research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 212-214

catena-Poly[bis­(1,3-benzo­thia­zol-3-ium) [[di­chlorido­anti­monate(III)]-di-μ-chlorido-μ-oxido-[chlorido­anti­monate(III)]-μ-chlorido]]

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Frères Montouri Constantine, 25000, Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

Edited by P. C. Healy, Griffith University, Australia (Received 31 December 2015; accepted 14 January 2016; online 20 January 2016)

The title compound, {(C7H6NS)2[Sb2Cl6O]}n, contains two benzo­thia­zolidium cations and one tri-μ-chlorido-tri­chlorido-μ-oxido-di­anti­monate(III) anion. The structure of the inorganic cation may be described as as being built up from two polyhedra, i.e. a square-pyramidal SbCl4O and a distorted octa­hedral SbOCl5 unit, sharing a common face (comprising the O atom and two Cl atoms). The two benzo­thia­zole cations are quasi-planar and subtend a dihedral angle of 19.93 (5)°. The crystal packing can be described by alternating (100) layers and [001] chains of the organic cations and inorganic anions connected through an extensive three-dimensional network of N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds. This is consolidated by slipped ππ stacking, with centroid-to-centroid distances between the benzo­thia­zole rings of 3.7111 (18)–3.8452 (16) Å. These inter­actions link the mol­ecules within the layers and also link the layers together and reinforce the cohesion of the ionic structure.

1. Chemical context

The coordination chemistry of anti­mony has both a practical and theoretical inter­est (Abboud et al., 2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]; Bujak & Angel, 2006[Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.]). Recently, the use of anti­mony complexes in cancer chemotherapy has become a topic of inter­est (Demicheli et al., 2006[Demicheli, C., Santos, L. S., Ferreira, C. S., Bouchemal, N., Hantz, E., Eberlin, M. N. & Frézard, F. (2006). Inorg. Chim. Acta, 359, 159-167.]; Rais et al., 2000[Rais, S., Perianin, A., Lenoir, M., Sadak, A., Rivollet, D., Paul, M. & Deniau, M. (2000). Antimicrob. Agents Chemother. 44, 2406-2410.]). As part of our ongoing studies of benzo­thia­zole-based coordination networks (Bouchareb et al., 2014[Bouchareb, H., Benmebarek, S., Bouacida, S., Merazig, H. & Boudraa, M. (2014). Acta Cryst. E70, m275.]), we now report the polymeric structure of new organic–inorganic hybrid compound {(C7H6NS)2[Sb2Cl6O]}n, (I)[link].

[Scheme 1]

2. Structural commentary

The title compound contains two benzo­thia­zolidium cations and one tri-μ-chlorido-tri­chlorido-μ-oxido-di­anti­monate(III) anion (Sb2Cl6O2−). The mol­ecular geometry and the atom-numbering scheme are shown in Fig. 1[link].

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The structure of the inorganic anion may be described as two polyhedra, square-pyramidal SbCl4O and distorted octa­hedral SbOCl5, sharing a common face (O1, Cl5 and Cl6). In the first polyhedron, four Cl atoms (Cl3–Cl4–Cl5–Cl6) form a basal plane with the Sb1 atom lying 0.3011 (2) Å below the plane. The apical position is occupied by the O1 atom. In the second polyhedron, the O1 atom occupies the apical position and four Cl atoms (Cl1–Cl2–Cl5–Cl6) form the base equatorial plane with Sb2 displaced by 0.4168 (1) Å from it. The geometry of the Sb2 atom can be described as distorted octa­hedral, a sixth coordination is observed at a longer distance, with Sb2 coordinated by the adjacent Cl3i atom at a distance of 3.546 (4) Å [symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z], forming an infinite chain parallel to [001] (Fig. 2[link]). This distance is significantly shorter than the sum of the relevant van der Waals radii of 4.01 Å (rSb = 2.1 Å and rCl = 1.91 Å) and in good agreement with those found in [SbCl3(C25H22O2P2)] (Razak et al., 1999[Razak, I. A., Fun, H.-K., Yamin, B. M., Chinnakali, K., Zakaria, H. & Ismail, N. B. (1999). Acta Cryst. C55, 172-174.]) and in [(CH3)2NH(CH2)2NH3][SbCl5] (Bujak & Angel, 2006[Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.]). In this mol­ecule, the angle between the two equatorial planes is 75.86 (2)°.

[Figure 2]
Figure 2
View of a polymeric chain of Sb2Cl6O along the c axis.

The Sb—O bridge distances of 1.9404 (16) and 1.9460 (17) Å are similar to those found in the Sb2Cl6O2 moiety (Abboud et al., 2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]). Excluding the longest bond (Sb2—Cl3i), the terminal Sb—Cl bonds are in the range 2.3974 (8)–2.4982 (8) Å and are shorter than the bridging bonds [2.7522 (8)–3.3244 (9) Å] and are in good agreement with those found in C26H28N8O6Sb4Cl10 (Abboud et al., 2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]). However, the Sb—O—Sb bond angle is 123.56 (9)° which is very different to that observed in Cs2Sb2O2(OH)8 (Mikhaylov et al., 2011[Mikhaylov, A. A., Mel'nik, E. A., Churakov, A. V., Novotortsev, V. M., Howard, J. A. K., Sladkevich, S., Gun, J., Bharathi, S., Lev, O. & Prikhodchenko, P. V. (2011). Inorg. Chim. Acta, 378, 24-29.]) and the Sb2Cl6O2 moiety (Abboud et al., 2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]). The dihedral angle between the mean planes of the two benzo­thia­zole cations is 19.93 (5)°.

3. Supra­molecular features

The crystal packing can be described by alternating (100) layers and [001] chains of organic cations and inorganic anions connected through an extensive network of N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional network (Table 1[link], Fig. 3[link]). The packing is consolidated by slipped ππ stacking with centroid-to-centroid distances of 3.7111 (18)–3.8452 (16) Å between the benzo­thia­zole rings. These inter­actions link the mol­ecules within the layers and also link the layers together, reinforcing the cohesion of the ionic structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl6i 0.86 2.37 3.200 (3) 162
N2—H2N⋯Cl6ii 0.86 2.35 3.145 (3) 153
C1—H1⋯O1 0.93 2.27 3.152 (4) 159
C8—H8⋯Cl5iii 0.93 2.72 3.327 (3) 124
C10—H10⋯Cl3iv 0.93 2.78 3.612 (3) 150
C13—H13⋯Cl2ii 0.93 2.76 3.524 (3) 140
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of diagram packing of the title compound, viewed along the a axis, showing alternating chains and layers connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds (shown as dashed lines).

4. Synthesis and crystallization

A solution of SbCl3 (45.6 mg, 0.2 mmol) in water (10 ml) was added dropwise to a solution of benzo­thia­zole (0.5 ml, 4.6 mmol) in ethanol (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. Colorless crystals were obtained after several days.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were placed into idealized positions and refined using the riding-atom approximation. The applied constraints were: C—H = 0.93 Å and N—H = 0.86 Å, Uiso = 1.2Ueq(C or N).

Table 2
Experimental details

Crystal data
Chemical formula (C7H6NS)2[Sb2Cl6O]
Mr 744.58
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 10.2826 (2), 16.2448 (3), 14.9849 (3)
β (°) 111.674 (1)
V3) 2326.09 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.20
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.630, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20349, 5344, 4627
Rint 0.026
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.02
No. of reflections 5344
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.77
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]).

Supporting information


Chemical context top

The coordination chemistry of anti­mony has both a practical and theoretical inter­est (Abboud et al., 2007, Bujak & Angel, 2006). Recently, the use of anti­mony complexes in cancer chemotherapy has become a topic of inter­est (Demicheli et al., 2006; Rais et al., 2000). As part of our ongoing studies of benzo­thia­zole-based coordination networks (Bouchareb et al., 2014), we now report the structure of new organic–inorganic hybrid compound {(C7H6NS)2[Sb2Cl6O]}n, (I).

Structural commentary top

The title compound contains two benzo­thia­zolidium cations and one tri-µ-chlorido-trichlorido-µ-oxido-di­anti­monate(III) anion (Sb2Cl6O2). The molecular geometry and the atom-numbering scheme are shown in Fig 1.

The structure of the inorganic cation may be described as two polyhedra, square-pyramidal SbCl4O and distorted o­cta­hedral SbOCl5, sharing a common face (O1, Cl5 and Cl6). In the first polyhedron, four Cl atoms (Cl3–Cl4–Cl5–Cl6) form a basal plane with the Sb1 atom lying 0.3011 (2) Å below the plane. The apical position is occupied by the O1 atom. In the second polyhedron, the O1 atom occupies the apical position and four Cl atoms (Cl1–Cl2–Cl5–Cl6) form the base equatorial plane with Sb2 displaced by 0.4168 (1) Å from it. The geometry of the Sb2 atom can be described as distorted o­cta­hedral, a sixth coordination is observed at a longer distance, with Sb2 coordinated by the adjacent Cl3i atom at a distance of 3.546 (4) Å [symmetry code: (i) 1/2 − x, 1/2 + y, 1/2 − z], forming an infinite chain parallel to [001] (Fig. 2). This distance is significantly shorter than the sum of the relevant van der Waals radii of 4.01 Å (rSb = 2.1 Å and rCl = 1.91 Å) but in good agreement with those found in [SbCl3(C25H22O2P2)] (Razak et al., 1999) and in [(CH3)2NH(CH2)2NH3][SbCl5] (Bujak et al., 2006). In this molecule, the angle between the two equatorial planes is 75.86 (2)°.

The Sb—O bridge distances of 1.9404 (16) and 1.9460 (17) Å and are similar to those found in the Sb2Cl6O2 moiety (Abboud et al. 2007). Excluding the longest bond (Sb2—Cl3i), the terminal Sb—Cl bonds are in the range 2.3974 (8)–2.4982 (8) Å and are shorter than the bridging bonds [2.7522 (8)–3.3244 (9) Å] and are in good agreement with those found in C26H28N8O6Sb4Cl10 (Abboud et al. 2007). However, the Sb—O—Sb bond angle is 123.56 (9)° which is very different to that observed in Cs2Sb2O2(OH)8 (Mikhaylov et al., 2011) and the Sb2Cl6O2 moiety (Abboud et al. 2007). The dihedral angle between the mean planes of the two benzo­thia­zole cations is 19.93 (5)°.

Supra­molecular features top

The crystal packing can be described by alternating layers and chains of organic cations and inorganic anions connected through an extensive network of N—H···Cl and C—H···Cl hydrogen bonds, leading to the formation of a three-dimensional network (Table 1, Fig. 3). The packing is consolidated by slipped ππ stacking with centroid-to-centroid distances of 3.7111 (18)–3.8452 (16) Å between the benzo­thia­zole rings. These inter­actions link the molecules within the layers and also link the layers together, reinforcing the cohesion of the ionic structure.

Synthesis and crystallization top

A solution of SbCl3 (45.6 mg, 0.2 mmol) in water (10 ml) was added dropwise to a solution of benzo­thia­zole (0.5 ml, 4.6 mmol) in ethanol (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. Colorless crystals were obtained after several days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were placed into idealized positions and refined using the riding-atom approximation. The applied constraints were: C—H = 0.93 Å and N—H = 0.86 Å, Uiso = 1.2Ueq(C or N).

Related literature top

For background environment of Sb, see: Mikhaylov et al. (2011); Bujak et al. (2006); Razak et al. (1999); Abboud et al. (2007). For the use of antimony complexes in cancer chemotherapy, see: Rais et al. (2000) and Demicheli et al. (2006). For our recent work on the design and synthesis of benzothiazole coordination networks, see: Bouchareb et al. (2014).

Structure description top

The coordination chemistry of anti­mony has both a practical and theoretical inter­est (Abboud et al., 2007, Bujak & Angel, 2006). Recently, the use of anti­mony complexes in cancer chemotherapy has become a topic of inter­est (Demicheli et al., 2006; Rais et al., 2000). As part of our ongoing studies of benzo­thia­zole-based coordination networks (Bouchareb et al., 2014), we now report the structure of new organic–inorganic hybrid compound {(C7H6NS)2[Sb2Cl6O]}n, (I).

The title compound contains two benzo­thia­zolidium cations and one tri-µ-chlorido-trichlorido-µ-oxido-di­anti­monate(III) anion (Sb2Cl6O2). The molecular geometry and the atom-numbering scheme are shown in Fig 1.

The structure of the inorganic cation may be described as two polyhedra, square-pyramidal SbCl4O and distorted o­cta­hedral SbOCl5, sharing a common face (O1, Cl5 and Cl6). In the first polyhedron, four Cl atoms (Cl3–Cl4–Cl5–Cl6) form a basal plane with the Sb1 atom lying 0.3011 (2) Å below the plane. The apical position is occupied by the O1 atom. In the second polyhedron, the O1 atom occupies the apical position and four Cl atoms (Cl1–Cl2–Cl5–Cl6) form the base equatorial plane with Sb2 displaced by 0.4168 (1) Å from it. The geometry of the Sb2 atom can be described as distorted o­cta­hedral, a sixth coordination is observed at a longer distance, with Sb2 coordinated by the adjacent Cl3i atom at a distance of 3.546 (4) Å [symmetry code: (i) 1/2 − x, 1/2 + y, 1/2 − z], forming an infinite chain parallel to [001] (Fig. 2). This distance is significantly shorter than the sum of the relevant van der Waals radii of 4.01 Å (rSb = 2.1 Å and rCl = 1.91 Å) but in good agreement with those found in [SbCl3(C25H22O2P2)] (Razak et al., 1999) and in [(CH3)2NH(CH2)2NH3][SbCl5] (Bujak et al., 2006). In this molecule, the angle between the two equatorial planes is 75.86 (2)°.

The Sb—O bridge distances of 1.9404 (16) and 1.9460 (17) Å and are similar to those found in the Sb2Cl6O2 moiety (Abboud et al. 2007). Excluding the longest bond (Sb2—Cl3i), the terminal Sb—Cl bonds are in the range 2.3974 (8)–2.4982 (8) Å and are shorter than the bridging bonds [2.7522 (8)–3.3244 (9) Å] and are in good agreement with those found in C26H28N8O6Sb4Cl10 (Abboud et al. 2007). However, the Sb—O—Sb bond angle is 123.56 (9)° which is very different to that observed in Cs2Sb2O2(OH)8 (Mikhaylov et al., 2011) and the Sb2Cl6O2 moiety (Abboud et al. 2007). The dihedral angle between the mean planes of the two benzo­thia­zole cations is 19.93 (5)°.

The crystal packing can be described by alternating layers and chains of organic cations and inorganic anions connected through an extensive network of N—H···Cl and C—H···Cl hydrogen bonds, leading to the formation of a three-dimensional network (Table 1, Fig. 3). The packing is consolidated by slipped ππ stacking with centroid-to-centroid distances of 3.7111 (18)–3.8452 (16) Å between the benzo­thia­zole rings. These inter­actions link the molecules within the layers and also link the layers together, reinforcing the cohesion of the ionic structure.

For background environment of Sb, see: Mikhaylov et al. (2011); Bujak et al. (2006); Razak et al. (1999); Abboud et al. (2007). For the use of antimony complexes in cancer chemotherapy, see: Rais et al. (2000) and Demicheli et al. (2006). For our recent work on the design and synthesis of benzothiazole coordination networks, see: Bouchareb et al. (2014).

Synthesis and crystallization top

A solution of SbCl3 (45.6 mg, 0.2 mmol) in water (10 ml) was added dropwise to a solution of benzo­thia­zole (0.5 ml, 4.6 mmol) in ethanol (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. Colorless crystals were obtained after several days.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were placed into idealized positions and refined using the riding-atom approximation. The applied constraints were: C—H = 0.93 Å and N—H = 0.86 Å, Uiso = 1.2Ueq(C or N).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of a polymeric chain of Sb2Cl6O along the c axis.
[Figure 3] Fig. 3. Part of diagram packing of the title compound, viewed along the a axis, showing alternating chains and layers connecting by N—H···Cl and C—H···Cl hydrogen bonds (shown as dashed lines).
catena-Poly[1,3-benzothiazol-3-ium [[dichloridoantimonate(III)]-di-µ-chlorido-µ-oxido-[chloridoantimonate(III)]-µ-chlorido]] top
Crystal data top
(C7H6NS)2[Sb2Cl6O]F(000) = 1416
Mr = 744.58Dx = 2.126 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8790 reflections
a = 10.2826 (2) Åθ = 2.5–27.5°
b = 16.2448 (3) ŵ = 3.20 mm1
c = 14.9849 (3) ÅT = 295 K
β = 111.674 (1)°Block, colorless
V = 2326.09 (8) Å30.17 × 0.13 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5344 independent reflections
Radiation source: sealed tube4627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1113
Tmin = 0.630, Tmax = 0.746k = 1921
20349 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0186P)2 + 1.5448P]
where P = (Fo2 + 2Fc2)/3
5344 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
(C7H6NS)2[Sb2Cl6O]V = 2326.09 (8) Å3
Mr = 744.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2826 (2) ŵ = 3.20 mm1
b = 16.2448 (3) ÅT = 295 K
c = 14.9849 (3) Å0.17 × 0.13 × 0.11 mm
β = 111.674 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5344 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4627 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.746Rint = 0.026
20349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
5344 reflectionsΔρmin = 0.77 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36748 (12)0.17148 (5)0.98344 (7)0.0662 (3)
N10.1904 (3)0.05865 (18)0.94373 (19)0.0539 (7)
H1N0.1140.03190.91560.065*
C10.2113 (4)0.1303 (2)0.9189 (2)0.0653 (10)
H10.14480.15820.86830.078*
C20.4125 (3)0.08232 (16)1.05140 (19)0.0386 (6)
C30.5374 (3)0.0621 (2)1.1261 (2)0.0509 (8)
H30.6120.09881.1470.061*
C40.5459 (3)0.0141 (2)1.1676 (2)0.0528 (8)
H40.62820.02931.21720.063*
C50.4350 (4)0.0684 (2)1.1374 (2)0.0516 (8)
H50.44390.11911.16780.062*
C60.3131 (3)0.04978 (18)1.0645 (2)0.0474 (7)
H60.23910.0871.04430.057*
C70.3030 (3)0.02653 (17)1.02135 (19)0.0372 (6)
S20.52690 (8)0.11063 (4)0.59703 (6)0.04448 (17)
N20.7036 (2)0.00265 (15)0.68158 (18)0.0436 (6)
H2N0.78280.02030.71270.052*
C80.6923 (3)0.07956 (18)0.6561 (2)0.0465 (7)
H80.7690.11430.66950.056*
C90.4653 (3)0.01241 (16)0.60657 (18)0.0339 (6)
C100.3292 (3)0.01737 (19)0.5748 (2)0.0431 (7)
H100.25330.01660.54330.052*
C110.3111 (3)0.0985 (2)0.5917 (2)0.0501 (7)
H110.22080.11990.57120.06*
C120.4237 (3)0.15006 (19)0.6385 (2)0.0530 (8)
H120.40690.2050.64820.064*
C130.5579 (3)0.12215 (18)0.6705 (2)0.0481 (7)
H130.63310.15670.70160.058*
C140.5770 (3)0.03964 (16)0.65440 (19)0.0359 (6)
Sb10.067085 (18)0.323213 (10)0.767483 (12)0.03143 (5)
Sb20.053422 (18)0.221298 (11)0.613337 (12)0.03397 (5)
Cl10.01992 (9)0.07748 (5)0.63368 (7)0.0589 (2)
Cl20.30403 (7)0.20616 (5)0.68094 (6)0.05062 (18)
Cl30.13613 (8)0.35386 (5)0.91846 (5)0.05065 (18)
Cl40.14276 (8)0.21318 (5)0.84967 (6)0.05007 (18)
Cl50.24438 (8)0.26668 (4)0.59142 (6)0.04931 (18)
O10.05721 (19)0.24501 (12)0.74157 (12)0.0391 (4)
Cl60.04721 (8)0.42304 (5)0.64881 (6)0.0558 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0921 (7)0.0379 (4)0.0703 (6)0.0017 (4)0.0319 (5)0.0061 (4)
N10.0376 (13)0.0731 (19)0.0455 (15)0.0001 (13)0.0092 (12)0.0065 (14)
C10.073 (2)0.071 (2)0.0456 (19)0.042 (2)0.0148 (18)0.0111 (17)
C20.0497 (16)0.0334 (13)0.0350 (15)0.0018 (12)0.0181 (13)0.0021 (11)
C30.0474 (17)0.062 (2)0.0414 (17)0.0141 (15)0.0139 (14)0.0112 (15)
C40.0485 (18)0.076 (2)0.0313 (15)0.0127 (17)0.0116 (14)0.0045 (15)
C50.070 (2)0.0477 (17)0.0422 (17)0.0085 (16)0.0267 (17)0.0122 (14)
C60.0581 (19)0.0430 (16)0.0458 (17)0.0131 (14)0.0247 (15)0.0014 (13)
C70.0363 (14)0.0440 (15)0.0308 (14)0.0019 (12)0.0117 (12)0.0024 (11)
S20.0533 (4)0.0327 (3)0.0566 (5)0.0085 (3)0.0310 (4)0.0065 (3)
N20.0318 (12)0.0456 (13)0.0510 (15)0.0069 (11)0.0125 (11)0.0009 (11)
C80.0454 (17)0.0419 (16)0.060 (2)0.0037 (13)0.0282 (15)0.0071 (14)
C90.0385 (14)0.0333 (13)0.0329 (14)0.0054 (11)0.0168 (12)0.0027 (11)
C100.0368 (15)0.0549 (18)0.0368 (15)0.0077 (13)0.0125 (12)0.0067 (13)
C110.0422 (16)0.061 (2)0.0444 (17)0.0152 (15)0.0135 (14)0.0025 (15)
C120.062 (2)0.0387 (16)0.058 (2)0.0107 (15)0.0214 (17)0.0041 (14)
C130.0533 (18)0.0384 (15)0.0495 (18)0.0097 (14)0.0153 (15)0.0106 (13)
C140.0344 (13)0.0375 (14)0.0357 (14)0.0054 (11)0.0127 (12)0.0011 (11)
Sb10.03409 (9)0.02825 (9)0.03458 (10)0.00560 (7)0.01575 (7)0.00018 (7)
Sb20.03473 (10)0.04105 (10)0.02678 (9)0.00516 (8)0.01211 (7)0.00064 (7)
Cl10.0568 (5)0.0425 (4)0.0830 (6)0.0050 (4)0.0325 (4)0.0093 (4)
Cl20.0351 (4)0.0611 (5)0.0567 (5)0.0025 (3)0.0181 (3)0.0138 (4)
Cl30.0601 (5)0.0487 (4)0.0381 (4)0.0131 (4)0.0122 (3)0.0065 (3)
Cl40.0570 (4)0.0486 (4)0.0529 (4)0.0093 (3)0.0301 (4)0.0031 (3)
Cl50.0457 (4)0.0430 (4)0.0491 (4)0.0024 (3)0.0057 (3)0.0020 (3)
O10.0460 (11)0.0463 (11)0.0271 (9)0.0225 (9)0.0160 (8)0.0044 (8)
Cl60.0466 (4)0.0579 (5)0.0518 (5)0.0107 (4)0.0051 (4)0.0103 (4)
Geometric parameters (Å, º) top
S1—C11.678 (4)C8—H80.93
S1—C21.732 (3)C9—C101.388 (4)
N1—C11.265 (4)C9—C141.393 (3)
N1—C71.404 (4)C10—C111.368 (4)
N1—H1N0.8599C10—H100.93
C1—H10.93C11—C121.391 (4)
C2—C71.385 (4)C11—H110.93
C2—C31.396 (4)C12—C131.360 (4)
C3—C41.373 (5)C12—H120.93
C3—H30.93C13—C141.389 (4)
C4—C51.379 (4)C13—H130.93
C4—H40.93Sb1—O11.9404 (16)
C5—C61.358 (4)Sb1—Cl42.4545 (7)
C5—H50.93Sb1—Cl32.4982 (8)
C6—C71.384 (4)Sb1—Cl52.7522 (8)
C6—H60.93Sb1—Cl62.9524 (8)
S2—C81.679 (3)Sb2—O11.9460 (17)
S2—C91.742 (3)Sb2—Cl12.3974 (8)
N2—C81.299 (4)Sb2—Cl22.4081 (7)
N2—C141.392 (3)Sb2—Cl53.0473 (8)
N2—H2N0.8599Sb2—Cl63.3244 (9)
C1—S1—C289.81 (16)C9—C10—H10121.2
C1—N1—C7114.1 (3)C10—C11—C12121.9 (3)
C1—N1—H1N123C10—C11—H11119.1
C7—N1—H1N122.9C12—C11—H11119.1
N1—C1—S1115.3 (3)C13—C12—C11121.6 (3)
N1—C1—H1122.3C13—C12—H12119.2
S1—C1—H1122.3C11—C12—H12119.2
C7—C2—C3120.2 (3)C12—C13—C14116.8 (3)
C7—C2—S1110.3 (2)C12—C13—H13121.6
C3—C2—S1129.4 (2)C14—C13—H13121.6
C4—C3—C2117.5 (3)C13—C14—N2127.1 (3)
C4—C3—H3121.3C13—C14—C9122.1 (3)
C2—C3—H3121.3N2—C14—C9110.8 (2)
C3—C4—C5121.4 (3)O1—Sb1—Cl488.74 (6)
C3—C4—H4119.3O1—Sb1—Cl385.37 (6)
C5—C4—H4119.3Cl4—Sb1—Cl390.28 (3)
C6—C5—C4121.8 (3)O1—Sb1—Cl580.90 (6)
C6—C5—H5119.1Cl4—Sb1—Cl591.00 (3)
C4—C5—H5119.1Cl3—Sb1—Cl5166.17 (3)
C5—C6—C7117.6 (3)O1—Sb1—Cl678.52 (6)
C5—C6—H6121.2Cl4—Sb1—Cl6166.56 (3)
C7—C6—H6121.2Cl3—Sb1—Cl692.87 (2)
C6—C7—C2121.5 (3)Cl5—Sb1—Cl682.88 (2)
C6—C7—N1128.1 (3)O1—Sb2—Cl191.07 (6)
C2—C7—N1110.4 (3)O1—Sb2—Cl288.67 (6)
C8—S2—C990.54 (14)Cl1—Sb2—Cl291.64 (3)
C8—N2—C14114.6 (2)O1—Sb2—Cl573.22 (5)
C8—N2—H2N122.7Cl1—Sb2—Cl593.65 (2)
C14—N2—H2N122.7Cl2—Sb2—Cl5161.21 (2)
N2—C8—S2114.0 (2)O1—Sb2—Cl669.00 (6)
N2—C8—H8123Cl1—Sb2—Cl6158.15 (3)
S2—C8—H8123Cl2—Sb2—Cl696.56 (2)
C10—C9—C14120.0 (2)Cl5—Sb2—Cl672.59 (2)
C10—C9—S2130.0 (2)Sb1—Cl5—Sb272.175 (18)
C14—C9—S2110.0 (2)Sb1—O1—Sb2123.56 (9)
C11—C10—C9117.5 (3)Sb1—Cl6—Sb265.814 (16)
C11—C10—H10121.2
C7—N1—C1—S10.1 (4)C8—N2—C14—C91.1 (3)
C2—S1—C1—N10.8 (3)C10—C9—C14—C131.2 (4)
C1—S1—C2—C71.2 (2)S2—C9—C14—C13178.9 (2)
C1—S1—C2—C3178.1 (3)C10—C9—C14—N2178.8 (2)
C7—C2—C3—C40.2 (4)S2—C9—C14—N21.1 (3)
S1—C2—C3—C4179.4 (2)O1—Sb1—Cl5—Sb217.75 (6)
C2—C3—C4—C50.6 (5)Cl4—Sb1—Cl5—Sb2106.31 (2)
C3—C4—C5—C61.0 (5)Cl3—Sb1—Cl5—Sb211.07 (11)
C4—C5—C6—C70.5 (4)Cl6—Sb1—Cl5—Sb261.70 (2)
C5—C6—C7—C20.3 (4)O1—Sb2—Cl5—Sb118.27 (6)
C5—C6—C7—N1178.1 (3)Cl1—Sb2—Cl5—Sb1108.29 (3)
C3—C2—C7—C60.7 (4)Cl2—Sb2—Cl5—Sb12.25 (9)
S1—C2—C7—C6180.0 (2)Cl6—Sb2—Cl5—Sb154.403 (18)
C3—C2—C7—N1178.0 (3)Cl4—Sb1—O1—Sb2124.26 (11)
S1—C2—C7—N11.3 (3)Cl3—Sb1—O1—Sb2145.35 (12)
C1—N1—C7—C6179.4 (3)Cl5—Sb1—O1—Sb233.05 (11)
C1—N1—C7—C20.8 (4)Cl6—Sb1—O1—Sb251.47 (11)
C14—N2—C8—S20.6 (3)Cl1—Sb2—O1—Sb1124.01 (11)
C9—S2—C8—N20.1 (2)Cl2—Sb2—O1—Sb1144.37 (12)
C8—S2—C9—C10179.2 (3)Cl5—Sb2—O1—Sb130.53 (10)
C8—S2—C9—C140.7 (2)Cl6—Sb2—O1—Sb146.83 (10)
C14—C9—C10—C110.6 (4)O1—Sb1—Cl6—Sb224.73 (6)
S2—C9—C10—C11179.5 (2)Cl4—Sb1—Cl6—Sb26.05 (11)
C9—C10—C11—C120.1 (4)Cl3—Sb1—Cl6—Sb2109.41 (2)
C10—C11—C12—C130.4 (5)Cl5—Sb1—Cl6—Sb257.378 (18)
C11—C12—C13—C140.2 (5)O1—Sb2—Cl6—Sb125.97 (6)
C12—C13—C14—N2179.1 (3)Cl1—Sb2—Cl6—Sb10.64 (7)
C12—C13—C14—C91.0 (4)Cl2—Sb2—Cl6—Sb1112.00 (2)
C8—N2—C14—C13178.9 (3)Cl5—Sb2—Cl6—Sb152.283 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl6i0.862.373.200 (3)162
N2—H2N···Cl6ii0.862.353.145 (3)153
C1—H1···O10.932.273.152 (4)159
C8—H8···Cl5iii0.932.723.327 (3)124
C10—H10···Cl3iv0.932.783.612 (3)150
C13—H13···Cl2ii0.932.763.524 (3)140
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl6i0.86002.37003.200 (3)162.00
N2—H2N···Cl6ii0.86002.35003.145 (3)153.00
C1—H1···O10.93002.27003.152 (4)159.00
C8—H8···Cl5iii0.93002.72003.327 (3)124.00
C10—H10···Cl3iv0.93002.78003.612 (3)150.00
C13—H13···Cl2ii0.93002.76003.524 (3)140.00
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C7H6NS)2[Sb2Cl6O]
Mr744.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.2826 (2), 16.2448 (3), 14.9849 (3)
β (°) 111.674 (1)
V3)2326.09 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.17 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.630, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
20349, 5344, 4627
Rint0.026
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.02
No. of reflections5344
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.77

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

 

Acknowledgements

This work is supported by the `Unité de recherche de Chimie de l'Environnement et Moléculaire Structurale', CHEMS, Université de Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie – Algérie).

References

First citationAbboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.  Web of Science CSD CrossRef CAS Google Scholar
First citationBouchareb, H., Benmebarek, S., Bouacida, S., Merazig, H. & Boudraa, M. (2014). Acta Cryst. E70, m275.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322–10331.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDemicheli, C., Santos, L. S., Ferreira, C. S., Bouchemal, N., Hantz, E., Eberlin, M. N. & Frézard, F. (2006). Inorg. Chim. Acta, 359, 159–167.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMikhaylov, A. A., Mel'nik, E. A., Churakov, A. V., Novotortsev, V. M., Howard, J. A. K., Sladkevich, S., Gun, J., Bharathi, S., Lev, O. & Prikhodchenko, P. V. (2011). Inorg. Chim. Acta, 378, 24–29.  CrossRef CAS Google Scholar
First citationRais, S., Perianin, A., Lenoir, M., Sadak, A., Rivollet, D., Paul, M. & Deniau, M. (2000). Antimicrob. Agents Chemother. 44, 2406–2410.  CrossRef PubMed CAS Google Scholar
First citationRazak, I. A., Fun, H.-K., Yamin, B. M., Chinnakali, K., Zakaria, H. & Ismail, N. B. (1999). Acta Cryst. C55, 172–174.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 2| February 2016| Pages 212-214
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds