) 124
C5—H5⋯O1iii 0.95 2.54 3.0843 (18) 117
C11—H11⋯O1iv 0.95 2.45 3.2278 (18) 139
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x-1, y, z+1; (iii) x-1, y, z; (iv) -x+2, -y+1, -z+1.

Table 3
Selected geometric details (Å, °) for N,N-bis­(pyridin-3-ylmeth­yl)ethanedi­amide mol­ecules, and halogen/hydrogen bonding in its organic co-crystals and a salt

Coformer C4N2O2/pyrid­yl C(=O)—C(=O) Halogen/hydrogen bonding Refcodea' Ref.
p-C6F4I2 70.56 (7) 1.544 (4) I⋯O; amide-N—H⋯N(pyrid­yl) IPOSIP Hursthouse et al. (2003[Hursthouse, M. B., Gelbrich, T. & Plater, M. J. (2003). Private Communication to the CSD .])
IC≡CC≡CI 76.7 (2) 1.524 (10) I⋯N; amide-N—H⋯O(amide) WANNOP Goroff et al. (2005[Goroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891-1893.])
IC≡CC≡CC≡CI 84.6 (2) 1.548 (11) I⋯N; amide-N—H⋯O(amide) WANPIL Goroff et al. (2005[Goroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891-1893.])
{CC(I)=C(I)C≡CC(I)=C(I)C}n 80.6 (4) 1.550 (17) I⋯N; amide-N—H⋯O(amide) REWVUM Jin et al. (2013[Jin, H., Plonka, A. M., Parise, J. B. & Goroff, N. S. (2013). CrystEngComm, 15, 3106-3110.])
[HO2CCH2N(H)C(=O)]2 64.4 (3) 1.532 (19) hy­droxy-O—H⋯N(pyrid­yl); amide-N—H⋯O(amide) CAJQAG Nguyen et al. (2001[Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.])
[HO2CCH2N(H)]2C(=O) 81.47 (6) 1.515 (3) hy­droxy-O—H⋯N(pyrid­yl); amide-N—H⋯O(amide) CAJQEK Nguyen et al. (2001[Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.])
[2-(CO2H)C6H4S]2 61.24 (5), 69.42 (6)b 1.534 (3) hy­droxy-O—H⋯N(pyrid­yl); amide-N—H⋯O(amide) KUZSOO Arman et al. (2010[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2590-o2591.])
2-NH2C6H4CO2H 74.95 (4) 1.543 (2) hy­droxy-O—H⋯N(pyrid­yl); amide-N—H⋯O(carbon­yl) DIDZAT Arman et al. (2012[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 825-830.])
2,6-(NO2)2C6H3CO2 65.31 (4), 83.22 (5)c 1.541 (2) pyridinium-N—H⋯O(carboxyl­ate); amide-N—H⋯O(carboxyl­ate) TIPHAD Arman et al. (2013[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 295-303.])
4-NO2C6H4CO2H 77.22 (6) 1.530 (3) hy­droxy-O—H⋯N(pyrid­yl) This work
Notes: (a) Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). (b) The di­amide mol­ecule lacks a centre of inversion. (c) Salt: both pyridyl-N atoms are protonated in the non-symmetric dication.

3. Supra­molecular features

In the packing, the anti­cipated (Shattock et al., 2008[Shattock, T., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]) seven-membered {⋯HOCO⋯HCN} heterosynthon, featuring a strong hy­droxy-O—H⋯N(pyrid­yl) hydrogen bond and a complementary pyridyl-C—H⋯O(carbon­yl) inter­action, is observed, Table 2[link]. By symmetry, each di­amide mol­ecule forms two such inter­actions, resulting in a centrosymmetric three mol­ecule aggregate. To a first approximation, the components of the aggregate are co-planar with the acid mol­ecules perpendicular to the di­amide mol­ecules, Fig. 2[link]. This arrangement allows for the close approach of the nitro groups to the amide residues of translationally-related mol­ecules resulting in amide-N—H⋯O(nitro) hydrogen bonds, and the formation of supra­molecular ladders propagating along [10[\overline{4}]]. This further results in the formation of centrosymmetric 36-membered {⋯HOC5NO⋯HNC2NC3N}2 supra­molecular rings, Fig. 2[link]. The chains are linked into layers parallel to (010) by pyridyl-C—H⋯O(amide) inter­actions, and layers are connected into double layers by benzene-C—H⋯O(amide) inter­actions, as shown in Fig. 3[link]. In this scheme, the amide-O1 atom accepts three close inter­molecular inter­actions. Further consolidation within the double layers is afforded by inter­actions of the type ππ, which occur between centrosymmetrically related pyridyl and benzene rings, i.e. Cg(pyrid­yl)⋯Cg(benzene)i = 3.7214 (8) Å, with an angle of 4.69 (7)° between the rings; symmetry operation: (i) 2 − x, 1 − y, 1 − z. The connections between the layers to consolidate the three-dimensional architecture, Fig. 4[link], are also of the type ππ, and also occur between centrosymmetrically related pyridyl and benzene rings, i.e. Cg(pyrid­yl)⋯Cg(benzene)ii = 3.6947 (8) Å with an angle of inclination = 4.69 (7)°; symmetry operation: (ii) 2 − x, 2 − y, 1 − z.

[Figure 2]
Figure 2
A view of the linear supra­molecular ladder in the mol­ecular packing of the title compound. The hydroxyl-O—H⋯N(pyrid­yl) and amide-N—H⋯O(nitro) hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3]
Figure 3
A view of the double layer in the title compound where the supra­molecular chains shown in Fig. 2[link] are connected by pyridyl- and benzene-C—H⋯O(amide) inter­actions, shown as pink dashed lines. The ππ inter­actions within the layers (see text) are not shown.
[Figure 4]
Figure 4
A view of the unit-cell contents of the title compound shown in projection down the a axis, whereby the supra­molecular layers, illustrated in Fig. 3[link], are linked by ππ inter­actions, shown as purple dashed lines, leading to a three-dimensional architecture.

4. Analysis of the Hirshfeld surfaces

The packing of the title compound was also investigated by an analysis of the Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with the aid of CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The two-dimensional fingerprint plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]) were calculated for the crystal as well as for the individual coformers, as were the electrostatic potentials using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]), also with CrystalExplorer; the electrostatic potentials were mapped on the Hirshfeld surfaces using the STO–3G basis set at the level of Hartree–Fock theory over a range of ±0.075 au.

The presence of strong hydroxyl-O—H⋯N(pyrid­yl) and amide-N—H⋯O(nitro) inter­actions between the pair of acid mol­ecules and a di­amide mol­ecule can be observed through their corresponding Hirshfeld surfaces mapped over the electrostatic potential, Fig. 5[link]. From symmetry, each di­amide forms two pairs of inter­actions, visualized as bright-red spots on the Hirshfeld surface mapped over dnorm and labelled as 1 and 3, respectively, in Fig. 6[link]. The full fingerprint plot for the co-crystal is shown in Fig. 7[link]. The prominent spikes at de + di = 1.6 Å are due to N⋯H/H⋯N contacts. Thus, the long spike in the upper left region is due to the hydroxyl-O—H⋯N(pyrid­yl) inter­action and the similar long spike at the same de + di distance in the lower right region indicates the contribution of the amide-N—H⋯O(nitro) inter­action. The donor–acceptor contributions of these co-crystal constituents are highlighted with the label `d′ in the fingerprint plot, Fig. 7[link]. The inter­molecular O⋯H and H⋯O contacts, which are prominent in the mol­ecular packing, Table 2[link] and Fig. 5[link], provide quite different contributions to the Hirshfeld surfaces of the acid and di­amide mol­ecules. While the O⋯H contacts have a large contribution, i.e. 32.3%, to the Hirshfeld surface of the acid, a smaller contribution, i.e. 8.3%, is provided by the di­amide; the reverse is true for for the O⋯H contacts, i.e. 8.5 and 30.4%, respectively. The overall fingerprint plot for the co-crystal when delineated into O⋯H/H⋯O contacts leads to the pair of spikes corresponding to donors and acceptors with a 37.1% contribution to surface (featured as `b' in Fig. 7[link]). The donors and acceptors corresponding to inter­molecular C—H⋯O inter­actions are seen as pale-red spots and are labelled as 2, 4, 5 and 6 in Fig. 6[link]. The contribution from C⋯H/H⋯C contacts (10.4% of the Hirshfeld surface) results in a symmetrical pair of wings, see `c' in Fig. 7[link]. The C⋯C contacts assigned to ππ stacking inter­actions appear as a distinct triangle in the fingerprint plot, see `e' in Fig. 7[link], at around de = di = 1.8 Å. The presence of these ππ stacking inter­actions is justified by the appearance of red and blue triangle pairs on the Hirshfeld surface mapped with shape index identified with arrows in the images of Fig. 8[link] and in the flat regions on the Hirshfeld surfaces mapped with curvedness in Fig. 9[link]. The H⋯H contacts appear as the scattered points along with a single broad peak in the middle region of the fingerprint plot for each of the co-crystal constituents; the peak positions are at de = di = 1.2 and 1.0 Å, and the % contributions are 24.3% and 29.7% for acid and di­amide, respectively. Thus, the overall 28.6% contribution to the Hirshfeld surface of the co-crystal is just the superimposition of these individual fingerprint plots, and results in the peak marked with `a' in Fig. 7[link]. The relative contributions from various contacts to the Hirshfeld surfaces of acid, di­amide and the co-crystal are tabulated in Table 4[link].

Table 4
Percentage contribution of the different inter­molecular inter­actions to the Hirshfeld surfaces for the acid, di­amide and co-crystal

Inter­action Acid Di­amide Co-crystal
H⋯H 24.3 29.7 28.6
O⋯H/H⋯O 40.8 38.7 37.1
C⋯H/H⋯C 10.5 7.6 10.4
N⋯H/H⋯N 4.5 8.2 4.4
C⋯C 6.5 7.0 7.2
C⋯N/N⋯C 4.4 4.6 5.0
C⋯O/O⋯C 6.5 3.1 5.4
N⋯O/O⋯N 0.4 0.4 0.4
O⋯O 2.1 0.7 1.5
[Figure 5]
Figure 5
Views of the Hirshfeld surfaces mapped over the calculated electrostatic potential: (a) acid and (b) di­amide in the title compound.
[Figure 6]
Figure 6
Views of the Hirshfeld surface mapped over dnorm: (a) acid and (b) di­amide in the title compound.
[Figure 7]
Figure 7
The two-dimensional fingerprint plot for the title 2:1 co-crystal showing contributions from different contacts: (a) H⋯H, (b) O⋯H/H⋯O, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) C⋯C.
[Figure 8]
Figure 8
Hirshfeld surfaces mapped over the shape index for (a) the acid and (b) the di­amide, highlighting the regions involved in ππ stacking inter­actions.
[Figure 9]
Figure 9
Hirshfeld surfaces mapped over curvedness for (a) the acid and (b) the di­amide, highlighting the regions involved in ππ stacking inter­actions.

A further analysis of Hirshfeld surfaces was conducted using a new descriptor, i.e. the enrichment ratio, ER (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]), Table 5[link]. The ER relates to the propensity of chemical species to form specific inter­actions in the mol­ecular packing. The ER value of approximately 1.5 for the O⋯H/H⋯O contacts clearly provides evidence for the formation of O—H⋯N, N—H⋯O and C—H⋯O inter­actions. The high propensity of N-heterocycles, e.g. pyridyl, to form ππ stacking inter­actions with benzene is also evident from the high ER values corresponding to C⋯C contacts in the structure. On the other hand, the values of ER, i.e. < 0.6, reflects the low propensity for C⋯H/H⋯C contacts in the structure as the result of significant inter­actions involving O⋯H and N⋯H contacts. The enrichment ratios are closer to unity for the N⋯H/H⋯N contacts, an observation that is consistent with their relatively low contribution to the overall surface area. Finally, ER values close to but slightly less than unity for the H⋯H contacts are noted, in accord with expectation (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). The ER values for other contacts are of low significance as they are derived from less important inter­actions with small contributions to the overall Hirshfeld surface.

Table 5
Enrichment ratios (ER) for the acid, di­amide and co-crystal

Inter­action Acid Di­amide Co-crystal
H⋯H 0.89 0.92 0.96
O⋯H·H⋯O 1.55 1.56 1.48
C⋯H/H⋯C 0.59 0.46 0.54
N⋯H/H⋯N 0.94 1.09 0.82
C⋯C 3.26 2.20 2.90

5. Database survey

As mentioned in the Chemical context, the di­amide investigated herein has been the subject of several co-crystallization investigations, i.e. with co-formers capable of forming both halogen bonding and conventional hydrogen bonding inter­actions. Referring to the data in Table 3[link], three of the co-crystals having an iodide substituent in the co-former, feature N⋯I halogen bonding along with amide-N—H⋯O(amide) hydrogen bonding, the latter leading to amide `tapes'. The exceptional structure is found in the 1:1 co-crystal with p-C6F4I2 where I⋯O halogen bonding and amide-N—H⋯N(pyrid­yl) hydrogen bonding was observed (Hursthouse et al., 2003[Hursthouse, M. B., Gelbrich, T. & Plater, M. J. (2003). Private Communication to the CSD .]). In co-crystals with carb­oxy­lic acids, hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonding complementing amide-N—H⋯N(pyrid­yl) mediated tapes is normally observed. In the exceptional structure, i.e. of the 2:1 co-crystal with anthranilic acid, amide-N—H⋯O(carbon­yl) hydrogen bonding is seen along with hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonding (Arman et al., 2012[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 825-830.]). Finally, one salt has been reported with the 2,6-(NO2)2C6H3CO2 anion (Arman et al., 2013[Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 295-303.]). Here, charge-assisted pyridinium-N—H⋯O(carboxyl­ate) and amide-N—H⋯O(carboxyl­ate) hydrogen bonding is found.

6. Synthesis and crystallization

The di­amide (0.5 mmol), prepared in accord with the literature procedure (Schauer et al., 1997[Schauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1997). J. Am. Chem. Soc. 119, 10245-10246.]), in ethanol (5 ml) was added to a ethanol solution (5 ml) of 4-nitro­benzoic acid (Merck, 0.5 mmol). The mixture was stirred for 3 h at room temperature. After standing for a few minutes, a white precipitate formed which was filtered off by vacuum suction. The filtrate was then left at room temperature, yielding colourless blocks of the title compound after 2 weeks.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The oxygen- and nitro­gen-bound H-atoms were located in a difference Fourier map but were refined with distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.5Ueq(O) and 1.2Ueq(N).

Table 6
Experimental details

Crystal data
Chemical formula C14H14N4O2·2C7H5NO4
Mr 604.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.6981 (4), 6.9988 (4), 14.1770 (9)
α, β, γ (°) 91.070 (5), 92.131 (5), 96.602 (5)
V3) 659.56 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.633, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5870, 2645, 2203
Rint 0.021
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.05
No. of reflections 2645
No. of parameters 202
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.37, −0.25
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Nitrobenzoic acid–N,N'-bis(pyridin-3-ylmethyl)ethanediamide (2/1) top
Crystal data top
C14H14N4O2·2C7H5NO4Z = 1
Mr = 604.53F(000) = 314
Triclinic, P1Dx = 1.522 Mg m3
a = 6.6981 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9988 (4) ÅCell parameters from 2741 reflections
c = 14.1770 (9) Åθ = 4.0–28.8°
α = 91.070 (5)°µ = 0.12 mm1
β = 92.131 (5)°T = 100 K
γ = 96.602 (5)°Block, colourless
V = 659.56 (7) Å30.30 × 0.25 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2645 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2203 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 26.5°, θmin = 2.9°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 88
Tmin = 0.633, Tmax = 1.000l = 1716
5870 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.2196P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.37 e Å3
2645 reflectionsΔρmin = 0.25 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.11011 (16)0.56895 (15)0.89399 (7)0.0199 (3)
N10.70817 (19)0.71283 (17)0.65579 (9)0.0186 (3)
N20.88281 (19)0.71178 (17)0.97708 (9)0.0179 (3)
H2N0.81490.71091.02910.021*
C10.7342 (2)0.7881 (2)0.82222 (11)0.0172 (3)
C20.8169 (2)0.7782 (2)0.73381 (11)0.0183 (3)
H20.95610.81930.72840.022*
C30.5122 (2)0.6562 (2)0.66314 (11)0.0187 (3)
H30.43500.61010.60810.022*
C40.4177 (2)0.6621 (2)0.74804 (11)0.0194 (3)
H40.27780.62180.75100.023*
C50.5299 (2)0.7276 (2)0.82860 (11)0.0178 (3)
H50.46800.73130.88770.021*
C60.8627 (2)0.8617 (2)0.90832 (11)0.0204 (3)
H6A0.99800.91320.88830.024*
H6B0.80180.96840.93860.024*
C71.0031 (2)0.5762 (2)0.96193 (10)0.0155 (3)
O20.87273 (16)0.69092 (16)0.49240 (8)0.0215 (3)
H2O0.825 (3)0.698 (3)0.5481 (8)0.032*
O31.14230 (17)0.83861 (17)0.57361 (8)0.0250 (3)
O41.41048 (19)0.74597 (18)0.08648 (8)0.0315 (3)
O51.68626 (18)0.82597 (18)0.16957 (8)0.0298 (3)
N31.5028 (2)0.78448 (18)0.16264 (9)0.0218 (3)
C81.0608 (2)0.7690 (2)0.50090 (11)0.0183 (3)
C91.1723 (2)0.7669 (2)0.41044 (10)0.0163 (3)
C101.0748 (2)0.7181 (2)0.32349 (11)0.0181 (3)
H100.93390.68010.32010.022*
C111.1823 (2)0.7246 (2)0.24197 (11)0.0180 (3)
H111.11660.69240.18230.022*
C121.3883 (2)0.7791 (2)0.24931 (10)0.0166 (3)
C131.4902 (2)0.8288 (2)0.33481 (11)0.0180 (3)
H131.63100.86720.33790.022*
C141.3796 (2)0.8204 (2)0.41546 (11)0.0169 (3)
H141.44580.85160.47510.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0189 (6)0.0249 (6)0.0158 (5)0.0010 (4)0.0052 (5)0.0015 (4)
N10.0224 (7)0.0171 (6)0.0176 (7)0.0061 (5)0.0044 (6)0.0030 (5)
N20.0194 (7)0.0203 (6)0.0138 (6)0.0013 (5)0.0032 (5)0.0007 (5)
C10.0206 (8)0.0118 (6)0.0196 (8)0.0035 (6)0.0012 (6)0.0025 (6)
C20.0178 (8)0.0149 (7)0.0229 (8)0.0031 (6)0.0035 (6)0.0045 (6)
C30.0211 (8)0.0183 (7)0.0174 (8)0.0048 (6)0.0000 (6)0.0028 (6)
C40.0182 (8)0.0191 (7)0.0207 (8)0.0010 (6)0.0029 (6)0.0032 (6)
C50.0208 (8)0.0164 (7)0.0169 (7)0.0027 (6)0.0053 (6)0.0025 (6)
C60.0217 (8)0.0166 (7)0.0225 (8)0.0003 (6)0.0013 (7)0.0009 (6)
C70.0133 (7)0.0181 (7)0.0138 (7)0.0025 (6)0.0017 (6)0.0040 (6)
O20.0197 (6)0.0264 (6)0.0185 (6)0.0011 (5)0.0052 (5)0.0008 (5)
O30.0243 (6)0.0333 (6)0.0169 (6)0.0014 (5)0.0027 (5)0.0040 (5)
O40.0396 (8)0.0406 (7)0.0152 (6)0.0078 (6)0.0037 (5)0.0007 (5)
O50.0234 (7)0.0353 (7)0.0321 (7)0.0051 (5)0.0115 (5)0.0037 (5)
N30.0273 (8)0.0183 (6)0.0215 (7)0.0070 (6)0.0066 (6)0.0029 (5)
C80.0179 (8)0.0158 (7)0.0214 (8)0.0031 (6)0.0002 (6)0.0027 (6)
C90.0190 (8)0.0126 (7)0.0177 (8)0.0029 (6)0.0025 (6)0.0017 (6)
C100.0153 (7)0.0162 (7)0.0225 (8)0.0010 (6)0.0003 (6)0.0003 (6)
C110.0217 (8)0.0163 (7)0.0158 (7)0.0024 (6)0.0024 (6)0.0004 (6)
C120.0212 (8)0.0135 (7)0.0161 (7)0.0044 (6)0.0052 (6)0.0018 (6)
C130.0163 (8)0.0161 (7)0.0216 (8)0.0022 (6)0.0010 (6)0.0011 (6)
C140.0190 (8)0.0155 (7)0.0158 (7)0.0016 (6)0.0024 (6)0.0004 (6)
Geometric parameters (Å, º) top
O1—C71.2256 (17)O2—C81.3145 (18)
N1—C31.335 (2)O2—H2O0.867 (9)
N1—C21.344 (2)O3—C81.2150 (18)
N2—C71.3329 (19)O4—N31.2338 (18)
N2—C61.4594 (19)O5—N31.2294 (18)
N2—H2N0.8800N3—C121.4713 (19)
C1—C21.393 (2)C8—C91.508 (2)
C1—C51.392 (2)C9—C101.392 (2)
C1—C61.514 (2)C9—C141.395 (2)
C2—H20.9500C10—C111.383 (2)
C3—C41.383 (2)C10—H100.9500
C3—H30.9500C11—C121.388 (2)
C4—C51.384 (2)C11—H110.9500
C4—H40.9500C12—C131.387 (2)
C5—H50.9500C13—C141.384 (2)
C6—H6A0.9900C13—H130.9500
C6—H6B0.9900C14—H140.9500
C7—C7i1.530 (3)
C3—N1—C2118.66 (13)N2—C7—C7i113.82 (15)
C7—N2—C6120.64 (13)C8—O2—H2O106.0 (13)
C7—N2—H2N119.7O5—N3—O4123.07 (14)
C6—N2—H2N119.7O5—N3—C12118.45 (13)
C2—C1—C5117.70 (14)O4—N3—C12118.48 (13)
C2—C1—C6121.03 (14)O3—C8—O2124.77 (14)
C5—C1—C6121.28 (14)O3—C8—C9121.32 (13)
N1—C2—C1122.83 (14)O2—C8—C9113.91 (13)
N1—C2—H2118.6C10—C9—C14119.84 (14)
C1—C2—H2118.6C10—C9—C8122.27 (13)
N1—C3—C4122.32 (14)C14—C9—C8117.88 (13)
N1—C3—H3118.8C11—C10—C9120.24 (14)
C4—C3—H3118.8C11—C10—H10119.9
C3—C4—C5119.07 (14)C9—C10—H10119.9
C3—C4—H4120.5C10—C11—C12118.52 (14)
C5—C4—H4120.5C10—C11—H11120.7
C4—C5—C1119.42 (14)C12—C11—H11120.7
C4—C5—H5120.3C13—C12—C11122.73 (14)
C1—C5—H5120.3C13—C12—N3118.79 (13)
N2—C6—C1112.31 (12)C11—C12—N3118.48 (13)
N2—C6—H6A109.1C14—C13—C12117.71 (14)
C1—C6—H6A109.1C14—C13—H13121.1
N2—C6—H6B109.1C12—C13—H13121.1
C1—C6—H6B109.1C13—C14—C9120.96 (14)
H6A—C6—H6B107.9C13—C14—H14119.5
O1—C7—N2124.82 (14)C9—C14—H14119.5
O1—C7—C7i121.36 (17)
C3—N1—C2—C10.5 (2)O2—C8—C9—C14170.76 (12)
C5—C1—C2—N10.2 (2)C14—C9—C10—C110.8 (2)
C6—C1—C2—N1179.66 (13)C8—C9—C10—C11177.77 (13)
C2—N1—C3—C40.1 (2)C9—C10—C11—C120.5 (2)
N1—C3—C4—C50.5 (2)C10—C11—C12—C130.5 (2)
C3—C4—C5—C10.8 (2)C10—C11—C12—N3179.50 (12)
C2—C1—C5—C40.4 (2)O5—N3—C12—C132.7 (2)
C6—C1—C5—C4179.72 (13)O4—N3—C12—C13177.78 (13)
C7—N2—C6—C175.28 (17)O5—N3—C12—C11177.38 (13)
C2—C1—C6—N2113.64 (15)O4—N3—C12—C112.2 (2)
C5—C1—C6—N266.21 (18)C11—C12—C13—C140.8 (2)
C6—N2—C7—O13.1 (2)N3—C12—C13—C14179.25 (12)
C6—N2—C7—C7i176.55 (14)C12—C13—C14—C91.0 (2)
O3—C8—C9—C10168.99 (14)C10—C9—C14—C131.0 (2)
O2—C8—C9—C1010.7 (2)C8—C9—C14—C13177.57 (13)
O3—C8—C9—C149.6 (2)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.882.352.7116 (16)104
O2—H2O···N10.87 (1)1.75 (1)2.6114 (17)175 (2)
N2—H2N···O5ii0.882.363.2010 (17)159
C2—H2···O30.952.563.2062 (19)125
C4—H4···O1iii0.952.373.0016 (18)124
C5—H5···O1iii0.952.543.0843 (18)117
C11—H11···O1iv0.952.453.2278 (18)139
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x+2, y+1, z+1.
Dihedral angles (°) for p-nitrobenzoic acid in the title co-crystal and in poylmorphic forms reported in the literature top
StructureC6/CO2C6/NO2CO2/NO2CSD refcodeaRef.
A2/a form2.37 (3)14.82 (3)17.34 (4)NBZOAC04Tonogaki et al. (1993)
P21/m form0.80 (10)12.89 (9)11.47 (12)NBZOAC11Bolte (2009)
Co-crystal10.16 (9)4.24 (4)13.50 (8)This work
Notes: (a) Groom & Allen (2014).
Selected geometric details (Å, °) for N,N'-bis(pyridin-3-ylmethyl)ethanediamide molecules, and halogen/hydrogen bonding in its organic co-crystals and a salt top
CoformerC4N2O2/pyridylC(O)—C(O)Halogen/hydrogen bondingRefcodea'Ref.
p-C6F4I270.56 (7)1.544 (4)I···O; amide-N—H···N(pyridyl)IPOSIPHursthouse et al. (2003)
ICCCCI76.7 (2)1.524 (10)I···N; amide-N—H···O(amide)WANNOPGoroff et al. (2005)
ICCCCCCI84.6 (2)1.548 (11)I···N; amide-N—H···O(amide)WANPILGoroff et al. (2005)
{CC(I)C(I)CCC(I)C(I)C}n80.6 (4)1.550 (17)I···N; amide-N—H···O(amide)REWVUMJin et al. (2013)
[HO2CCH2N(H)C(O)]264.4 (3)1.532 (19)hydroxy-O—H···N(pyridyl); amide-N—H···O(amide)CAJQAGNguyen et al. (2001)
[HO2CCH2N(H)]2C(O)81.47 (6)1.515 (3)hydroxy-O—H···N(pyridyl); amide-N—H···O(amide)CAJQEKNguyen et al. (2001)
[2-(CO2H)C6H4S]261.24 (5), 69.42 (6)b1.534 (3)hydroxy-O—H···N(pyridyl); amide-N—H···O(amide)KUZSOOArman et al. (2010)
2-NH2C6H4CO2H74.95 (4)1.543 (2)hydroxy-O—H···N(pyridyl); amide-N—H···O(carbonyl)DIDZATArman et al. (2012)
2,6-(NO2)2C6H3CO265.31 (4), 83.22 (5)c1.541 (2)pyridinium-N—H···O(carboxylate); amide-N—H···O(carboxylate)TIPHADArman et al. (2013)
4-NO2C6H4CO2H77.22 (6)1.530 (3)hydroxy-O—H···N(pyridyl)This work
Notes: (a) Groom & Allen (2014). (b) The diamide molecule lacks a centre of inversion. (c) Salt: both pyridyl-N atoms are protonated in the non-symmetric dication.
Percentage contribution of the different intermolecular interactions to the Hirshfeld surfaces for the acid, diamide and co-crystal top
InteractionAcidDiamideCo-crystal
H···H24.329.728.6
O···H/H···O40.838.737.1
C···H/H···C10.57.610.4
N···H/H···N4.58.24.4
C···C6.57.07.2
C···N/N···C4.44.65.0
C···O/O···C6.53.15.4
N···O/O···N0.40.40.4
O···O2.10.71.5
Enrichment ratios (ER) for the acid, diamide and co-crystal top
InteractionAcidDiamideCo-crystal
H···H0.890.920.96
O···H.H···O1.551.561.48
C···H/H···C0.590.460.54
N···H/H···N0.941.090.82
C···C3.262.202.90
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors thank the Exploratory Research Grant Scheme (ER008-2013A) for support.

References

First citationAakeröy, C. (2015). Acta Cryst. B71, 387–391.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAlmarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896.  Web of Science CrossRef Google Scholar
First citationArman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 825–830.  Web of Science CrossRef CAS Google Scholar
First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2590–o2591.  CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 295–303.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolte, M. (2009). Private communication to the CCDC, Cambridge, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGoroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891–1893.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHursthouse, M. B., Gelbrich, T. & Plater, M. J. (2003). Private Communication to the CSD .  Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTOA System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJin, H., Plonka, A. M., Parise, J. B. & Goroff, N. S. (2013). CrystEngComm, 15, 3106–3110.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, A. (2015). Cryst. Growth Des. 15, 3076–3085.  CrossRef CAS Google Scholar
First citationNguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057–11064.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakore, T. D. & Pant, L. M. (1966). Acta Cryst. 21, 715–719.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1997). J. Am. Chem. Soc. 119, 10245–10246.  CSD CrossRef CAS Web of Science Google Scholar
First citationShattock, T., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2014). Chem. Commun. 50, 11079–11082.  Web of Science CrossRef CAS Google Scholar
First citationTonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds