

Received 16 November 2015 Accepted 2 December 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cerium coordination network; praseodymium coordination network; neodymium coordination network; 4,4'-bipyridine *N*,*N*'-dioxide (bpydo); C— H···O interactions; π - π interactions; 4⁴ grid

CCDC references: 1440109; 1440108; 1440107

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Michael L. Stromyer,^a Cassandra P. Lilly,^b Adam J. Dillner^b and Jacqueline M. Knaust^a*

^aDepartment of Chemistry Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA, and ^bChemistry Department, 520 North Main St, Meadville, PA 16335, USA. *Correspondence e-mail: jknaust@clarion.edu

Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4'-bipyridine N,N'-dioxide (bpydo) are reported, namely poly[[tris(nitrato- $\kappa^2 O, O'$)cerium(III)]-bis(μ_2 -4,4'-bipyridine N,N'-dioxide- $\kappa^2 N:N'$)], [Ce(NO₃)₃- $(C_{10}H_8N_2O_2)_2]$, poly[[tris(nitrato- $\kappa^2 O, O'$)praeseodymium(III)]-bis(μ_2 -4,4'-bipyridine N,N'-dioxide- $\kappa^2 N:N'$], [Pr(NO₃)₃(C₁₀H₈N₂O₂)₂], and poly[[tris-(nitrato- $\kappa^2 O, O'$)neodymium(III)]-bis(μ_2 -4,4'-bipyridine N,N'-dioxide- $\kappa^2 N:N'$], $[Nd(NO_3)_3(C_{10}H_8N_2O_2)_2]$. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of $[Ln(NO_3)_3(\mu_2$ bpydo)₂ contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ_2 -bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the tencoordinate Ln^{III} cations, forming interdigitating 4⁴ grid-like layers extending parallel to (101), where interdigitation of layers is promoted by $C-H\cdots O$ interactions between nitrate anions and bpydo ligands. The interdigitated layers are linked to sets of neighboring layers via further C-H···O and π - π interactions.

1. Chemical context

The use of aromatic N, N'-dioxide ligands such as 4, 4'-bipyridine N,N'-dioxide (bpydo) in the synthesis of lanthanide compounds comprising coordination networks has been of recent interest (Dillner et al., 2010a,b; Hill et al., 2004, 2005a,b; Long et al., 2000, 2002). The coordination modes of aromatic N,N'-dioxide ligands are flexible; they may act as terminal ligands, end-on or end-to-end μ_2 -bridges, μ_3 -bridges, or μ_4 bridges (Lu et al., 2002; Ma et al., 2001, 2003; Zhang et al., 2004*a*,*b*). When acting as end-to-end μ_2 -bridges, these ligands can display cis, gauche, or trans conformations where the ideal conformations have $M = O \cdots O = M$ torsion angles of 0, 90 and 180°, respectively (Sun et al., 2004). Furthermore, aromatic N,N'-dioxide ligands are able to participate in a variety of hydrogen-bonding interactions (González Mantero et al., 2006). Structure prediction with these ligands can be difficult, not only due to their flexible bonding modes and various hydrogen-bonding interactions, but also due to the influences of solvent and anion (Hill et al., 2005a).

2. Structural commentary

Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4'-bipyridine N,N'-dioxide (bpydo), $[Ln(NO_3)_3(\mu_2$ -bpydo)_2] [Ln = Ce (I), Pr (II), and Nd (III)] are

reported. All three compounds are isostructural to the previously reported La analogue (Hill *et al.*, 2004).

(I) Ln = Ce
 (II) Ln = Pr
 (III) Ln = Nd

Figure 1

Coordination sphere around the Ce^{III} cation in the structure of (I), with displacement ellipsoids drawn at the 50% probability level. Dashed lines represent C-H···O interactions between neighboring bpydo ligands within the coordination sphere. [Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z.]

 LnO_{10} coordination environment forming a distorted bicapped square prism. [Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z.]

The asymmetric unit of $[Ln(NO_3)_3(\mu_2\text{-bpydo})_2]$ contains one lanthanide cation, two end-to-end bridging $\mu_2\text{-bpydo}$ ligands, and three chelating nitrate anions. All atoms in the asymmetric unit lie on general positions (Fig. 1). The Ln^{III} atoms have a coordination sphere defined by six oxygen atoms from chelating nitrate anions and four oxygen atoms from bpydo ligands. The ten oxygen atoms in the LnO_{10} coordina-

Figure 3

Diagram showing the 4⁴ grid-like layers that lie parallel to ($\overline{101}$) in (I). Dashed lines represent C-H···O interactions between neighboring byydo ligands within the Ce^{III} coordination sphere.

Table 1 Selected geometric parameters (Å, °) for (I)–(III).

Dihedral angles are reported between the mean planes defined by the indicated aromatic rings. Cg1 is the centroid of the N3/C11-C15 ring.

		(I)	(II)	(III)
$L_n \cdots L_n$ distances				
	$Ln1\cdots Ln1^{iii}$	13.3398 (13)	13.3127 (9)	13.3035 (5)
	$Ln1\cdots Ln1^{iv}$	13.2996 (11)	13.2634 (8)	13.2558 (4)
Dihedral angles				()
	N1/C1-C5···N2/C6-C10	27.387 (58)	28.041 (62)	28.471 (109)
	N3/C11-C15···N4/C16-C20	22.560 (50)	22.552 (55)	22.677 (93)
Torsion angles				· · · ·
0	$Ln1 - O2 \cdots O1 - Ln1^{iii}$	92.53 (6)	91.80 (6)	91.75 (11)
	$Ln1-O3\cdots O4-Ln1^{iv}$	5.38 (7)	4.86 (8)	4.87 (14)
π - π interactions for $Cg1 \cdots Cg1^x$				
	Centroid-centroid distance	3.7535 (10)	3.7465 (10)	3.7344 (17)
	Interplanar distance	3.2830 (6)	3.2790 (7)	3.2815 (11)
	Slippage	1.820	1.810	1.783
	Cg1–H15 ^x distance	3.305	3.312	3.311

Symmetry codes: (iii) x, y + 1, z; (iv) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (x) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 2.

Table 2

Selected bond lengths (Å) in compounds (I)-(III).

	Compound	(I)	(II)	(III)
Ln-O bond lengths involving bpydo ligands				
	$Ln1-O1^{ii}$	2.5464 (11)	2.5360 (12)	2.526 (2)
	Ln1-O2	2.5192 (11)	2.5009 (12)	2.488 (2)
	Ln1-O3	2.4685 (11)	2.4558 (11)	2.451 (2)
	$Ln1-O4^{i}$	2.4692 (11)	2.4554 (12)	2.448 (2)
	Average $Ln - O$ distances	2.501	2.487	2.478
Ln-O bond lengths involving chelating nitrate anions				
	Ln1-O5	2.5929 (13)	2.5750 (13)	2.555 (2)
	Ln1-O6	2.6573 (13)	2.6443 (14)	2.640 (2)
	Ln1-O8	2.6004 (12)	2.5832 (13)	2.573 (2)
	Ln1-O9	2.6428 (12)	2.6242 (13)	2.615 (2)
	Ln1-O11	2.6231 (12)	2.6036 (12)	2.585 (2)
	Ln1-O12	2.6333 (11)	2.6147 (12)	2.597 (2)
	Average <i>Ln</i> –O distances	2.625	2.608	2.594

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z.

tion environment form a distorted bi-capped square prism (Fig. 2). One of the ligands bridges in a nearly perfect *cis* conformation with an $Lnl-O3\cdots O4-Ln1^{iv}$ torsion angle of approximately 5° and a dihedral angle between the rings of approximately 33° . The other ligand bridges in a nearly perfect *gauche* conformation with an $Lnl-O2\cdots O1-Ln1^{iii}$ torsion angle of approximately 92° and a dihedral angle between the rings of approximately 92° and a dihedral angle between the rings of approximately 92° and a dihedral angle between the rings of approximately 28° (see Table 1). The bpydo ligands link the Ln^{III} atoms, forming 4^{4} grid-like layers that are parallel to ($\overline{101}$) (Fig. 3). Each layer interdigitates with a symmetry-equivalent second layer related by a twofold screw axis. The nitrate anions chelate to the metal cations on one side of the 4^{4} grid and are directed towards the square void of the symmetry-related interdigitated 4^{4} grid (Fig. 4).

While a roughly linear decrease in cell volume for a series of isostructural lanthanide compounds due to the lanthanide contraction may be expected (see, for example, He *et al.*, 2005; Ji *et al.*, 2012), deviations from a linear trend as observed for compounds (I)–(III) are not unprecedented, and the gradual decrease in Ln-X bond lengths and bridged $Ln\cdots Ln$ distances provides evidence of the lanthanide contraction (see,

for example, Jia *et al.*, 2013; Li *et al.*, 2004, 2015). Recent studies on several series of isostructural lanthanide compounds have shown that the lanthanide contraction can be observed by the quadratic decay of the Ln-O bond lengths with increasing atomic number (Quadrelli, 2002; Seitz *et al.*, 2007; Xu *et al.*, 2013). An examination of both the $Ln-O_{bpydo}$ and $Ln-O_{nitrate}$ distances for compounds (I)–(III) shows the expected gradual decrease in the Ln-O bond lengths from Ce (I) to Nd (III) due to the lanthanide contraction (Table 2). The gradual decrease in bpydo-bridged $Ln \cdots Ln$ distances within the layers is also consistent with the radius contraction from Ce to Nd (Table 1).

3. Supramolecular features

Stabilizing C-H···O interactions (C5-H5···O4^{vii}, C10-H10···O3, C15-H15···O1ⁱⁱ, and C20-H20···O2^{iv}) are observed between neighboring bpydo ligands within the coordination sphere of the Ln^{III} cation (see Tables 3-5 for symmetry codes; Fig. 1). The interdigitation of layers is promoted by C-H···O interactions (C1-H1···O5^v, C4-

research communications

Table	3				
Hydro	gen-bond	geometry	(Å,	°) for	(I)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1-H1\cdots O5^{v}$	0.95	2.59	3.342 (2)	136
$C4-H4\cdots O13^{vi}$	0.95	2.37	3.208 (2)	148
$C5-H5\cdots O4^{vii}$	0.95	2.38	3.1868 (19)	142
C9−H9···O9 ^{viii}	0.95	2.62	3.206 (2)	121
$C9-H9\cdots O10^{v}$	0.95	2.59	3.475 (2)	156
C10−H10···O3	0.95	2.32	3.128 (2)	143
$C10-H10\cdots O7^{viii}$	0.95	2.58	3.264 (2)	129
$C11 - H11 \cdots O10^v$	0.95	2.49	3.237 (2)	135
$C14-H14\cdots O7^{ix}$	0.95	2.22	3.004 (2)	139
$C15-H15\cdots O1^{ii}$	0.95	2.32	3.1069 (19)	140
$C16-H16\cdots O13^{v}$	0.95	2.55	3.154 (2)	122
$C17-H17\cdots O12^{v}$	0.95	2.36	3.2837 (19)	164
$C20-H20\cdots O2^{iv}$	0.95	2.63	3.3265 (19)	130

Symmetry codes: (ii) x, y = 1, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) -x, -y + 1, -z + 1; (vii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (viii) $x, -y + 1, z + \frac{1}{2}$; (ix) - $x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

 Table 4

 Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1 \dots O5^{v}$	0.95	2 59	3 331 (2)	135
$C4-H4\cdots O13^{vi}$	0.95	2.36	3.200 (2)	133
$C5-H5\cdots O4^{vii}$	0.95	2.37	3.168 (2)	141
C9−H9···O9 ^{viii}	0.95	2.61	3.204 (2)	121
$C9-H9\cdots O10^{v}$	0.95	2.58	3.468 (2)	156
C10−H10···O3	0.95	2.31	3.115 (2)	143
$C10-H10\cdots O7^{viii}$	0.95	2.60	3.277 (3)	129
$C11 - H11 \cdots O10^{v}$	0.95	2.50	3.239 (2)	135
$C14-H14\cdots O7^{ix}$	0.95	2.22	3.002 (2)	139
$C15-H15\cdots O1^{ii}$	0.95	2.31	3.0924 (19)	140
$C16-H16\cdots O13^{v}$	0.95	2.56	3.154 (2)	121
$C17-H17\cdots O12^{v}$	0.95	2.36	3.288 (2)	164
$C20-H20\cdots O2^{iv}$	0.95	2.62	3.307 (2)	130

Symmetry codes: (ii) x, y = 1, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) -x, -y + 1, -z + 1; (vii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (viii) $x, -y + 1, z + \frac{1}{2}$; (ix) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for (III).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1 = H1 \dots O5^{v}$	0.95	2.61	3 353 (4)	135
$C4-H4\cdots O13^{vi}$	0.95	2.37	3.206 (4)	133
C5−H5···O4 ^{vii}	0.95	2.37	3.163 (4)	141
C9−H9···O9 ^{viii}	0.95	2.63	3.216 (4)	121
$C9-H9\cdots O10^{v}$	0.95	2.58	3.464 (4)	156
C10-H10···O3	0.95	2.30	3.110 (4)	142
C10−H10···O7 ^{viii}	0.95	2.61	3.289 (4)	129
$C11-H11\cdots O10^{v}$	0.95	2.50	3.243 (4)	135
$C14-H14\cdots O7^{ix}$	0.95	2.21	2.998 (4)	139
C15−H15···O1 ⁱⁱ	0.95	2.31	3.091 (4)	139
$C16-H16\cdots O13^{v}$	0.95	2.56	3.159 (4)	121
$C17-H17\cdots O12^{v}$	0.95	2.37	3.295 (4)	165
$C20-H20\cdots O2^{iv}$	0.95	2.61	3.294 (4)	130

Symmetry codes: (ii) x, y - 1, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) -x, -y + 1, -z + 1; (vii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (viii) $x, -y + 1, z + \frac{1}{2}$; (ix) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

H4...O13^{vi}, C9–H9...O10^v, C11–H11...O10^v, C14– H14...O7^{ix}, C16–H16...O13^v, and C17–H17...O12^v) between the ligands of one layer and nitrate anions of the other layer (Fig. 4). Further C–H...O interactions (C9–

Figure 4

Diagram showing the C-H···O interactions between anions and ligands of interdigitated layers in (I). Individual layers are represented in green and blue. Dashed red lines represent C-H···O interactions between the layers. [Symmetry codes: (iii) x, y + 1, z; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (xi) $x + \frac{1}{2},$ $-y + \frac{3}{2}, z + \frac{1}{2}$.]

H9...O9^{viii} and C10-H10...O7^{viii}) and π - π interactions between Cg1 and the inversion-related Cg1^x link each set of interdigitated layers to symmetry-equivalent sets of layers above and below it [symmetry code: (x) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; Fig. 5). π - π interactions between the neighboring rings are observed with a centroid-to-centroid distance of 3.7535 (10) Å and an interplanar distance of 3.2830 (6) Å for (I); there is a slippage of 1.820 Å such that H15^x of the neighboring *N*-oxide

Figure 5

Diagram showing $C-H\cdots O$ interactions and $\pi-\pi$ interactions that link each set of interdigitated layers to similar sets of layers above and below it in (I). Individual layers are represented in green and blue. Dashed red lines represent $C-H\cdots O$ interactions, and dashed black lines represent $\pi-\pi$ interactions.

Table 6Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$[Ce(NO_3)_3(C_{10}H_8N_2O_2)_3]$	$[Pr(NO_{2})_{2}(C_{10}H_{2}N_{2}O_{2})_{2}]$	$[Nd(NO_{2})_{2}(C_{10}H_{*}N_{2}O_{2})_{2}]$
M_r	702.52	703.31	706.64
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	173	173	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	26.786 (3), 13.3398 (13), 13.7571 (13)	26.7416 (18), 13.3127 (9), 13.7586 (9)	26.7422 (10), 13.3035 (5), 13.7804 (5)
β (°)	105.837 (1)	105.981 (1)	106.065 (1)
$V(Å^3)$	4729.1 (8)	4708.8 (5)	4711.1 (3)
Z	8	8	8
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.01	2.16	2.29
Crystal size (mm)	$0.55 \times 0.45 \times 0.38$	$0.55 \times 0.37 \times 0.26$	$0.14\times0.12\times0.08$
Data collection			
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD	Bruker D8 Quest CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.536, 0.746	0.579, 0.746	0.682, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15990, 7152, 6686	18363, 7241, 6782	47148, 8277, 5419
R _{int}	0.018	0.020	0.115
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.735	0.737	0.777
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.050, 1.05	0.021, 0.052, 1.05	0.051, 0.067, 1.01
No. of reflections	7152	7241	8277
No. of parameters	370	370	370
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.10, -0.65	0.89, -1.06	1.49, -1.29

Computer programs: APEX2 and SAINT (Bruker, 2009, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and X-SEED (Barbour, 2001).

ring lies nearly centered over the centroid of Cg1 at a distance of 3.305 Å [see Table 1 for distances in compounds (II) and (III)].

4. Database survey

A survey of the Cambridge Structural Database (CSD, November 2014; Groom & Allen, 2014) returned hits for 333 structures with 4,4'-bipyridine N,N'-dioxide. Sixty three structures are reported where bpydo coordinates to a lanthanide metal and acts a as bridging ligand in a coordination network. Of these structures, ten are reported with nitrate as the counter-ion. In $[Tb(bpydo)_2(NO_3)_3]$, linear chains are observed (Long et al., 2002). A one-dimensional network composed of zigzag chains is observed for [Tb(bpydo)(CH₃OH)(NO₃)₃] (Long et al., 2002). In {[Ln(bpydo)_{1.5}- $(NO_3)_3$ · CH₂Cl₂ with Ln = Eu (Dillner *et al.*, 2010*a*), Gd (Dillner et al., 2010b), and Tb (Long et al., 2002), a onedimensional network composed of ladder-like chains is observed. $[La(bpydo)_2(NO_3)_3]$ is a two-dimensional network composed of sheets with 4⁴ topology and is isostructural to the Ce, Pr, and Nd structures reported herein (Hill et al., 2004). In $\{[Er_2(bpydo)_3(NO_3)_6]\cdot 2CH_3OH\},\$ ${[Tb(bpydo)_{1.5}(NO_3)_3]}$ -- $CH_3OH \cdot 0.8H_2O$, and ${[Tb(bpydo)_{1.5}(NO_3)_3] \cdot 0.4CCl_4}$ 0.8CH₃OH}, two-dimensional networks composed of sheets with 4.8² topology are formed (Long et al., 2000, 2002). In $\{[Sm(bpydo)_2(NO_3)_3] \cdot 0.5H_2O\},\ a\ twofold\ interpenetrating$ three-dimensional network is formed (Long et al., 2000).

5. Synthesis and crystallization

4,4'-bipyridine *N*,*N*'-dioxide·H₂O was synthesized from 4,4'bipyridine according to the method of Simpson *et al.* (1963). All other chemicals were obtained from commercial sources and used without further purification. For the Ce, Pr and Nd compounds, respectively, the appropriate $Ln(NO_3)_3$ ·6H₂O (0.113 mmol) was placed in the bottom of a test tube and covered with CH₂Cl₂ (5 ml). 4,4'-Bipyridine-*N*,*N*'-dioxide·-H₂O (0.0376 g, 0.182 mmol) was dissolved in methanol (8 ml), and this solution was layered over the CH₂Cl₂ solution. The two solutions were allowed to slowly mix. Over a period of several weeks the $Ln(NO_3)_3$ ·6H₂O dissolved, and red blocklike crystals of [Ce(μ_2 -bpydo)₂(NO₃)₃], yellow block-like crystals of [Pr(μ_2 -bpydo)₂(NO₃)₃] were formed.

6. Refinement

All aromatic H atoms were positioned geometrically and refined using a riding model with C-H = 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. Crystal data, data collection and structure refinement details are summarized in Table 6.

Acknowledgements

The authors are thankful to Clarion University and Allegheny College for providing funding in support of this research. The diffractometer were funded by the NSF (grants CHE0087210

research communications

and DMR 1337296), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge Dr Matthias Zeller, Youngstown State University, for assistance with the data collection and for helpful discussions.

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010a). Acta Cryst. E66, m1156-m1157.
- Dillner, A. J., Lilly, C. P. & Knaust, J. M. (2010b). Acta Cryst. E66, m1158–m1159.
- González Mantero, D., Neels, A. & Stoeckli-Evans, H. (2006). *Inorg. Chem.* **45**, 3287–3294.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- He, Z., Gao, E.-Q., Wang, Z.-M., Yan, C.-H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862–874.
- Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335–348.
- Hill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414–2419.
- Hill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröder, M. (2004). *Chem. Commun.* pp. 1792.

- Jia, L.-N., Hou, L., Wei, L., Jing, X.-J., Liu, B., Wang, Y.-Y. & Shi, Q.-Z. (2013). Cryst. Growth Des. 13, 1570–1576.
- Ji, B., Deng, D., He, X., Liu, B., Miao, S., Ma, N., Wang, W., Ji, L., Liu, P. & Li, X. (2012). *Inorg. Chem.* 51, 2170–2177.
- Li, J.-R., Bu, X.-H. & Zhang, R.-H. (2004). Inorg. Chem. 43, 237-244.
- Li, Y., Wang, N., Xiong, Y.-J., Cheng, Q., Fang, J.-F., Zhu, F.-F., Long, Y. & Yue, S.-T. (2015). New J. Chem. 39, 9872–9878.
- Long, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). *Chem. Commun.* pp. 1369–1370.
- Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). *Chem. Eur. J.* 8, 2026–2033.
- Lu, W.-J., Zhang, L.-P., Song, H.-B., Wang, Q.-M. & Mak, T. C. W. (2002). New J. Chem. 26, 775–781.
- Ma, B., Sun, H., Gao, S. & Xu, G.-X. (2001). *Inorg. Chem.* **40**, 6247–6253.
- Ma, S.-L., Zhu, W.-X., Huang, G.-H., Yuan, D.-Q. & Yan, X. J. (2003). J. Mol. Struct. 646, 89–94.
- Quadrelli, E. A. (2002). Inorg. Chem. 41, 167-169.
- Seitz, M., Oliver, A. G. & Raymond, K. N. (2007). J. Am. Chem. Soc. **129**, 11153–11160.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Simpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282–286.
- Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). *Microporous Mesoporous Mater.* 73, 89–95.
- Xu, W., Zhou, Y., Huang, D., Xiong, W., Su, M., Wang, K., Han, S. & Hong, M. (2013). *Cryst. Growth Des.* **13**, 5420–5432.
- Zhang, L.-P., Du, M., Lu, W.-J. & Mak, T. C. W. (2004b). *Polyhedron*, **23**, 857–863.
- Zhang, L.-P., Lu, W. & Mak, T. C. W. (2004*a*). *Polyhedron*, **23**, 169–176.

Acta Cryst. (2016). E72, 25-30 [doi:10.1107/S205698901502318X]

Crystal structures of $[Ln(NO_3)_3(\mu_2\text{-bpydo})_2]$, where Ln = Ce, Pr or Nd, and bpydo = 4,4'-bipyridine N,N'-dioxide: layered coordination networks containing 4⁴ grids

Michael L. Stromyer, Cassandra P. Lilly, Adam J. Dillner and Jacqueline M. Knaust

Computing details

Data collection: *APEX2* (Bruker, 2009) for (I), (II); *APEX2* (Bruker, 2014) for (III). Cell refinement: *SAINT* (Bruker, 2009) for (I), (II); *SAINT* (Bruker, 2014) for (III). Data reduction: *SAINT* (Bruker, 2009) for (I), (II); *SAINT* (Bruker, 2014) for (III). For all compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *X-SEED* (Barbour, 2001).

(I) Poly[[tris(nitrato- $\kappa^2 O, O'$) cerium(III)]-bis(μ -4,4'-bipyridine N, N'-dioxide- $\kappa^2 N: N'$)]

Crystal data	
$[Ce(NO_3)_3(C_{10}H_8N_2O_2)_2]$	F(000) = 2776
$M_r = 702.52$	$D_x = 1.973 \text{ Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 26.786 (3) Å	Cell parameters from 11055 reflections
b = 13.3398 (13) Å	$\theta = 2.5-31.5^{\circ}$
c = 13.7571 (13) Å	$\mu = 2.01 \text{ mm}^{-1}$
$\beta = 105.837$ (1)°	T = 173 K
V = 4729.1 (8) Å ³	Block, red
Z = 8	$0.55 \times 0.45 \times 0.38 \text{ mm}$
Data collection	
Bruker APEXII CCD	7152 independent reflections
diffractometer	6686 reflections with $I > 2\sigma(I)$
phi and ω scans	$R_{int} = 0.018$
Absorption correction: multi-scan	$\theta_{max} = 31.5^{\circ}, \theta_{min} = 1.6^{\circ}$
(SADABS; Bruker, 2009)	$h = -37 \rightarrow 37$
$T_{min} = 0.536, T_{max} = 0.746$	$k = -11 \rightarrow 19$
15990 measured reflections	$l = -20 \rightarrow 19$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.020$	H-atom parameters constrained
$wR(F^2) = 0.050$	$w = 1/[\sigma^2(F_o^2) + (0.0231P)^2 + 5.9858P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
7152 reflections	$(\Delta/\sigma)_{max} = 0.002$
370 parameters	$\Delta\rho_{max} = 1.10 \text{ e } \text{Å}^{-3}$
0 restraints	$\Delta\rho_{min} = -0.65 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cel	0.12666 (2)	0.27581 (2)	0.66455 (2)	0.00880 (3)	
01	0.14943 (4)	1.12935 (8)	0.78743 (9)	0.0138 (2)	
O2	0.07510 (4)	0.41815 (8)	0.70896 (9)	0.0154 (2)	
O3	0.18037 (4)	0.33380 (8)	0.83061 (8)	0.0131 (2)	
O4	0.54328 (4)	0.28358 (8)	1.18738 (9)	0.0126 (2)	
05	0.19329 (6)	0.41286 (11)	0.65215 (10)	0.0288 (3)	
O6	0.12041 (6)	0.42801 (10)	0.53717 (11)	0.0267 (3)	
O7	0.18842 (7)	0.50937 (10)	0.52255 (12)	0.0365 (4)	
08	0.21266 (5)	0.18687 (11)	0.66189 (9)	0.0221 (3)	
O9	0.16939 (5)	0.24235 (9)	0.51565 (9)	0.0157 (2)	
O10	0.23607 (5)	0.14464 (9)	0.52773 (9)	0.0195 (2)	
011	0.05806 (5)	0.25187 (9)	0.48914 (9)	0.0162 (2)	
O12	0.09542 (4)	0.11414 (8)	0.55499 (8)	0.0148 (2)	
013	0.03572 (5)	0.11024 (10)	0.41152 (9)	0.0217 (3)	
N1	0.14037 (5)	1.03162 (9)	0.77682 (9)	0.0113 (2)	
N2	0.08640 (5)	0.51564 (10)	0.71907 (10)	0.0134 (2)	
N3	0.23131 (5)	0.32751 (10)	0.87085 (9)	0.0109 (2)	
N4	0.49487 (5)	0.28718 (9)	1.12873 (10)	0.0111 (2)	
N5	0.16766 (7)	0.45133 (11)	0.56933 (12)	0.0253 (3)	
N6	0.20687 (5)	0.19053 (10)	0.56676 (10)	0.0145 (2)	
N7	0.06262 (5)	0.15808 (10)	0.48319 (9)	0.0137 (2)	
C1	0.18034 (6)	0.96562 (12)	0.79956 (12)	0.0142 (3)	
H1	0.2150	0.9895	0.8219	0.017*	
C2	0.17085 (6)	0.86374 (12)	0.79041 (12)	0.0144 (3)	
H2	0.1991	0.8180	0.8075	0.017*	
C3	0.12012 (6)	0.82731 (11)	0.75622 (11)	0.0121 (3)	
C4	0.08022 (6)	0.89772 (12)	0.73462 (12)	0.0137 (3)	
H4	0.0452	0.8759	0.7115	0.016*	
C5	0.09092 (6)	0.99873 (12)	0.74644 (12)	0.0136 (3)	
H5	0.0632	1.0457	0.7331	0.016*	
C6	0.05307 (6)	0.58316 (12)	0.66253 (13)	0.0171 (3)	
H6	0.0225	0.5606	0.6144	0.021*	
C7	0.06325 (6)	0.68421 (12)	0.67436 (12)	0.0165 (3)	
H7	0.0393	0.7310	0.6351	0.020*	
C8	0.10854 (6)	0.71893 (11)	0.74362 (12)	0.0124 (3)	
C9	0.14170 (6)	0.64712 (12)	0.80061 (12)	0.0162 (3)	
H9	0.1727	0.6677	0.8485	0.019*	
C10	0.12988 (6)	0.54644 (12)	0.78811 (13)	0.0172 (3)	
H10	0.1525	0.4984	0.8284	0.021*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C11	0.25885 (6)	0.41124 (11)	0.90585 (11)	0.0128 (3)
H11	0.2421	0.4747	0.8972	0.015*
C12	0.31105 (6)	0.40468 (12)	0.95406 (11)	0.0131 (3)
H12	0.3300	0.4637	0.9793	0.016*
C13	0.33644 (6)	0.31212 (11)	0.96620 (11)	0.0117 (3)
C14	0.30687 (6)	0.22856 (11)	0.92576 (12)	0.0137 (3)
H14	0.3231	0.1647	0.9302	0.016*
C15	0.25463 (6)	0.23682 (11)	0.87958 (12)	0.0132 (3)
H15	0.2349	0.1788	0.8538	0.016*
C16	0.47610 (6)	0.37514 (11)	1.08504 (11)	0.0131 (3)
H16	0.4985	0.4315	1.0918	0.016*
C17	0.42495 (6)	0.38381 (12)	1.03088 (12)	0.0135 (3)
H17	0.4122	0.4460	1.0004	0.016*
C18	0.39170 (6)	0.30199 (11)	1.02043 (11)	0.0115 (3)
C19	0.41282 (6)	0.21126 (11)	1.06413 (12)	0.0125 (3)
H19	0.3915	0.1534	1.0567	0.015*
C20	0.46424 (6)	0.20521 (12)	1.11776 (12)	0.0129 (3)
H20	0.4782	0.1433	1.1471	0.015*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cel	0.00749 (4)	0.00690 (4)	0.01083 (4)	-0.00080 (3)	0.00051 (3)	-0.00044 (2)
01	0.0156 (5)	0.0062 (5)	0.0175 (5)	-0.0020 (4)	0.0008 (4)	-0.0001 (4)
O2	0.0164 (5)	0.0053 (5)	0.0237 (6)	-0.0017 (4)	0.0043 (4)	-0.0023 (4)
O3	0.0069 (4)	0.0139 (5)	0.0155 (5)	0.0001 (4)	-0.0021 (4)	-0.0013 (4)
O4	0.0063 (5)	0.0135 (5)	0.0158 (5)	0.0010 (4)	-0.0008(4)	0.0013 (4)
O5	0.0369 (8)	0.0279 (7)	0.0231 (6)	-0.0185 (6)	0.0107 (6)	-0.0048 (5)
O6	0.0349 (7)	0.0180 (6)	0.0309 (7)	0.0042 (5)	0.0152 (6)	0.0061 (5)
O7	0.0665 (11)	0.0128 (6)	0.0464 (9)	-0.0089 (7)	0.0427 (8)	-0.0018 (6)
08	0.0195 (6)	0.0320 (7)	0.0146 (5)	0.0088 (5)	0.0041 (4)	0.0025 (5)
O9	0.0138 (5)	0.0163 (5)	0.0164 (5)	0.0019 (4)	0.0030 (4)	0.0025 (4)
O10	0.0201 (6)	0.0183 (6)	0.0224 (6)	0.0039 (5)	0.0094 (5)	-0.0015 (5)
O11	0.0169 (5)	0.0131 (5)	0.0170 (5)	0.0016 (4)	0.0018 (4)	0.0001 (4)
O12	0.0154 (5)	0.0117 (5)	0.0151 (5)	0.0000 (4)	0.0006 (4)	-0.0010 (4)
O13	0.0184 (6)	0.0261 (6)	0.0167 (5)	-0.0039(5)	-0.0016 (4)	-0.0090(5)
N1	0.0129 (6)	0.0079 (5)	0.0118 (5)	-0.0016 (4)	0.0010 (4)	0.0003 (4)
N2	0.0141 (6)	0.0084 (6)	0.0170 (6)	-0.0003 (5)	0.0033 (5)	-0.0013 (5)
N3	0.0083 (5)	0.0115 (6)	0.0115 (5)	0.0001 (4)	0.0002 (4)	-0.0002 (4)
N4	0.0081 (5)	0.0116 (6)	0.0127 (6)	0.0007 (4)	0.0014 (4)	0.0008 (4)
N5	0.0444 (10)	0.0104 (6)	0.0298 (8)	-0.0066 (6)	0.0244 (7)	-0.0040 (6)
N6	0.0132 (6)	0.0139 (6)	0.0163 (6)	-0.0010 (5)	0.0041 (5)	-0.0004 (5)
N7	0.0119 (6)	0.0169 (6)	0.0117 (5)	-0.0021 (5)	0.0023 (4)	-0.0028 (5)
C1	0.0113 (6)	0.0125 (7)	0.0170 (7)	0.0000 (5)	0.0005 (5)	0.0002 (5)
C2	0.0129 (6)	0.0117 (7)	0.0172 (7)	0.0012 (5)	0.0017 (5)	-0.0002(5)
C3	0.0147 (7)	0.0083 (6)	0.0117 (6)	-0.0010 (5)	0.0012 (5)	-0.0007 (5)
C4	0.0118 (6)	0.0112 (7)	0.0163 (7)	-0.0011 (5)	0.0010 (5)	0.0003 (5)
C5	0.0113 (6)	0.0112 (7)	0.0163 (7)	0.0002 (5)	0.0005 (5)	0.0007 (5)

C6	0.0155 (7)	0.0120 (7)	0.0196 (7)	-0.0009 (6)	-0.0025 (6)	0.0000 (6)
C7	0.0172 (7)	0.0103 (7)	0.0186 (7)	0.0005 (6)	-0.0010 (6)	0.0018 (6)
C8	0.0143 (7)	0.0084 (6)	0.0139 (7)	-0.0009 (5)	0.0029 (5)	-0.0007 (5)
C9	0.0145 (7)	0.0103 (7)	0.0201 (7)	0.0001 (5)	-0.0015 (6)	-0.0015 (6)
C10	0.0134 (7)	0.0105 (7)	0.0237 (8)	0.0010 (6)	-0.0018 (6)	0.0005 (6)
C11	0.0112 (6)	0.0095 (6)	0.0164 (7)	0.0001 (5)	0.0014 (5)	-0.0014 (5)
C12	0.0099 (6)	0.0111 (6)	0.0163 (7)	-0.0008(5)	0.0002 (5)	-0.0029 (5)
C13	0.0096 (6)	0.0128 (7)	0.0114 (6)	0.0002 (5)	0.0006 (5)	0.0003 (5)
C14	0.0118 (7)	0.0101 (7)	0.0170 (7)	0.0008 (5)	0.0002 (5)	0.0005 (5)
C15	0.0122 (7)	0.0093 (6)	0.0159 (7)	0.0002 (5)	0.0004 (5)	-0.0004 (5)
C16	0.0108 (6)	0.0112 (6)	0.0158 (7)	-0.0002 (5)	0.0010 (5)	0.0028 (5)
C17	0.0115 (6)	0.0116 (6)	0.0161 (7)	0.0009 (5)	0.0017 (5)	0.0033 (5)
C18	0.0094 (6)	0.0124 (6)	0.0118 (6)	0.0007 (5)	0.0014 (5)	0.0009 (5)
C19	0.0114 (6)	0.0104 (6)	0.0145 (7)	-0.0006 (5)	0.0015 (5)	0.0009 (5)
C20	0.0121 (6)	0.0102 (6)	0.0151 (7)	0.0000 (5)	0.0017 (5)	0.0010 (5)

Geometric parameters (Å, °)

Cel—O3	2.4685 (11)	C1—H1	0.9500
Ce1—O4 ⁱ	2.4692 (11)	C2—C3	1.398 (2)
Ce1—O2	2.5192 (11)	C2—H2	0.9500
Ce1—O1 ⁱⁱ	2.5464 (11)	C3—C4	1.393 (2)
Ce1—O5	2.5929 (13)	C3—C8	1.479 (2)
Ce1—O8	2.6004 (12)	C4—C5	1.378 (2)
Ce1-011	2.6231 (12)	C4—H4	0.9500
Ce1-012	2.6333 (11)	С5—Н5	0.9500
Ce1-09	2.6428 (12)	C6—C7	1.376 (2)
Ce106	2.6573 (13)	С6—Н6	0.9500
01—N1	1.3268 (16)	C7—C8	1.401 (2)
O1—Ce1 ⁱⁱⁱ	2.5464 (11)	С7—Н7	0.9500
O2—N2	1.3339 (16)	C8—C9	1.393 (2)
O3—N3	1.3277 (15)	C9—C10	1.380 (2)
O4—N4	1.3281 (16)	С9—Н9	0.9500
O4—Ce1 ^{iv}	2.4694 (11)	C10—H10	0.9500
O5—N5	1.267 (2)	C11—C12	1.377 (2)
O6—N5	1.260 (2)	C11—H11	0.9500
O7—N5	1.2321 (19)	C12—C13	1.398 (2)
O8—N6	1.2761 (18)	C12—H12	0.9500
O9—N6	1.2629 (18)	C13—C14	1.393 (2)
O10-N6	1.2264 (17)	C13—C18	1.471 (2)
O11—N7	1.2619 (18)	C14—C15	1.374 (2)
O12—N7	1.2718 (17)	C14—H14	0.9500
O13—N7	1.2292 (17)	C15—H15	0.9500
N1C5	1.3490 (19)	C16—C17	1.374 (2)
N1-C1	1.355 (2)	C16—H16	0.9500
N2-C10	1.350 (2)	C17—C18	1.391 (2)
N2—C6	1.354 (2)	C17—H17	0.9500
N3—C15	1.3517 (19)	C18—C19	1.400 (2)

N3C11	1 3527 (19)	C19_C20	1 376 (2)
NA C20	1.3527(19) 1.3504(10)	C19 H10	0.9500
N4 C16	1.3504(19) 1.2512(10)	C19—1119 C20_1120	0.9500
	1.3312 (19)	C20—H20	0.9300
C1—C2	1.382 (2)		
O3—Ce1—O4 ⁱ	107.56 (4)	07—N5—O5	120.87 (18)
O3-Ce1-O2	76.05 (4)	06—N5—05	117 48 (14)
0.0^{4i} Ce1 02	68 67 (4)	010 - N6 - 09	122 32 (13)
O_{1}^{3} C_{e1} O_{1}^{11}	60.67 (4)	$\begin{array}{ccc} 010 & 100 & 09 \\ 010 & N6 & 08 \end{array}$	122.52(13) 121.08(14)
O_{4i} Col O_{1i}	74.36(4)	$\begin{array}{c} 010 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00$	121.00(14) 116.50(12)
04 - Cel = 01	74.30 (4) 117.72 (4)	09 - 10 - 08	110.39 (13)
$02 - Cel - Ol^2$	117.72(4)	013 - N/ - 011	121.39 (14)
03-Cel-05	66.55 (4)	013—N/—012	120.88 (14)
04 Ce105	153.81 (4)	011—N7—012	117.72 (12)
02—Ce1—O5	85.25 (4)	N1—C1—C2	120.25 (14)
$O1^{ii}$ —Ce1—O5	122.70 (4)	N1—C1—H1	119.9
O3—Ce1—O8	82.02 (4)	C2—C1—H1	119.9
O4 ⁱ —Ce1—O8	133.70 (4)	C1—C2—C3	120.67 (14)
O2—Ce1—O8	153.34 (4)	C1—C2—H2	119.7
O1 ⁱⁱ —Ce1—O8	66.84 (4)	C3—C2—H2	119.7
O5—Ce1—O8	72.09 (5)	C4—C3—C2	117.13 (14)
O3—Ce1—O11	167.04 (4)	C4—C3—C8	120.68 (14)
O4 ⁱ —Ce1—O11	69.34 (4)	C2—C3—C8	122.18 (14)
O2—Ce1—O11	91.27 (4)	C5—C4—C3	120.78 (14)
$O1^{ii}$ —Ce1—O11	119.87 (4)	C5—C4—H4	119.6
05-Ce1-011	110 32 (4)	C3-C4-H4	119.6
08-Ce1-011	109.41(4)	N1 - C5 - C4	120.64 (14)
O_3 Cel O_{12}	143.16(4)	N1 C5 H5	110 7
03 - 01 - 012	60.60(4)	C4 $C5$ $H5$	119.7
0^{-}_{-} 0^{-	120.28(4)	$N_{2} = C_{5} = M_{5}$	119.7
02 - Cel - 012	130.28(4)	$N_2 = C_0 = C_1$	120.55 (15)
$01^{}$ $012^{}$	74.30 (4)	$N_2 - C_0 - H_0$	119.8
05-Cel-012	131.05 (4)	С/—Сб—Нб	119.8
08-Cel-012	/6.2/(4)	C6-C/-C8	120.73 (15)
011—Ce1—012	48.73 (4)	С6—С/—Н/	119.6
03—Ce1—09	120.26 (4)	С8—С7—Н7	119.6
O4 ¹ —Ce1—O9	129.97 (4)	C9—C8—C7	117.14 (14)
O2—Ce1—O9	134.21 (4)	C9—C8—C3	121.68 (14)
$O1^{ii}$ —Ce1—O9	108.00 (4)	C7—C8—C3	121.18 (14)
O5—Ce1—O9	67.46 (4)	C10—C9—C8	120.65 (15)
O8—Ce1—O9	48.65 (4)	С10—С9—Н9	119.7
O11—Ce1—O9	67.00 (4)	С8—С9—Н9	119.7
O12—Ce1—O9	63.59 (4)	N2-C10-C9	120.55 (14)
O3—Ce1—O6	106.67 (4)	N2-C10-H10	119.7
O4 ⁱ —Ce1—O6	115.64 (4)	C9—C10—H10	119.7
O2—Ce1—O6	69.15 (4)	N3—C11—C12	120.16 (14)
O1 ⁱⁱ —Ce1—O6	169.94 (4)	N3—C11—H11	119.9
O5—Ce1—O6	48.58 (5)	C12—C11—H11	119.9
08—Ce1—O6	103.65 (4)	$C_{11} - C_{12} - C_{13}$	120 71 (14)
011—Ce1—06	65.43 (4)	C11—C12—H12	119.6
	~~~ ( ')	<b>-</b>	

O12—Ce1—O6	107.17 (4)	C13—C12—H12	119.6
O9—Ce1—O6	65.20 (4)	C14—C13—C12	117.02 (14)
N1—O1—Ce1 ⁱⁱⁱ	132.64 (9)	C14—C13—C18	120.87 (14)
N2-O2-Ce1	129.52 (9)	C12—C13—C18	122.11 (14)
N3—O3—Ce1	129.72 (9)	C15—C14—C13	121.13 (14)
N4—O4—Ce1 ^{iv}	134.54 (9)	C15—C14—H14	119.4
N5	97.52 (10)	C13—C14—H14	119.4
N5	94.62 (10)	N3—C15—C14	120.03 (14)
N6	97.86 (9)	N3—C15—H15	120.0
N6-09-Ce1	96.18 (9)	C14—C15—H15	120.0
N7-011-Ce1	97.15 (8)	N4—C16—C17	120.61 (14)
N7-012-Ce1	96.39 (8)	N4—C16—H16	119.7
O1—N1—C5	119.22 (13)	C17—C16—H16	119.7
O1—N1—C1	120.25 (13)	C16—C17—C18	120.36 (14)
C5—N1—C1	120.49 (13)	С16—С17—Н17	119.8
O2—N2—C10	119.84 (13)	C18—C17—H17	119.8
O2—N2—C6	119.56 (13)	C17—C18—C19	117.49 (14)
C10—N2—C6	120.56 (14)	C17—C18—C13	120.50 (14)
O3—N3—C15	119.41 (13)	C19—C18—C13	122.01 (14)
O3—N3—C11	119.65 (12)	C20-C19-C18	120.59 (14)
C15—N3—C11	120.89 (13)	С20—С19—Н19	119.7
O4—N4—C20	120.08 (12)	C18—C19—H19	119.7
O4—N4—C16	118.99 (12)	N4—C20—C19	120.07 (14)
C20—N4—C16	120.83 (13)	N4—C20—H20	120.0
O7—N5—O6	121.65 (18)	C19—C20—H20	120.0
Ce1—O3—O4—Ce1 ^{iv}	5.38 (7)	Ce1—O2—O1—Ce1 ⁱⁱⁱ	92.53 (6)

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2.

### Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
С1—Н1…О5 ^v	0.95	2.59	3.342 (2)	136
C4—H4…O13 ^{vi}	0.95	2.37	3.208 (2)	148
C5—H5…O4 ^{vii}	0.95	2.38	3.1868 (19)	142
C9—H9····O9 ^{viii}	0.95	2.62	3.206 (2)	121
С9—Н9…О10 ^v	0.95	2.59	3.475 (2)	156
С10—Н10…ОЗ	0.95	2.32	3.128 (2)	143
C10—H10····O7 ^{viii}	0.95	2.58	3.264 (2)	129
C11—H11…O10 ^v	0.95	2.49	3.237 (2)	135
C14—H14…O7 ^{ix}	0.95	2.22	3.004 (2)	139
C15—H15…O1 ⁱⁱ	0.95	2.32	3.1069 (19)	140
С16—Н16…О13 ^v	0.95	2.55	3.154 (2)	122
C17—H17…O12 ^v	0.95	2.36	3.2837 (19)	164
C20—H20····O2 ^{iv}	0.95	2.63	3.3265 (19)	130

Symmetry codes: (ii) *x*, *y*-1, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2; (v) -*x*+1/2, *y*+1/2, -*z*+3/2; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*-1/2, -*y*+3/2, *z*-1/2; (viii) *x*, -*y*+1, *z*+1/2; (ix) -*x*+1/2, *y*-1/2, -*z*+3/2.

(II) Poly[[tris(nitrato- $\kappa^2 O, O'$ )praeseodymium(III)]-bis( $\mu$ -4,4'-bipyridine N, N'-dioxide- $\kappa^2 N: N'$ )]

F(000) = 2784

 $\theta = 2.5 - 31.3^{\circ}$ 

 $\mu = 2.16 \text{ mm}^{-1}$ T = 173 K

Block, yellow

 $0.55 \times 0.37 \times 0.26 \text{ mm}$ 

 $D_{\rm x} = 1.984 {\rm Mg} {\rm m}^{-3}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 11450 reflections

### Crystal data

[Pr(NO₃)₃(C₁₀H₈N₂O₂)₂]  $M_r = 703.31$ Monoclinic, C2/c Hall symbol: -C 2yc a = 26.7416 (18) Å b = 13.3127 (9) Å c = 13.7586 (9) Å  $\beta = 105.981$  (1)° V = 4708.8 (5) Å³ Z = 8

### Data collection

Bruker APEXII CCD	18363 measured reflections
diffractometer	7241 independent reflections
Radiation source: sealed tube	6782 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
phi and $\omega$ scans	$\theta_{\rm max} = 31.6^\circ, \ \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -39 \rightarrow 38$
(SADABS; Bruker, 2009)	$k = -18 \rightarrow 18$
$T_{\min} = 0.579, \ T_{\max} = 0.746$	$l = -19 \rightarrow 15$

### Refinement

Refinement on $F^2$	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$wR(F^2) = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0248P)^2 + 6.7123P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
7241 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
370 parameters	$\Delta  ho_{ m max} = 0.89$ e Å ⁻³
0 restraints	$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	l isotropic or e	quivalent isotropic	c displacement	parameters (	$(A^2)$	J
		1		P	/	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pr1	0.12674 (2)	0.27553 (2)	0.66470 (2)	0.00790 (3)	
01	0.14910 (4)	1.12982 (8)	0.78780 (9)	0.0121 (2)	
O2	0.07540 (5)	0.41686 (8)	0.70889 (10)	0.0138 (2)	
O3	0.17985 (4)	0.33321 (9)	0.83058 (9)	0.0115 (2)	
O4	0.54388 (4)	0.28390 (8)	1.18793 (9)	0.0111 (2)	
05	0.19376 (6)	0.41071 (11)	0.65327 (11)	0.0253 (3)	
O6	0.12068 (6)	0.42773 (10)	0.53849 (11)	0.0236 (3)	
07	0.18928 (7)	0.50822 (10)	0.52428 (13)	0.0324 (4)	
08	0.21197 (5)	0.18554 (11)	0.66227 (10)	0.0196 (3)	
09	0.16890 (5)	0.24298 (10)	0.51644 (10)	0.0144 (2)	

O10	0.23564 (5)	0.14508 (10)	0.52791 (10)	0.0181 (2)
011	0.05832 (5)	0.25265 (10)	0.49034 (9)	0.0144 (2)
012	0.09581 (4)	0.11451 (9)	0.55595 (9)	0.0135 (2)
013	0.03605 (5)	0.11082 (10)	0.41182 (10)	0.0198 (3)
N1	0.14024 (5)	1.03189 (10)	0.77697 (10)	0.0100 (2)
N2	0.08667 (5)	0.51456 (10)	0.71901 (11)	0.0117(2)
N3	0.23089 (5)	0.32704 (10)	0.87050 (10)	0.0096(2)
N4	0.49530(5)	0.28712 (10)	1.12884 (11)	0.0097(2)
N5	0 16820 (7)	0.45013(11)	0 57063 (13)	0.0219(3)
N6	0.20645(5)	0.19037(11)	0.56710(11)	0.0129(3)
N7	0.06291 (5)	0.15870 (11)	0.48410(10)	0.0124(3)
C1	0.00291(5) 0.18032(6)	0.96583 (12)	0.79944 (13)	0.0127(3)
U1	0.10032 (0)	0.90905 (12)	0.8217	0.0127 (3)
$C^2$	0.2131	0.9699 0.86383 (12)	0.0217 0.79021 (13)	0.013
U2	0.17102 (0)	0.80385(12)	0.79021 (13)	0.0150 (5)
112 C3	0.1334	0.8182 0.82702 (12)	0.8072 0.75610 (12)	$0.010^{\circ}$
C3	0.12013(0)	0.82702(12)	0.73010(12) 0.72481(12)	0.0100(3)
C4	0.07981 (0)	0.89738 (12)	0.75461 (15)	0.0120 (3)
H4	0.0447	0.8/30	0.7120 0.74((7.(12))	$0.015^{\circ}$
	0.09060 (6)	0.998/1 (12)	0.74007 (12)	0.0120 (3)
H5	0.0628	1.045 /	0.7334	$0.014^{*}$
C6	0.05349 (6)	0.58208 (12)	0.66223 (13)	0.0152 (3)
H6	0.0230	0.5593	0.6138	0.018*
C7	0.06337 (6)	0.68346 (12)	0.67370 (13)	0.0145 (3)
H7	0.0394	0.7301	0.6340	0.017*
C8	0.10860 (6)	0.71840 (11)	0.74358 (13)	0.0109 (3)
C9	0.14177 (6)	0.64669 (12)	0.80127 (13)	0.0149 (3)
H9	0.1727	0.6674	0.8499	0.018*
C10	0.12999 (6)	0.54590 (12)	0.78830 (14)	0.0154 (3)
H10	0.1527	0.4979	0.8288	0.019*
C11	0.25850 (6)	0.41103 (12)	0.90557 (12)	0.0116 (3)
H11	0.2417	0.4746	0.8969	0.014*
C12	0.31102 (6)	0.40482 (12)	0.95382 (13)	0.0120 (3)
H12	0.3300	0.4640	0.9790	0.014*
C13	0.33636 (6)	0.31196 (12)	0.96590 (12)	0.0100 (3)
C14	0.30678 (6)	0.22808 (11)	0.92570 (13)	0.0122 (3)
H14	0.3231	0.1642	0.9302	0.015*
C15	0.25433 (6)	0.23623 (12)	0.87957 (13)	0.0116 (3)
H15	0.2346	0.1780	0.8540	0.014*
C16	0.47654 (6)	0.37537 (12)	1.08487 (12)	0.0117 (3)
H16	0.4990	0.4318	1.0914	0.014*
C17	0.42522 (6)	0.38374 (12)	1.03083 (13)	0.0120 (3)
H17	0.4124	0.4461	1.0005	0.014*
C18	0.39185 (6)	0.30165 (12)	1.02012 (12)	0.0102 (3)
C19	0.41298 (6)	0.21084 (12)	1.06397 (13)	0.0113 (3)
H19	0.3916	0.1528	1.0566	0.014*
C20	0.46461 (6)	0.20508 (12)	1.11778 (13)	0.0116 (3)
H20	0.4787	0.1431	1.1472	0.014*
			=	

Atomic displacement parameters  $(Å^2)$ 

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
Pr1	0.00728 (4)	0.00661 (4)	0.00934 (5)	-0.00065 (2)	0.00148 (3)	-0.00049 (3)
01	0.0148 (5)	0.0056 (5)	0.0146 (5)	-0.0022 (4)	0.0018 (4)	-0.0004 (4)
O2	0.0154 (5)	0.0052 (5)	0.0209 (6)	-0.0015 (4)	0.0053 (5)	-0.0021 (4)
O3	0.0063 (4)	0.0124 (5)	0.0137 (5)	0.0004 (4)	-0.0007 (4)	-0.0013 (4)
O4	0.0065 (5)	0.0123 (5)	0.0129 (5)	0.0013 (4)	0.0001 (4)	0.0010 (4)
O5	0.0328 (7)	0.0242 (7)	0.0209 (7)	-0.0155 (6)	0.0106 (6)	-0.0031 (6)
O6	0.0300 (7)	0.0164 (6)	0.0278 (7)	0.0033 (5)	0.0139 (6)	0.0046 (5)
O7	0.0589 (10)	0.0118 (6)	0.0418 (9)	-0.0076 (6)	0.0397 (8)	-0.0016 (6)
08	0.0178 (6)	0.0292 (7)	0.0122 (6)	0.0078 (5)	0.0046 (5)	0.0029 (5)
09	0.0129 (5)	0.0150 (5)	0.0146 (6)	0.0029 (4)	0.0029 (4)	0.0024 (5)
O10	0.0188 (6)	0.0181 (6)	0.0205 (6)	0.0040 (5)	0.0105 (5)	-0.0012 (5)
011	0.0149 (5)	0.0119 (5)	0.0152 (6)	0.0010 (4)	0.0020 (5)	-0.0003(5)
O12	0.0145 (5)	0.0112 (5)	0.0130 (5)	0.0008 (4)	0.0009 (4)	-0.0001 (4)
013	0.0181 (6)	0.0232 (7)	0.0154 (6)	-0.0038 (5)	0.0000 (5)	-0.0078 (5)
N1	0.0129 (6)	0.0075 (6)	0.0094 (6)	-0.0014 (4)	0.0024 (5)	0.0000 (5)
N2	0.0128 (6)	0.0068 (6)	0.0157 (6)	-0.0005 (4)	0.0043 (5)	-0.0013 (5)
N3	0.0079 (5)	0.0102 (6)	0.0102 (6)	0.0001 (4)	0.0016 (4)	0.0000 (5)
N4	0.0077 (5)	0.0109 (6)	0.0106 (6)	0.0006 (4)	0.0028 (5)	0.0003 (5)
N5	0.0391 (9)	0.0081 (6)	0.0260 (8)	-0.0043 (6)	0.0216 (7)	-0.0035 (6)
N6	0.0121 (6)	0.0125 (6)	0.0148 (7)	0.0002 (5)	0.0048 (5)	0.0000 (5)
N7	0.0112 (6)	0.0152 (6)	0.0108 (6)	-0.0018 (5)	0.0031 (5)	-0.0029 (5)
C1	0.0107 (6)	0.0121 (7)	0.0146 (7)	0.0003 (5)	0.0022 (6)	-0.0003 (6)
C2	0.0119 (7)	0.0112 (7)	0.0146 (7)	0.0012 (5)	0.0017 (6)	-0.0009 (6)
C3	0.0137 (7)	0.0072 (6)	0.0107 (7)	-0.0007 (5)	0.0031 (5)	0.0000 (5)
C4	0.0113 (6)	0.0105 (7)	0.0149 (7)	-0.0007 (5)	0.0018 (6)	0.0007 (6)
C5	0.0120 (6)	0.0094 (7)	0.0137 (7)	0.0001 (5)	0.0021 (6)	0.0006 (6)
C6	0.0141 (7)	0.0111 (7)	0.0176 (8)	-0.0016 (5)	-0.0005 (6)	0.0007 (6)
C7	0.0157 (7)	0.0101 (7)	0.0152 (8)	-0.0006 (5)	-0.0001 (6)	0.0009 (6)
C8	0.0132 (7)	0.0077 (7)	0.0120 (7)	-0.0002(5)	0.0037 (6)	-0.0009(5)
C9	0.0135 (7)	0.0100 (7)	0.0186 (8)	0.0001 (5)	-0.0001 (6)	-0.0010 (6)
C10	0.0132 (7)	0.0095 (7)	0.0205 (8)	0.0013 (5)	-0.0006 (6)	0.0006 (6)
C11	0.0111 (6)	0.0084 (6)	0.0143 (7)	0.0001 (5)	0.0018 (6)	-0.0010 (6)
C12	0.0100 (6)	0.0097 (7)	0.0152 (7)	-0.0013 (5)	0.0019 (5)	-0.0015 (6)
C13	0.0086 (6)	0.0111 (7)	0.0100 (7)	-0.0006(5)	0.0019 (5)	0.0004 (5)
C14	0.0113 (7)	0.0088 (7)	0.0151 (7)	0.0003 (5)	0.0015 (6)	0.0003 (6)
C15	0.0113 (7)	0.0082 (6)	0.0141 (7)	0.0000 (5)	0.0011 (6)	-0.0001 (6)
C16	0.0100 (6)	0.0099 (7)	0.0148 (7)	-0.0002 (5)	0.0027 (5)	0.0027 (6)
C17	0.0102 (6)	0.0097 (7)	0.0153 (7)	0.0004 (5)	0.0023 (6)	0.0027 (6)
C18	0.0084 (6)	0.0112 (7)	0.0106 (7)	-0.0001 (5)	0.0020 (5)	0.0000 (6)
C19	0.0107 (6)	0.0103 (7)	0.0127 (7)	-0.0008 (5)	0.0029 (5)	0.0003 (6)
~ • •						

Geometric parameters (Å, °)

Pr1—O4 ⁱ	2.4554 (12)	C1—H1	0.9500
Pr1—O3	2.4558 (11)	C2—C3	1.400 (2)
Pr1—O2	2.5009 (12)	C2—H2	0.9500
Pr1—O1 ⁱⁱ	2.5360 (12)	C3—C4	1.399 (2)
Pr1—O5	2.5750 (13)	C3—C8	1.479 (2)
Pr1—O8	2.5832 (13)	C4—C5	1.377 (2)
Pr1—O11	2.6036 (12)	C4—H4	0.9500
Pr1—012	2.6147 (12)	С5—Н5	0.9500
Pr1—O9	2.6242 (13)	C6—C7	1.376 (2)
Pr1—O6	2.6443 (14)	С6—Н6	0.9500
O1—N1	1.3261 (17)	C7—C8	1.401 (2)
O1—Pr1 ⁱⁱⁱ	2.5360 (12)	С7—Н7	0.9500
O2—N2	1.3337 (17)	C8—C9	1.393 (2)
O3—N3	1.3261 (16)	C9—C10	1.379 (2)
O4—N4	1.3300 (17)	С9—Н9	0.9500
O4—Pr1 ^{iv}	2.4554 (12)	C10—H10	0.9500
O5—N5	1.268 (2)	C11—C12	1.381 (2)
O6—N5	1.261 (2)	С11—Н11	0.9500
O7—N5	1.233 (2)	C12—C13	1.397 (2)
O8—N6	1.2782 (19)	C12—H12	0.9500
O9—N6	1.2646 (18)	C13—C14	1.392 (2)
O10—N6	1.2229 (18)	C13—C18	1.472 (2)
O11—N7	1.2620 (18)	C14—C15	1.375 (2)
O12—N7	1.2722 (18)	C14—H14	0.9500
O13—N7	1.2319 (18)	C15—H15	0.9500
N1—C5	1.352 (2)	C16—C17	1.373 (2)
N1—C1	1.355 (2)	C16—H16	0.9500
N2—C10	1.348 (2)	C17—C18	1.393 (2)
N2—C6	1.351 (2)	C17—H17	0.9500
N3—C15	1.352 (2)	C18—C19	1.399 (2)
N3—C11	1.353 (2)	C19—C20	1.377 (2)
N4—C20	1.349 (2)	C19—H19	0.9500
N4—C16	1.353 (2)	C20—H20	0.9500
C1—C2	1.380 (2)		
O4 ⁱ —Pr1—O3	106.95 (4)	O4—N4—C16	118.73 (13)
O4 ⁱ —Pr1—O2	68.60 (4)	C20—N4—C16	120.89 (14)
O3—Pr1—O2	75.79 (4)	O7—N5—O6	121.81 (18)
O4 ⁱ —Pr1—O1 ⁱⁱ	73.85 (4)	O7—N5—O5	120.86 (18)
O3—Pr1—O1 ⁱⁱ	69.44 (4)	O6—N5—O5	117.33 (15)
O2—Pr1—O1 ⁱⁱ	117.22 (4)	O7—N5—Pr1	168.42 (12)
O4 ⁱ —Pr1—O5	154.35 (4)	O6—N5—Pr1	60.94 (9)
O3—Pr1—O5	66.68 (4)	O5—N5—Pr1	57.81 (8)
O2—Pr1—O5	85.82 (5)	O10—N6—O9	122.44 (15)
O1 ⁱⁱ —Pr1—O5	122.36 (4)	O10—N6—O8	121.27 (14)
$O4^{i}$ —Pr1—O8	133.11 (4)	O9—N6—O8	116.28 (14)

$O_2  D_{\pi} 1  O_2$	9 <b>2</b> 56 (1)	012 N7 011	121 44 (14)
03 - Pr1 - 08	82.30(4)	013 - N7 - 012	121.44(14)
02—PII— $08$	133.82(4)	013 - N7 - 012	120.83(14)
01	66.88 (4)	OII = N = OI2	117.70(13)
05—Pr1—08	72.05 (5)	NI-CI-C2	120.45 (14)
04 ⁻ PrI011	69.62 (4)	NI-CI-HI	119.8
03—Pr1—011	166.61 (4)	C2—C1—H1	119.8
O2—Pr1—O11	91.05 (4)	C1—C2—C3	120.60 (15)
$O1^{n}$ — $Pr1$ — $O11$	120.17 (4)	C1—C2—H2	119.7
O5—Pr1—O11	110.48 (4)	C3—C2—H2	119.7
O8—Pr1—O11	109.43 (4)	C4—C3—C2	117.20 (14)
$O4^{i}$ —Pr1—O12	69.86 (4)	C4—C3—C8	120.55 (14)
O3—Pr1—O12	143.04 (4)	C2—C3—C8	122.25 (14)
O2—Pr1—O12	130.35 (4)	C5—C4—C3	120.50 (14)
O1 ⁱⁱ —Pr1—O12	74.59 (4)	C5—C4—H4	119.8
O5—Pr1—O12	130.84 (4)	C3—C4—H4	119.8
O8—Pr1—O12	75.74 (4)	N1C5C4	120.79 (15)
O11—Pr1—O12	49.12 (4)	N1—C5—H5	119.6
O4 ⁱ —Pr1—O9	130.11 (4)	C4—C5—H5	119.6
O3—Pr1—O9	120.78 (4)	N2—C6—C7	120.78 (15)
O2—Pr1—O9	134.05 (4)	N2—C6—H6	119.6
O1 ⁱⁱ —Pr1—O9	108.67 (4)	С7—С6—Н6	119.6
O5—Pr1—O9	67.21 (4)	C6—C7—C8	120.43 (15)
O8—Pr1—O9	49.00 (4)	С6—С7—Н7	119.8
O11—Pr1—O9	66.91 (4)	С8—С7—Н7	119.8
O12—Pr1—O9	63.63 (4)	C9—C8—C7	117.22 (14)
$O4^{i}$ Pr1—O6	115.98 (4)	C9—C8—C3	121.62(14)
03 - Pr1 - 06	106 61 (4)	C7-C8-C3	121.02(14) 121.16(14)
02 - Pr1 - 06	69 19 (4)	$C_{10}$ $C_{20}$ $C$	120.43(15)
$01^{ii}$ Pr1-06	170 15 (4)	$C_{10}$ $C_{9}$ $H_{9}$	119.8
05-Pr1-06	48 87 (5)	C8—C9—H9	119.8
08—Pr1—06	103.98(4)	$N_{2}$ $C_{10}$ $C_{9}$	120.93 (15)
011  Pr 1 06	65.42(4)	$N_2 = C_{10} = C_2$	110.5
012 Pr1 06	107.45(4)	$C_{0}$ $C_{10}$ $H_{10}$	119.5
012 - 111 - 00	107.43(4)	$N_{2} = C_{10} = 1110$	119.3 120.22(14)
$O_{4i} D_{7i} N_{5}$	120,00,(4)	$N_{2} = C_{11} = U_{12}$	120.32 (14)
$O_4 - F_{11} - N_5$	139.09 (4)	$N_{3} = C_{11} = H_{11}$	119.0
$O_2 = Pr1 = N5$	88.34 (4) 70.20 (4)		119.8
02—Pri—N5	79.39 (4) 14C 01 (4)	CII = CI2 = CI3	120.37 (14)
Of Pri N5	146.01(4)	C12—C12—H12	119.8
05-PrI-N5	24.63 (5)	C13—C12—H12	119.8
08—Pr1—N5	85.53 (5)	C14—C13—C12	117.30 (14)
Oll—Prl—N5	86.73 (5)	C14—C13—C18	120.64 (14)
O12—Pr1—N5	118.82 (4)	C12—C13—C18	122.05 (14)
09—Pr1—N5	60.42 (4)	C15—C14—C13	121.05 (15)
O6—Pr1—N5	24.63 (5)	C15—C14—H14	119.5
N1—O1—Pr1 ⁱⁱⁱ	132.45 (9)	C13—C14—H14	119.5
N2—O2—Pr1	129.47 (9)	N3—C15—C14	120.09 (14)
N3—O3—Pr1	129.16 (9)	N3—C15—H15	120.0
N4—O4—Pr1 ^{iv}	134.06 (10)	C14—C15—H15	120.0

N5—O5—Pr1	97.56 (10)	N4—C16—C17	120.31 (14)
N5—O6—Pr1	94.43 (10)	N4—C16—H16	119.8
N6	97.84 (9)	C17—C16—H16	119.8
N6	96.25 (9)	C16—C17—C18	120.61 (15)
N7—O11—Pr1	97.00 (9)	C16—C17—H17	119.7
N7	96.18 (9)	C18—C17—H17	119.7
O1—N1—C5	119.07 (13)	C17—C18—C19	117.47 (14)
01—N1—C1	120.46 (13)	C17—C18—C13	120.49 (14)
C5—N1—C1	120.42 (14)	C19—C18—C13	122.02 (14)
O2—N2—C10	120.08 (13)	C20—C19—C18	120.40 (15)
O2—N2—C6	119.67 (13)	С20—С19—Н19	119.8
C10—N2—C6	120.20 (14)	C18—C19—H19	119.8
O3—N3—C15	119.46 (13)	N4—C20—C19	120.27 (15)
O3—N3—C11	119.65 (13)	N4—C20—H20	119.9
C15—N3—C11	120.82 (13)	С19—С20—Н20	119.9
O4—N4—C20	120.28 (13)		

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2.

### Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H… <i>A</i>
C1—H1…O5 ^v	0.95	2.59	3.331 (2)	135
C4—H4…O13 ^{vi}	0.95	2.36	3.200 (2)	147
C5—H5····O4 ^{vii}	0.95	2.37	3.168 (2)	141
C9—H9····O9 ^{viii}	0.95	2.61	3.204 (2)	121
C9—H9…O10 ^v	0.95	2.58	3.468 (2)	156
C10—H10…O3	0.95	2.31	3.115 (2)	143
C10—H10…O7 ^{viii}	0.95	2.60	3.277 (3)	129
C11—H11···O10 ^v	0.95	2.50	3.239 (2)	135
C14—H14…O7 ^{ix}	0.95	2.22	3.002 (2)	139
C15—H15…O1 ⁱⁱ	0.95	2.31	3.0924 (19)	140
C16—H16…O13 ^v	0.95	2.56	3.154 (2)	121
С17—Н17…О12 ^v	0.95	2.36	3.288 (2)	164
C20—H20····O2 ^{iv}	0.95	2.62	3.307 (2)	130

Symmetry codes: (ii) *x*, *y*-1, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2; (v) -*x*+1/2, *y*+1/2, -*z*+3/2; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*-1/2, -*y*+3/2, *z*-1/2; (viii) *x*, -*y*+1, *z*+1/2; (ix) -*x*+1/2, *y*-1/2, -*z*+3/2.

(III) Poly[[tris(nitrato- $\kappa^2 O, O'$ )neodymium(III)]-bis( $\mu$ -4,4'-bipyridine N, N'-dioxide- $\kappa^2 N: N'$ }]

Crystal data	
$[Nd(NO_3)_3(C_{10}H_8N_2O_2)_2]$	F(000) = 2792
$M_r = 706.64$	$D_{\rm x} = 1.993 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å
a = 26.7422 (10)  Å	Cell parameters from 8852 reflections
b = 13.3035 (5)  Å	$\theta = 2.5 - 31.4^{\circ}$
c = 13.7804 (5)  Å	$\mu = 2.29 \text{ mm}^{-1}$
$\beta = 106.065 \ (1)^{\circ}$	T = 173  K
V = 4711.1 (3) Å ³	Block, yellow
Z = 8	$0.14 \times 0.12 \times 0.08 \text{ mm}$

Data collection

Bruker D8 Quest CMOS diffractometer	$T_{\min} = 0.682, T_{\max} = 0.747$ 47148 measured reflections
Radiation source: I-mu-S microsource X-ray tube	8277 independent reflections 5419 reflections with $I > 2\sigma(I)$
Laterally graded multilayer (Goebel) mirror monochromator	$R_{\rm int} = 0.115$ $\theta_{\rm max} = 33.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
$\omega$ and phi scans	$h = -38 \rightarrow 39$
Absorption correction: multi-scan	$k = -20 \rightarrow 18$
(SADABS; Bruker, 2009)	$l = -21 \rightarrow 18$
Refinement	
Refinement on $F^2$	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_0^2) + (0.0161P)^2 + 13.5513P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
8277 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
	0 -

### Special details

370 parameters 0 restraints

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm max} = 1.49 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -1.29 \ {\rm e} \ {\rm \AA}^{-3}$ 

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nd1	0.12681 (2)	0.27502 (2)	0.66431 (2)	0.00728 (4)	
O1	0.14904 (8)	1.13013 (15)	0.78718 (16)	0.0116 (5)	
O2	0.07574 (8)	0.41599 (15)	0.70766 (16)	0.0130 (5)	
O3	0.17968 (8)	0.33233 (15)	0.83003 (15)	0.0111 (4)	
O4	0.54422 (8)	0.28373 (16)	1.18789 (15)	0.0104 (4)	
O5	0.19319 (10)	0.40971 (18)	0.65362 (18)	0.0251 (6)	
O6	0.12057 (10)	0.42656 (17)	0.53782 (19)	0.0236 (6)	
O7	0.18928 (11)	0.50787 (17)	0.5251 (2)	0.0317 (7)	
O8	0.21193 (9)	0.18587 (18)	0.66255 (16)	0.0190 (5)	
O9	0.16865 (8)	0.24311 (15)	0.51655 (16)	0.0139 (5)	
O10	0.23559 (9)	0.14500 (17)	0.52853 (17)	0.0187 (5)	
O11	0.05854 (8)	0.25293 (15)	0.49154 (16)	0.0136 (5)	
O12	0.09612 (8)	0.11469 (16)	0.55686 (16)	0.0120 (5)	
O13	0.03619 (9)	0.11085 (17)	0.41220 (17)	0.0198 (5)	
N1	0.14002 (10)	1.03179 (18)	0.77624 (18)	0.0092 (5)	
N2	0.08697 (10)	0.51388 (19)	0.7183 (2)	0.0113 (6)	
N3	0.23077 (10)	0.32610 (19)	0.87052 (18)	0.0094 (5)	
N4	0.49563 (9)	0.28710 (19)	1.12926 (17)	0.0094 (5)	
N5	0.16807 (13)	0.4492 (2)	0.5712 (2)	0.0228 (7)	
N6	0.20618 (10)	0.19050 (19)	0.56738 (19)	0.0125 (6)	
N7	0.06299 (10)	0.1590 (2)	0.48487 (19)	0.0124 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

C1	0.18004 (12)	0.9658 (2)	0.7982 (2)	0.0123 (6)
H1	0.2148	0.9899	0.8201	0.015*
C2	0.17080 (12)	0.8640 (2)	0.7892 (2)	0.0120 (6)
H2	0.1993	0.8185	0.8059	0.014*
C3	0.12022 (12)	0.8270 (2)	0.7557 (2)	0.0097 (6)
C4	0.07995 (12)	0.8974 (2)	0.7348 (2)	0.0117 (6)
H4	0.0449	0.8751	0.7123	0.014*
C5	0.09037 (12)	0.9987 (2)	0.7464 (2)	0.0121 (6)
Н5	0.0625	1.0455	0.7334	0.015*
C6	0.05363 (13)	0.5813 (2)	0.6616 (2)	0.0144 (7)
H6	0.0230	0.5584	0.6133	0.017*
C7	0.06354 (12)	0.6827 (2)	0.6730 (2)	0.0137 (7)
H7	0.0396	0.7293	0.6329	0.016*
C8	0.10854 (11)	0.7181 (2)	0.7431 (2)	0.0099 (6)
C9	0.14192 (13)	0.6463 (2)	0.8007 (2)	0.0147 (7)
Н9	0.1729	0.6671	0.8491	0.018*
C10	0.13017 (13)	0.5451 (2)	0.7879 (3)	0.0168 (7)
H10	0.1528	0.4970	0.8287	0.020*
C11	0.25859 (12)	0.4103 (2)	0.9057 (2)	0.0109 (6)
H11	0.2419	0.4740	0.8964	0.013*
C12	0.31067 (12)	0.4040 (2)	0.9544 (2)	0.0115 (6)
H12	0.3295	0.4633	0.9803	0.014*
C13	0.33621 (12)	0.3117 (2)	0.9664 (2)	0.0099 (6)
C14	0.30682 (11)	0.2278 (2)	0.9260 (2)	0.0111 (6)
H14	0.3232	0.1639	0.9307	0.013*
C15	0.25439 (12)	0.2359 (2)	0.8795 (2)	0.0117 (6)
H15	0.2348	0.1776	0.8536	0.014*
C16	0.47655 (12)	0.3749 (2)	1.0850 (2)	0.0118 (6)
H16	0.4989	0.4314	1.0915	0.014*
C17	0.42538 (12)	0.3837 (2)	1.0310 (2)	0.0115 (6)
H17	0.4126	0.4459	1.0002	0.014*
C18	0.39187 (12)	0.3015 (2)	1.0209 (2)	0.0101 (6)
C19	0.41335 (12)	0.2105 (2)	1.0646 (2)	0.0113 (6)
H19	0.3920	0.1522	1.0570	0.014*
C20	0.46497 (12)	0.2047 (2)	1.1181 (2)	0.0109 (6)
H20	0.4791	0.1426	1.1474	0.013*

### Atomic displacement parameters $(Å^2)$

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
Nd1	0.00565 (7)	0.00592 (7)	0.00960 (7)	-0.00075 (8)	0.00098 (5)	-0.00046 (8)
O1	0.0140 (12)	0.0039 (10)	0.0155 (11)	-0.0026 (9)	0.0018 (9)	0.0000 (9)
O2	0.0142 (12)	0.0030 (10)	0.0215 (12)	-0.0035 (9)	0.0046 (10)	-0.0026 (9)
O3	0.0036 (10)	0.0125 (11)	0.0143 (11)	0.0003 (9)	-0.0023 (9)	-0.0010 (9)
O4	0.0050 (10)	0.0122 (11)	0.0121 (10)	0.0010 (9)	-0.0009 (8)	-0.0004 (9)
05	0.0326 (16)	0.0244 (14)	0.0197 (13)	-0.0162 (12)	0.0095 (12)	-0.0016 (11)
06	0.0301 (16)	0.0144 (12)	0.0295 (14)	0.0025 (11)	0.0136 (12)	0.0065 (11)
O7	0.060(2)	0.0106 (12)	0.0401 (16)	-0.0062 (12)	0.0397 (16)	0.0002 (12)

08	0.0165 (13)	0.0297 (14)	0.0104 (11)	0.0076 (11)	0.0032 (10)	0.0031 (10)
09	0.0118 (11)	0.0138 (12)	0.0155 (11)	0.0024 (9)	0.0028 (9)	0.0025 (9)
O10	0.0190 (13)	0.0168 (12)	0.0236 (13)	0.0047 (10)	0.0115 (11)	-0.0020 (10)
011	0.0140 (11)	0.0103 (12)	0.0153 (11)	0.0011 (8)	0.0021 (9)	0.0004 (8)
O12	0.0122 (12)	0.0097 (11)	0.0117 (11)	0.0000 (9)	-0.0007 (9)	-0.0002 (9)
O13	0.0160 (13)	0.0240 (13)	0.0159 (12)	-0.0041 (10)	-0.0014 (10)	-0.0109 (10)
N1	0.0105 (14)	0.0081 (13)	0.0081 (12)	-0.0017 (10)	0.0013 (11)	-0.0009 (10)
N2	0.0123 (14)	0.0068 (13)	0.0164 (14)	-0.0004 (11)	0.0064 (12)	-0.0015 (11)
N3	0.0085 (13)	0.0107 (13)	0.0076 (12)	0.0021 (11)	-0.0002 (10)	-0.0008 (10)
N4	0.0082 (12)	0.0122 (13)	0.0074 (11)	0.0004 (11)	0.0017 (10)	-0.0018 (10)
N5	0.040 (2)	0.0092 (14)	0.0285 (17)	-0.0060 (14)	0.0242 (16)	-0.0043 (13)
N6	0.0126 (14)	0.0106 (13)	0.0145 (13)	-0.0015 (11)	0.0042 (11)	-0.0008 (11)
N7	0.0104 (14)	0.0132 (14)	0.0144 (13)	-0.0016 (11)	0.0045 (11)	-0.0036 (11)
C1	0.0098 (16)	0.0119 (16)	0.0146 (15)	-0.0011 (13)	0.0021 (13)	-0.0001 (13)
C2	0.0117 (16)	0.0104 (15)	0.0131 (15)	0.0023 (13)	0.0022 (13)	-0.0014 (12)
C3	0.0124 (16)	0.0084 (15)	0.0081 (14)	0.0005 (13)	0.0023 (12)	0.0018 (12)
C4	0.0089 (16)	0.0103 (15)	0.0138 (15)	-0.0004 (12)	-0.0005 (13)	0.0022 (13)
C5	0.0103 (16)	0.0113 (16)	0.0149 (16)	0.0014 (13)	0.0037 (13)	0.0013 (13)
C6	0.0125 (17)	0.0115 (16)	0.0156 (16)	-0.0009 (13)	-0.0021 (13)	0.0002 (13)
C7	0.0120 (16)	0.0099 (15)	0.0156 (16)	0.0010 (13)	-0.0021 (13)	0.0007 (13)
C8	0.0111 (15)	0.0071 (14)	0.0123 (14)	0.0015 (13)	0.0044 (12)	-0.0008 (13)
C9	0.0114 (16)	0.0114 (16)	0.0186 (17)	0.0010 (13)	-0.0004 (14)	-0.0016 (13)
C10	0.0122 (17)	0.0132 (16)	0.0218 (18)	0.0042 (13)	-0.0007 (14)	-0.0001 (14)
C11	0.0112 (16)	0.0071 (15)	0.0138 (15)	-0.0001 (12)	0.0023 (13)	-0.0019 (12)
C12	0.0090 (16)	0.0102 (15)	0.0145 (15)	-0.0021 (12)	0.0019 (13)	-0.0029 (13)
C13	0.0100 (15)	0.0119 (15)	0.0082 (14)	-0.0005 (12)	0.0032 (12)	-0.0004 (12)
C14	0.0103 (14)	0.0093 (14)	0.0133 (14)	0.0008 (14)	0.0024 (12)	0.0004 (14)
C15	0.0136 (15)	0.0074 (14)	0.0129 (14)	-0.0027 (13)	0.0018 (12)	-0.0020 (13)
C16	0.0114 (16)	0.0095 (15)	0.0148 (15)	-0.0003 (12)	0.0039 (13)	0.0032 (13)
C17	0.0100 (16)	0.0099 (15)	0.0141 (15)	0.0021 (12)	0.0026 (13)	0.0012 (12)
C18	0.0096 (15)	0.0126 (16)	0.0094 (14)	0.0022 (12)	0.0049 (12)	0.0001 (12)
C19	0.0113 (15)	0.0098 (16)	0.0135 (14)	-0.0017 (12)	0.0044 (12)	-0.0007 (12)
C20	0.0135 (16)	0.0085 (16)	0.0113 (14)	-0.0001 (12)	0.0041 (13)	0.0002 (11)

### Geometric parameters (Å, °)

Nd1—O4 ⁱ	2.448 (2)	C1—H1	0.9500
Nd103	2.451 (2)	C2—C3	1.393 (4)
Nd1	2.488 (2)	C2—H2	0.9500
Nd1—O1 ⁱⁱ	2.526 (2)	C3—C4	1.396 (4)
Nd105	2.555 (2)	C3—C8	1.482 (4)
Nd108	2.573 (2)	C4—C5	1.376 (4)
Nd1-011	2.585 (2)	C4—H4	0.9500
Nd1012	2.597 (2)	С5—Н5	0.9500
Nd109	2.615 (2)	C6—C7	1.377 (4)
Nd106	2.640 (2)	С6—Н6	0.9500
01—N1	1.331 (3)	С7—С8	1.399 (4)
O1—Nd1 ⁱⁱⁱ	2.526 (2)	С7—Н7	0.9500

O2—N2	1.335 (3)	C8—C9	1.396 (4)
O3—N3	1.328 (3)	C9—C10	1.383 (4)
O4—N4	1.328 (3)	С9—Н9	0.9500
O4—Nd1 ^{iv}	2.448 (2)	C10—H10	0.9500
O5—N5	1.263 (4)	C11—C12	1.371 (4)
O6—N5	1.262 (4)	C11—H11	0.9500
O7—N5	1.238 (3)	C12—C13	1.393 (4)
O8—N6	1.279 (3)	C12—H12	0.9500
O9—N6	1.264 (3)	C13—C14	1.389 (4)
010—N6	1.227 (3)	C13—C18	1.476 (4)
011—N7	1.261 (3)	C14—C15	1.375 (4)
012—N7	1.277 (3)	C14—H14	0.9500
013—N7	1.277(3)	C15—H15	0.9500
N1 - C5	1.257(5) 1.351(4)	C16-C17	1,370(4)
N1-C1	1.351(1) 1.352(4)	C16-H16	0.9500
$N_2 - C_{10}$	1.332(4) 1 347(4)	C17 $C18$	1 395 (4)
N2 C6	1.377(4) 1.350(4)	C17 H17	0.9500
N2 C15	1.330(4)	C12 $C10$	1,402,(4)
N3-C13	1.340 (4)	$C_{10} = C_{19}$	1.403(4) 1.276(4)
NJ-CII	1.558 (4)	C19 - C20	1.570 (4)
N4-C10	1.351 (4)	C19—H19	0.9500
N4-C20	1.352 (4)	C20—H20	0.9500
CIC2	1.375 (4)		
04i N41 02	10654(7)	04 N4 C20	120.2 (2)
04 Nd1 $03$	100.34(7)	04 N4 $C20$	120.2(2)
04 - Nd1 - 02	08.30(7)	C10 N4 $C20$	120.0(3)
03—Nd1— $02$	/5.84 (7)	07 - N5 - 06	121.4(3)
O4 - Nd1 - O1	/3./9(/)	0/—N5—05	121.2 (3)
	69.19 (7)	06—N5—05	11/.4 (3)
02—Ndl—Ol"	117.21 (7)	0/—N5—Ndl	168.5 (2)
04  Nd105	153.95 (8)	06—N5—Nd1	61.29 (16)
O3—Nd1—O5	66.72 (7)	O5—N5—Nd1	57.42 (15)
O2—Nd1—O5	85.50 (8)	O10—N6—O9	122.5 (3)
O1 ⁿ —Nd1—O5	122.38 (8)	O10—N6—O8	120.9 (3)
O4 ⁱ —Nd1—O8	133.41 (7)	O9—N6—O8	116.5 (2)
O3—Nd1—O8	82.44 (7)	O13—N7—O11	121.8 (3)
O2—Nd1—O8	153.59 (7)	O13—N7—O12	120.8 (3)
O1 ⁱⁱ —Nd1—O8	67.03 (7)	O11—N7—O12	117.4 (2)
O5—Nd1—O8	72.07 (8)	N1—C1—C2	120.5 (3)
O4 ⁱ —Nd1—O11	69.68 (7)	N1—C1—H1	119.7
O3—Nd1—O11	166.35 (6)	C2—C1—H1	119.7
O2—Nd1—O11	90.70 (7)	C1—C2—C3	120.8 (3)
O1 ⁱⁱ —Nd1—O11	120.39 (6)	C1—C2—H2	119.6
O5—Nd1—O11	110.58 (7)	С3—С2—Н2	119.6
O8—Nd1—O11	109.88 (7)	C2—C3—C4	117.0 (3)
O4 ⁱ —Nd1—O12	70.06 (7)	C2—C3—C8	122.6 (3)
O3—Nd1—O12	142.80 (7)	C4—C3—C8	120.4 (3)
O2—Nd1—O12	130.40 (7)	C5—C4—C3	120.9 (3)
O1 ⁱⁱ —Nd1—O12	74.57 (6)	C5—C4—H4	119.6

O5—Nd1—O12	131.16 (7)	C3—C4—H4	119.6
O8—Nd1—O12	75.92 (7)	N1—C5—C4	120.4 (3)
O11—Nd1—O12	49.47 (6)	N1—C5—H5	119.8
O4 ⁱ —Nd1—O9	130.37 (7)	С4—С5—Н5	119.8
03—Nd1—09	121.01 (7)	N2—C6—C7	120.6 (3)
02—Nd1—09	13370(7)	N2-C6-H6	119.7
$01^{ii}$ _Nd1_09	109.03(7)	C7 - C6 - H6	119.7
$O_5$ Nd1 $O_9$	67.36(7)	$C_{1}$ $C_{2}$ $C_{3}$	119.7 120.7(3)
$O_{3}$ Nd1 $O_{3}$	40.27(7)	C6 C7 H7	120.7(3)
011 Nd1 00	49.27(7)	$C^{\circ}$ $C^{-117}$	119.7
012 Null 00	07.02(7)	$C_{0} = C_{1} = H_{1}$	119.7
012—Nd1—09	63.80 (7)	$C_{9} = C_{8} = C_{7}$	11/.1(3)
04	115.92 (7)	C9—C8—C3	121.4 (3)
03—Nd1—06	107.00 (7)	C/C8C3	121.5 (3)
O2—Nd1—O6	69.17 (7)	C10—C9—C8	120.5 (3)
O1 ⁿ —Nd1—O6	170.26 (7)	С10—С9—Н9	119.8
O5—Nd1—O6	49.03 (8)	С8—С9—Н9	119.8
O8—Nd1—O6	103.89 (7)	N2—C10—C9	120.7 (3)
O11—Nd1—O6	65.12 (7)	N2-C10-H10	119.6
O12—Nd1—O6	107.37 (7)	С9—С10—Н10	119.6
O9—Nd1—O6	64.68 (7)	N3—C11—C12	120.4 (3)
O4 ⁱ —Nd1—N5	139.01 (8)	N3—C11—H11	119.8
O3—Nd1—N5	88.42 (8)	C12—C11—H11	119.8
O2—Nd1—N5	79.15 (7)	C11—C12—C13	120.7 (3)
O1 ⁱⁱ —Nd1—N5	146.02 (8)	C11—C12—H12	119.7
O5—Nd1—N5	24.61 (8)	C13—C12—H12	119.7
08—Nd1—N5	85.48 (8)	C14—C13—C12	117.2 (3)
011 - Nd1 - N5	86 77 (8)	$C_{14}$ $C_{13}$ $C_{18}$	120.6(3)
012—Nd1—N5	119.07(7)	$C_{12}$ $C_{13}$ $C_{18}$	120.0(3) 122.2(3)
09Nd1N5	60.38(7)	$C_{12} = C_{13} = C_{13}$	122.2(3) 1210(3)
O6 Nd1 N5	24.79(8)	$C_{15} = C_{14} = C_{15}$	121.0 (5)
N1 O1 Nd1 ⁱⁱⁱ	24.79(0) 132.26(17)	$C_{13}$ $C_{14}$ $H_{14}$	119.5
N2 O2 Nd1	132.20(17) 120.77(17)	$N_{2} = C_{15} = C_{14}$	119.3 120.2(2)
N2 O2 NH1	129.77(17)	$N_{3} = C_{15} = C_{14}$	120.5 (5)
N3-O3-Nd1	129.30 (16)	N3-C15-H15	119.8
	134.20 (16)	C14—C15—H15	119.8
N5—O5—Nd1	97.97 (19)	N4—C16—C17	120.9 (3)
N5—O6—Nd1	93.92 (19)	N4—C16—H16	119.5
N6—O8—Nd1	97.58 (17)	C17—C16—H16	119.5
N6—O9—Nd1	95.95 (16)	C16—C17—C18	120.3 (3)
N7—O11—Nd1	97.07 (17)	С16—С17—Н17	119.8
N7—O12—Nd1	96.06 (16)	C18—C17—H17	119.8
O1—N1—C5	119.2 (2)	C17—C18—C19	117.3 (3)
O1—N1—C1	120.4 (2)	C17—C18—C13	120.5 (3)
C5—N1—C1	120.4 (3)	C19—C18—C13	122.2 (3)
O2—N2—C10	120.1 (3)	C20—C19—C18	120.6 (3)
O2—N2—C6	119.4 (3)	C20—C19—H19	119.7
C10—N2—C6	120.4 (3)	C18—C19—H19	119.7
O3—N3—C15	119.8 (2)	N4—C20—C19	120.2 (3)
O3—N3—C11	119.8 (2)	N4—C20—H20	119.9

C15—N3—C11 O4—N4—C16	120.4 (3) 119.2 (2)	С19—С20—Н20	119.9
Nd1—O3—O4—Nd1 ^{iv}	4.87 (14)	Nd1—O2—O1—Nd1 ⁱⁱⁱ	91.75 (11)

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2.

### Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.95	2.61	3.353 (4)	135
0.95	2.37	3.206 (4)	147
0.95	2.37	3.163 (4)	141
0.95	2.63	3.216 (4)	121
0.95	2.58	3.464 (4)	156
0.95	2.30	3.110 (4)	142
0.95	2.61	3.289 (4)	129
0.95	2.50	3.243 (4)	135
0.95	2.21	2.998 (4)	139
0.95	2.31	3.091 (4)	139
0.95	2.56	3.159 (4)	121
0.95	2.37	3.295 (4)	165
0.95	2.61	3.294 (4)	130
	<i>D</i> —H 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	D—H         H···A           0.95         2.61           0.95         2.37           0.95         2.37           0.95         2.37           0.95         2.63           0.95         2.58           0.95         2.30           0.95         2.61           0.95         2.50           0.95         2.31           0.95         2.36           0.95         2.31           0.95         2.37           0.95         2.37           0.95         2.61	D—HH···A $D$ ···A0.952.613.353 (4)0.952.373.206 (4)0.952.373.163 (4)0.952.633.216 (4)0.952.583.464 (4)0.952.303.110 (4)0.952.613.289 (4)0.952.212.998 (4)0.952.313.091 (4)0.952.563.159 (4)0.952.613.295 (4)

Symmetry codes: (ii) *x*, *y*-1, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2; (v) -*x*+1/2, *y*+1/2, -*z*+3/2; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*-1/2, -*y*+3/2, *z*-1/2; (viii) *x*, -*y*+1, *z*+1/2; (ix) -*x*+1/2, *y*-1/2, -*z*+3/2.