

ISSN 2056-9890

Received 31 December 2015 Accepted 5 January 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; one dimensional coordination polymer; cobalt(II) complex; pyrazine ligand: acetonitrile ligand

CCDC reference: 1445438
Supporting information: this article has supporting information at journals.iucr.org/e

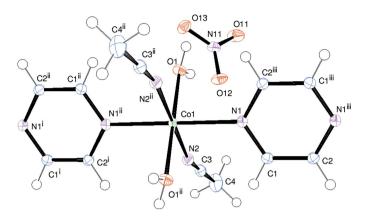
Crystal structure of *catena*-poly[[[*trans*-bis(aceto-nitrile- κN)diaquacobalt(II)]- μ -pyrazine- $\kappa^2 N$:N'] dinitrate]

Chen Liu, a* Ashley C. Felts, Annaliese E. Thuijs, Aaron Useche and Khalil A. Abboud

^aDepartment of Chemistry and Environmental Science, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada, and ^bDepartment of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA. *Correspondence e-mail: cliu@grenfell.mun.ca

The central structural motif of the title coordination polymer, $[\text{Co}(\text{NO}_3)_2(\text{C}_4\text{H}_4\text{N}_2)(\text{CH}_3\text{CN})_2(\text{H}_2\text{O})_2]_n$, is a chain composed of Co^{II} ions linked by bis-monodentate bridging pyrazine ligands through their N atoms. The Co^{II} ion is located on an inversion center and is additionally coordinated by two O atoms of water molecules and two N atoms of acetonitrile molecules. The resultant N_4O_2 coordination sphere is distorted octahedral. The linear cationic chains extend parallel to the a axis and are aligned into layers parallel to the ac plane. Nitrate anions are situated in the space between the Co^{II} chains and form $\text{O}-\text{H}\cdots\text{O}$ hydrogen bonds with the coordinating water molecules, leading to a three-dimensional network structure. Weak $\text{C}-\text{H}\cdots\text{O}$ hydrogen bonds are also present between pyrazine or acetonitrile molecules and the nitrate anions.

1. Chemical context


In the design of coordination polymers, the choice of bridging ligands between metal atoms plays an important role in the formation of the final structure and the resulting properties. During our investigations of the preparation conditions and magnetic properties of compounds with ladder-like structures, we have used pyrazine as a bis-monodentate bridging ligand to link paramagnetic metal cations. From the point of view of mediating magnetic interactions, the pyrazine molecule offers some advantages compared to other bidentate bridging ligands such as 4,4′-bipyridine. In some of the structures with the latter ligand, the two pyridine rings are not co-planar and therefore can magnetically isolate metal atoms (Losier & Zaworotko, 1996; Ruan *et al.*, 2009; Seidel *et al.*, 2011; Lehleh *et al.*, 2013).

 H_3C $2n(NO_3^-)$ OH_2 H_2O N C CH_3

OPEN ACCESS

research communications

Figure 1 A fragment of the one-dimensional chain structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) -3 - x, 1 - y, -z; (iii) -4 - x, 1 - y, -z.]

We herein report the preparation and structure of a pyrazine-bridged chain structure obtained by reacting pyrazine and cobalt(II) nitrate hexahydrate using acetonitrile as the solvent.

2. Structural commentary

The asymmetric unit of the title compound, $[Co(C_4H_4N_2)(CH_3CN)_2(H_2O)_2(NO_3)_2]_n$, contains one Co^{II}

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} 01-H1Y\cdots 013^{i} \\ 01-H1X\cdots 012^{ii} \\ 01-H1X\cdots 013^{ii} \\ 01-H1X\cdots 011^{iii} \\ 01-H1A\cdots 011^{iii} \\ 01-H1A\cdots 013^{iv} \\ 01-H1A\cdots 013^{v} $	0.83 (2) 0.80 (2) 0.80 (2) 0.95 0.95 0.98	1.85 (2) 1.99 (2) 2.562 (19) 2.54 2.59 2.49	2.6819 (12) 2.7869 (12) 3.0912 (12) 3.1572 (14) 3.4644 (14) 3.2785 (17)	173.5 (18) 174.1 (19) 125.3 (17) 123 153 138
$C4-H4B\cdots O11^{vi}$	0.98	2.49	3.2823 (17)	138

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) -x, -y + 1, -z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z; (vi) $-x, y + \frac{1}{2}, -z - \frac{1}{2}$.

cation located on an inversion center, one water molecule, one acetonitrile molecule, one nitrate anion, and one half of a pyrazine molecule, the latter being completed by inversion symmetry. The Co^{II} cation exhibits an N₄O₂ coordination set defined by two O atoms [O1, O1ⁱⁱ; symmetry code: (ii) -3 - x, [1-y, -z] of two coordinating water molecules, two N atoms (N2, N2ⁱⁱ) of two coordinating acetonitrile molecules, and two nitrogen atoms (N1, N1ⁱⁱ) of two bridging pyrazine molecules (Fig. 1). The two $Co-O_{water}$ bonds have a length of 2.0315 (8) Å, considerably shorter than the Co-N_{acetonitrile} bonds of 2.1263 (9) Å, and the two Co- $N_{pyrazine}$ bonds of 2.1493 (10) Å. The resulting coordination sphere is compressed octahedral with all bond lengths in good agreement with similar structures (Choudhury et al., 2002; Holman et al., 2005; Aşkin et al., 2015). In contrast to the N₂O₄

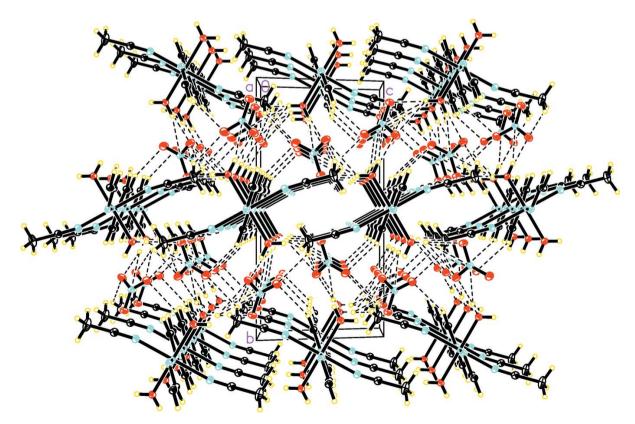


Figure 2
Crystal packing of the title compound, showing hydrogen bonds as dashed lines.

coordination spheres observed more frequently in the structures of other Co-containing compounds (Choudhury *et al.*, 2002; Holman *et al.*, 2005; Hyun *et al.*, 2011; Aşkin *et al.*, 2015), the title structure exhibits an N_4O_2 coordination sphere due to the inclusion of the solvent acetonitrile molecules in the coordination sphere of Co^{II} . The bridging bis-monodentate pyrazine molecules link the Co^{II} ions, forming linear chains extending parallel to the *a* axis. The distance between two symmetry-related Co^{II} ions within a chain (symmetry code: 1 + x, y, z) is 7.0798 (3) Å, in good agreement with those reported for similar structures (Choudhury *et al.*, 2002; Holman *et al.*, 2005; Aşkin *et al.*, 2015).

3. Supramolecular features

In the crystal, the cationic chains are arranged to form sheets parallel to the ac plane, and neighboring sheets are related by a glide plane. Nitrate ions are sandwiched in the space between the sheets and form columns parallel to the a axis. Each Co^{II} chain is surrounded by six columns of nitrate ions that are related by the inversion centers located along the cationic chains. Each cationic chain is further surrounded by six other chains. This structural motif with alternating layers has been observed in similar structures (Choudhury et al., 2002; Yang et al., 2003; Holman et al., 2005; Askin et al., 2015). Co^{II} chains in neighboring sheets interact through nitrate ions by forming O−H···O hydrogen bonds where the donor O− H groups are provided by the coordinating water molecules and the acceptor oxygen provided by the nitrate ions. One of those hydrogen bonds is bifurcated. For numerical values and symmetry operators, see Table 1. Weak C-H···O hydrogen bonds are also present between the C-H groups of bridging pyrazine and coordinating acetonitrile molecules, and the oxygen atoms of nitrate ions, linking Co^{II} chains both within the same sheet and to adjacent sheets (Table 1, Fig. 2).

4. Synthesis and crystallization

The title compound was obtained by a slow diffusion method in an U-shaped glass tube. The tube was first partially filled with acetonitrile. An acetonitrile solution of 0.333 mmol (97.0 mg) of $\text{Co(NO_3)}_2 \cdot 6\text{H}_2\text{O}$ was then placed in one arm of the tube. Another acetonitrile solution of 0.500 mmol (40.0 mg) of pyrazine was placed in the other arm of the tube. The slow diffusion of the two solutions in the tube produced pink needle–shaped crystals within one day. The crystals were collected by filtration and washed with fresh acetonitrile and kept under inert atmosphere (yield 31.5%). Selected IR bands (KBr, cm⁻¹): 3273 (O-H), 2283 (C=N), 1633, 1413, 1384 (N=O), 479 (bridging pyrazine).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were calculated in geometrically idealized positions and refined riding on their parent atoms, with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ (aromatic) and

Table 2
Experimental details.

Crystal data

Crystal data	
Chemical formula	$[\text{Co(NO}_3)_2(\text{C}_4\text{H}_4\text{N}_2)(\text{C}_2\text{H}_3\text{N})_2$ - $(\text{H}_2\text{O})_2]$
$M_{\rm r}$	381.18
Crystal system, space group	Monoclinic, P2 ₁ /c
Temperature (K)	100
a, b, c (Å)	7.0798 (3), 15.0376 (6), 7.9329 (3)
β (°)	110.8803 (6)
$V(\mathring{A}^3)$	789.10 (5)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.14
Crystal size (mm)	$0.29 \times 0.11 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII DUO CCD
Absorption correction	Analytical based on measured indexed crystal faces using SHELXTL2014 (Sheldrick, 2015b)
T_{\min} , T_{\max}	0.735, 0.904
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21292, 1811, 1687
$R_{\rm int}$	0.022
$(\sin \theta/\lambda)_{\max} (\mathring{\mathbf{A}}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.055, 1.07
No. of reflections	1811
No. of parameters	115
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e \ \AA^{-3}})$	0.34, -0.31

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXLT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), XP in SHELXTL-Plus (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

 $1.5U_{\rm eq}({\rm C})$ (methyl), and with C-H = 0.95 Å (aromatic) and 0.98 Å (methyl). The methyl H atoms were allowed to rotate around the corresponding C-C bond. H atoms bound to water molecules were found in a difference map and were freely refined.

Acknowledgements

CL wishes to thank the Research & Development Corporation of Newfoundland and Labrador for financial support. KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding the purchase of the X-ray equipment.

References

Aşkın, G. Ş., Çelik, F., Dilek, N., Necefoğlu, H. & Hökelek, T. (2015). *Acta Cryst.* E**71**, 339–341.

Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choudhury, C. R., Dey, S. K., Sen, S., Bag, B., Mitra, S. & Gramlich, V. (2002). Z. Naturforsch. Teil B, 57, 1191–1194.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Holman, K. T., Hammud, H. H., Isber, S. & Tabbal, M. (2005). *Polyhedron*, **24**, 221–228.

research communications

- Hyun, M. Y., Kim, P.-G., Kim, C. & Kim, Y. (2011). *Acta Cryst.* E**67**, m390.
- Lehleh, A., Boutebdja, M., Beghidja, A., Beghidja, C. & Merazig, H. (2013). *Acta Cryst.* E**69**, m177–m178.
- Losier, P. & Zaworotko, M. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 2779–2782.
- Ruan, M.-B., Deng, J.-C., Li, Z.-G. & Xu, J.-W. (2009). *Acta Cryst.* E**65**, m743.
- Seidel, R. W., Goddard, R., Zibrowius, B. & Oppel, I. M. (2011). *Polymers*, **3**, 1458–1474.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). *Acta Cryst.* E**59**, m961–m963.

supporting information

Acta Cryst. (2016). E72, 151-154 [doi:10.1107/S2056989016000220]

Crystal structure of catena-poly[[[trans-bis(acetonitrile- κN)diaguacobalt(II)]- μ pyrazine- $\kappa^2 N:N'$] dinitrate]

Chen Liu, Ashley C. Felts, Annaliese E. Thuijs, Aaron Useche and Khalil A. Abboud

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXLT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

catena-Poly[[[trans-bis(acetonitrile- κN)diaquacobalt(II)]- μ -pyrazine- $\kappa^2 N$:N'] dinitrate]

Crystal data

$[Co(NO_3)_2(C_4H_4N_2)(C_2H_3N)_2(H_2O)_2]$	F(000) = 390
$M_r = 381.18$	$D_{\rm x} = 1.604 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 7.0798 (3) Å	Cell parameters from 9896 reflection
b = 15.0376 (6) Å	$\theta = 2.0 - 28.0^{\circ}$
c = 7.9329 (3) Å	$\mu = 1.14 \text{ mm}^{-1}$
$\beta = 110.8803 \ (6)^{\circ}$	T = 100 K
$V = 789.10 (5) \text{ Å}^3$	Needle, pink
Z=2	$0.29 \times 0.11 \times 0.08 \text{ mm}$

Data collection

Bruker APEXII DUO CCD

Blukel Al EAH DOO CCD
diffractometer
Radiation source: fine-focus sealed tube
φ – and ω –scans
Absorption correction: analytical
based on measured indexed crystal faces using
SHELXTL2014 (Sheldrick, 2015b)
$T_{\min} = 0.735, T_{\max} = 0.904$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.055$ S = 1.071811 reflections 115 parameters 0 restraints

21292 measured reflections 1811 independent reflections 1687 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -19 \rightarrow 19$ $l = -10 \rightarrow 10$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0316P)^2 + 0.2947P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.34 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	z	$U_{ m iso}$ */ $U_{ m eq}$	
Co1	0.5000	0.5000	0.0000	0.00977 (8)	
O1	0.45432 (12)	0.38331 (6)	-0.13782 (12)	0.01522 (17)	
H1Y	0.431(3)	0.3365 (13)	-0.092(2)	0.035 (5)*	
H1X	0.391(3)	0.3842 (13)	-0.243(3)	0.036 (5)*	
N1	0.19570 (15)	0.49931 (6)	-0.00181 (13)	0.01163 (19)	
N2	0.39794 (14)	0.56807 (6)	-0.25144 (13)	0.01470 (19)	
C1	0.07744 (16)	0.57128 (7)	-0.05354(15)	0.0134 (2)	
H1A	0.1283	0.6228	-0.0923	0.016*	
C2	-0.11795 (16)	0.57209 (7)	-0.05167 (14)	0.0131 (2)	
H2A	-0.1981	0.6242	-0.0889	0.016*	
C3	0.31802 (17)	0.58923 (8)	-0.39744(16)	0.0158 (2)	
C4	0.2144(2)	0.61342 (10)	-0.58544(17)	0.0278 (3)	
H4A	0.3122	0.6380	-0.6346	0.042*	
H4B	0.1106	0.6580	-0.5939	0.042*	
H4C	0.1508	0.5605	-0.6545	0.042*	
N11	0.23020 (15)	0.30295 (7)	0.44860 (13)	0.0172 (2)	
O11	0.09637 (15)	0.26787 (6)	0.31960 (13)	0.0295 (2)	
O12	0.21017 (14)	0.38082 (6)	0.49826 (12)	0.0228 (2)	
O13	0.39023 (13)	0.26094 (6)	0.53329 (12)	0.0230 (2)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.00857 (12)	0.01064 (12)	0.01028 (12)	-0.00011 (7)	0.00357 (8)	0.00023 (7)
O1	0.0187 (4)	0.0130 (4)	0.0136 (4)	-0.0023(3)	0.0053(3)	-0.0011(3)
N1	0.0107 (4)	0.0130 (5)	0.0112 (4)	0.0000(3)	0.0038(3)	-0.0005(3)
N2	0.0142 (4)	0.0151 (5)	0.0151 (5)	0.0002 (4)	0.0056 (4)	0.0010(4)
C1	0.0135 (5)	0.0125 (5)	0.0144 (5)	-0.0006(4)	0.0051 (4)	0.0011 (4)
C2	0.0128 (5)	0.0127 (5)	0.0138 (5)	0.0012 (4)	0.0045 (4)	0.0013 (4)
C3	0.0144 (5)	0.0164 (5)	0.0178 (6)	-0.0005(4)	0.0072 (4)	0.0008 (4)
C4	0.0215 (6)	0.0426 (8)	0.0162 (6)	0.0002 (6)	0.0029 (5)	0.0093 (5)
N11	0.0222 (5)	0.0137 (5)	0.0149 (4)	-0.0015(4)	0.0057 (4)	0.0004 (4)
O11	0.0319 (5)	0.0190 (5)	0.0236 (5)	-0.0026(4)	-0.0073(4)	-0.0018(4)
O12	0.0315 (5)	0.0134 (4)	0.0213 (4)	0.0030(4)	0.0067 (4)	-0.0024(3)
O13	0.0207 (4)	0.0198 (4)	0.0232 (5)	0.0041 (3)	0.0012(3)	-0.0054(3)

Acta Cryst. (2016). E**72**, 151-154 sup-2

Geometric parameters (Å, °)

Co1—O1	2.0315 (8)	C1—C2	1.3888 (15)
Co1—O1i	2.0315 (8)	C1—H1A	0.9500
Co1—N2i	2.1263 (9)	C2—N1 ⁱⁱ	1.3425 (14)
Co1—N2	2.1263 (9)	C2—H2A	0.9500
Co1—N1i	2.1493 (10)	C3—C4	1.4542 (16)
Co1—N1	2.1493 (10)	C4—H4A	0.9800
O1—H1Y	0.83(2)	C4—H4B	0.9800
O1—H1X	0.80(2)	C4—H4C	0.9800
N1—C1	1.3401 (14)	N11—O11	1.2378 (13)
N1—C2 ⁱⁱ	1.3425 (14)	N11—O12	1.2595 (13)
N2—C3	1.1383 (15)	N11—O13	1.2616 (13)
O1—Co1—O1 ⁱ	180.0	C1—N1—Co1	120.89 (7)
O1—Co1—N2 ⁱ	91.42 (4)	C2 ⁱⁱ —N1—Co1	121.65 (7)
O1 ⁱ —Co1—N2 ⁱ	88.58 (4)	C3—N2—Co1	165.59 (9)
O1—Co1—N2	88.58 (4)	N1—C1—C2	121.32 (10)
O1 ⁱ —Co1—N2	91.42 (4)	N1—C1—H1A	119.3
N2i-Co1-N2	180.0	C2—C1—H1A	119.3
O1—Co1—N1 ⁱ	88.55 (3)	N1 ⁱⁱ —C2—C1	121.23 (10)
O1 ⁱ —Co1—N1 ⁱ	91.45 (3)	N1 ⁱⁱ —C2—H2A	119.4
N2 ⁱ —Co1—N1 ⁱ	89.51 (4)	C1—C2—H2A	119.4
N2—Co1—N1 ⁱ	90.49 (4)	N2—C3—C4	178.24 (13)
O1—Co1—N1	91.45 (3)	C3—C4—H4A	109.5
O1 ⁱ —Co1—N1	88.55 (3)	C3—C4—H4B	109.5
N2 ⁱ —Co1—N1	90.49 (4)	H4A—C4—H4B	109.5
N2—Co1—N1	89.51 (4)	C3—C4—H4C	109.5
N1 ⁱ —Co1—N1	180.0	H4A—C4—H4C	109.5
Co1—O1—H1Y	121.0 (12)	H4B—C4—H4C	109.5
Co1—O1—H1X	118.3 (14)	O11—N11—O12	121.09 (10)
H1Y—O1—H1X	110.2 (18)	O11—N11—O13	120.29 (10)
C1—N1—C2 ⁱⁱ	117.45 (10)	O12—N11—O13	118.61 (10)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Hydrogen-bond geometry (Å, o)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H1 <i>Y</i> ···O13 ⁱⁱⁱ	0.83 (2)	1.85 (2)	2.6819 (12)	173.5 (18)
O1—H1 <i>X</i> ···O12 ^{iv}	0.80(2)	1.99(2)	2.7869 (12)	174.1 (19)
O1—H1 <i>X</i> ···O13 ^{iv}	0.80(2)	2.562 (19)	3.0912 (12)	125.3 (17)
C1—H1 <i>A</i> ···O11 ⁱⁱ	0.95	2.54	3.1572 (14)	123
C2—H2 <i>A</i> ···O13 ^v	0.95	2.59	3.4644 (14)	153
C4—H4 <i>A</i> ···O13 ⁱ	0.98	2.49	3.2785 (17)	138
C4—H4 <i>B</i> ···O11 ^{vi}	0.98	2.49	3.2823 (17)	138

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) x, -y+1/2, z-1/2; (iv) x, y, z-1; (v) -x, y+1/2, -z+1/2; (vi) -x, y+1/2, -z-1/2.

Acta Cryst. (2016). E72, 151-154 sup-3