research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 337-339

Crystal structure of 1,2-bis­­((benzyl­sulfan­yl){2-[1-(2-hy­dr­oxy­phen­yl)ethyl­­idene]hydrazin-1-yl­­idene}meth­yl)disulfane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh, bDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127 Trieste, Italy
*Correspondence e-mail: chansheikh@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 13 January 2016; accepted 8 February 2016; online 17 February 2016)

The title compound, C32H30N4O2S4, consists of two Schiff base moieties, namely two S-benzyl-β-N-(2-hy­droxy­phenyl­ethyl­idene)di­thio­carbazate groups, which are connected through an S—S single bond. These two moieties are twisted with respect to each other, with a dihedral angle of 87.88 (4)° between the S2C=N planes. A bifurcated intra­molecular O—H⋯(N,S) hydrogen bond is observed in each moiety. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers. The dimers are further stacked in a column along the b axis through weak C—H⋯π inter­actions.

1. Chemical context

There has been immense inter­est in nitro­gen–sulfur donor ligands since the report on S-benzyl­dithio­carbazate (SBDTC) (Ali & Tarafder, 1977[Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785-1791.]). Since then, a number of Schiff bases have been derived from SBDTC (Crouse et al., 2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]; Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103-o104.]). The versatile coordination chemistry and increasingly important biological properties of ligands derived from SBDTC have also received much attention (Zangrando et al., 2015[Zangrando, E., Islam, M. T., Islam, M. A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278-284.]). In a continuation of our research in this area, the title compound (systematic name: 2-[1-(2-{(benzyl­sulfan­yl)[((benzyl­sulfan­yl){2-[1-(2-hy­droxy­phen­yl)ethyl­idene]hydrazin-1-yl­idene}meth­yl)disulfan­yl]methylidene}eth­yl]phenol) was prepared from SBDTC.

[Scheme 1]

2. Structural commentary

In the title compound, the arrangement of the two Schiff base moieties (Fig. 1[link]) is almost orthogonal with respect to the S2—S3 thio­ether bond (Fig. 2[link]). The S2—S3 bond distance of 2.0373 (4) Å lies just within the range of S—S single-bond lengths (2.03–2.36 Å) (Knop et al., 1988[Knop, O., Boyd, R. J. & Choi, S. C. (1988). J. Am. Chem. Soc. 110, 7299-7301.]). In each of the Schiff base moieties, the benzene ring and the di­thio­carbazate fragment are arranged trans across the C=N bond (C7=N1 and C25=N4). The (imino­eth­yl)phenol fragments (C1–C8/O1/N1 and C25–C32/O2/N4) are essentially planar with maximum deviations of 0.0559 (12) Å for N1 and 0.0200 (11) Å for N4 and make dihedral angles of 18.17 (4) and 17.49 (4)° with the N2/S1/S2/C9 and N3/S3/S4/C17 planes, respectively. The C—S distances (C9—S1, C9—S2, C10—S1, C17—S4, C17—S3 and C18—S4) of 1.7461 (12)–1.8220 (13) Å are comparable to the values for the most similar di­thio­carbazate derivatives (Zangrando et al., 2015[Zangrando, E., Islam, M. T., Islam, M. A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278-284.]; Crouse et al., 2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]). The C—N distances (C7—N1, C9—N2, C25—N4 and C17—N3) of 1.2789 (15)–1.2983 (15) Å indicate double-bond character (Tarafder et al., 2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.]), but they are slightly shorter than the C=N bond of the S-2-picolyl di­thio­carbazate Schiff base of 2-acetyl pyrrole (Crouse et al., 2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]). The bond angles S1—C9—S2 [117.77 (6)°], S2—C9—N2 [120.78 (9)°], S3—C17—S4 [118.82 (7)°] and S3—C17—N3 [120.15 (12)°] are also comparable with those observed in trans-cis S-benzyl di­thio­carbazate (Tarafder et al., 2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.]). Intra­molecular O—H⋯N and O—H⋯S hydrogen bonds are observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.84 2.5725 (15) 145
O2—H2⋯N4 0.84 1.84 2.576 (3) 146
O1—H1⋯S2 0.84 2.73 3.4112 (12) 139
O2—H2⋯S3 0.84 2.78 3.4792 (14) 141
C18—H18⋯O1i 0.99 2.52 3.4750 (19) 161
C18—H17⋯Cg1ii 0.99 2.54 3.5123 (17) 165
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y-1, z.
[Figure 1]
Figure 1
Chemical scheme of S-benzyl-β-N-(2-hy­droxy­phenyl­ethyl­idene)di­thio­carbazate (systematic name: benzyl 2-[1-(2-hy­droxy­phen­yl)ethyl­idene]hydrazinecarbodi­thio­ate).
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering. H atoms are drawn as circles of arbitrary size. O—H⋯N and O—H⋯S hydrogen bonds are indicated by dashed lines.

3. Supra­molecular features

Pairs of inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into inversion dimers. C—H⋯π inter­actions are also observed in the crystal, which link the dimers into a column along the b axis (Fig. 3[link])

[Figure 3]
Figure 3
A packing diagram of the title compound. The C—H⋯π inter­actions are shown as green lines.

4. Database survey

A search of the CSD (Version 5.36; Groom & Allen 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave three structures (VAHYAE: Dunstan et al., 1998[Dunstan, J. B. F., Elsey, G. M., Russell, R. A., Savage, G. P., Simpson, G. W. & Tiekink, E. R. T. (1998). Aust. J. Chem. 51, 499-510.]; FIVQAD Liu et al., 2005[Liu, L., Ji, Y.-L., Jia, D.-Z., Liu, G.-F. & Yu, K.-B. (2005). Chin. J. Chem. 23, 63-67.]; CUHHET: How et al., 2009[How, F. N. F., Crouse, K. A., Tahir, M. I. M. & Watkin, D. J. (2009). J. Chem. Crystallogr. 39, 894-897.]) closely related to the title compound. S-benzyl-β-N-(2-hy­droxy­phenyl­ethyl­idene)di­thio­carbazate was prepared by Pramanik et al. (2007[Pramanik, N. R., Ghosh, S., Raychaudhuri, T. K., Chaudhuri, S., Drew, M. G. B. & Mandal, S. S. (2007). J. Coord. Chem. 60, 2177-2190.]) and its crystal structure was reported by Biswal et al. (2015[Biswal, D., Pramanik, N. R., Chakrabarti, S., Chakraborty, N., Acharya, K., Mandal, S. S., Ghosh, S., Drew, M. G. B., Mondal, T. K. & Biswas, S. (2015). New J. Chem. 39, 2778-2794.]).

5. Synthesis and crystallization

The ligand precursor, S-benzyl di­thio­carbazate (SBDTC), was prepared according to the literature method (Ali & Tarafder, 1977[Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785-1791.]). The title compound was prepared as follows: to the ligand precursor, SBDTC (0.99 g, 5 mmol) dissolved in ethanol (40 ml) was added 2-hy­droxy aceto­phenone (0.68 g, 5 mmol) and the aliquot was heated under reflux for an 1h. The resultant yellow solution was cooled to room temperature. The light-yellow precipitate which formed was filtered off, washed with hot ethanol and dried under vacuum over anhydrous CaCl2 (yield: 1.23 g, 73.65%). The prepared compound (0.17 g) was dissolved in aceto­nitrile (20 ml) on warming and mixed with ethanol (10 ml). Light-yellow platelet single crystals of the title compound (m.p. 386–387 K) suitable for X-ray study were obtained after 17 days along with colorless needle-shaped crystalline solids (m.p. 413–418 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.95–0.98 Å and O—H = 0.84 Å) and treated as riding with Uiso(H) = 1.2Ueq(C,O).

Table 2
Experimental details

Crystal data
Chemical formula C32H30N4O2S4
Mr 630.85
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.5556 (3), 11.0236 (3), 15.5261 (5)
α, β, γ (°) 75.9922 (8), 71.9673 (7), 65.5889 (7)
V3) 1550.67 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.41 × 0.33 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.842, 0.935
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 15605, 7075, 6443
Rint 0.024
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.09
No. of reflections 7075
No. of parameters 383
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.35
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Chemical context top

\ There has been immense inter­est in nitro­gen–sulfur donor ligands since the report on S-benzyl­dithio­carbazate (SBDTC) (Ali & Tarafder, 1977). Since then, a number of Schiff bases have been derived from SBDTC (Crouse et al., 2004; Howlader et al., 2015). The versatile coordination chemistry and increasingly important biological properties of ligands derived from SBDTC have also received much attention (Zangrando et al., 2015). In a continuation of our research, the title compound (systematic name: 2-[1-(2-{(benzyl­sulfanyl)[((benzyl­sulfanyl){2-[1-(2-hy­droxy­phenyl)­ethyl­idene]\ hydrazin-1-yl­idene}methyl)­disulfanyl]methyl­idene}hydrazin-1-yl­idene)ethyl]\ phenol) was prepared from SBDTC.

Structural commentary top

In the title compound, the arrangement of the two Schiff base moieties (Fig. 1) is almost orthogonal with respect to the S2—S3 thio­ether bond (Fig. 2). The S2—S3 bond distance of 2.0373 (4) Å lies within a range of S—S single-bond lengths (2.03–2.36 Å) (Knop et al., 1988). In each of the Schiff base moieties, the benzene ring and the di­thio­carbazate fragment are arranged trans across the CN bond (C7N1 and C25N4). The (imino­ethyl)­phenol fragments (C1–C8/O1/N1 and C25–C32/O2/N4) are essentially planar with maximum deviations of 0.0559 (12) Å for N1 and 0.0200 (11) Å for N4 and make dihedral angles of 18.17 (4) and 17.49 (4)° with the N2/S1/S2/C9 and N3/S3/S4/C17 planes, respectively. The C—S distances (C9—S1, C9—S2, C10—S1, C17—S4, C17—S3 and C18—S4) of 1.7461 (12)–1.8220 (13) Å are comparable to the values of most similar di­thio­carbazate derivatives (Zangrando et al., 2015; Crouse et al., 2004). The C—N distances (C7—N1, C9—N2, C25—N4 and C17—N3) of 1.2789 (15)–1.2983 (15) Å indicate double-bond character (Tarafder et al., 2008) but these values are slightly shorter than the CN bond of the S-2-picolyl di­thio­carbazate Schiff base of 2-acetyl pyrrole (Crouse et al., 2004). The bond angles S1—C9—S2 [117.77 (6)°], S2—C9—N2 [120.78 (9)°], S3—C17—S4 [118.82 (7)°] and S3—C17—N3 [120.15 (12)°] also agree with those observed in trans-cis S-benzyl di­thio­carbazate (Tarafder et al., 2008). Intra­molecular O—H···N and O—H···S hydrogen bonds are observed (Table 1).

Supra­molecular features top

Pairs of inter­molecular C—H···O hydrogen bonds (Table 1) link the molecules into inversion dimers. C—H···π inter­actions are also observed in the crystal, which link the dimers into a column along the b axis (Fig. 3)

Database survey top

A search of the CSD (Version 5.36; Groom & Allen 2014) gave three structures (VAHYAE: Dunstan et al., 1998; FIVQAD Liu et al., 2005; CUHHET: How et al., 2009) closely related to the title compound. S-benzyl-β-N-(2-hy­droxy­phenyl­ethyl­idene)di­thio­carbazate was prepared by Pramanik et al. (2007) and its crystal structure was reported by Biswal et al. (2015).

Synthesis and crystallization top

The ligand precursor, S-benzyl di­thio­carbazate (SBDTC), was prepared according to the literature method (Ali & Tarafder, 1977). The title compound was prepared as follows: to the ligand precursor, SBDTC (0.99 g, 5 mmol) dissolved in ethanol (40 ml) was added 2-hy­droxy aceto­phenone (0.68 g, 5 mmol) and the aliquot was heated under reflux for an 1 h. The resultant yellow solution was cooled to room temperature. The light-yellow precipitate which had had formed was filtered off, washed with hot ethanol and dried under vacuum over anhydrous CaCl2 (yield: 1.23 g, 73.65%). The prepared compound (0.17 g) was dissolved in aceto­nitrile (20 ml) on warming and mixed with ethanol (10 ml). Light yellow platelet single crystals of the title compound (m.p. 386–387 K) suitable for X-ray study were obtained after 17 days along with colorless needle-shaped crystalline solids (m.p. 413–418 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were positioned geometrically (C—H = 0.95–0.98 Å and O—H = 0.84 Å) and treated as riding with Uiso(H) = 1.2Ueq(C,O).

Structure description top

\ There has been immense inter­est in nitro­gen–sulfur donor ligands since the report on S-benzyl­dithio­carbazate (SBDTC) (Ali & Tarafder, 1977). Since then, a number of Schiff bases have been derived from SBDTC (Crouse et al., 2004; Howlader et al., 2015). The versatile coordination chemistry and increasingly important biological properties of ligands derived from SBDTC have also received much attention (Zangrando et al., 2015). In a continuation of our research, the title compound (systematic name: 2-[1-(2-{(benzyl­sulfanyl)[((benzyl­sulfanyl){2-[1-(2-hy­droxy­phenyl)­ethyl­idene]\ hydrazin-1-yl­idene}methyl)­disulfanyl]methyl­idene}hydrazin-1-yl­idene)ethyl]\ phenol) was prepared from SBDTC.

In the title compound, the arrangement of the two Schiff base moieties (Fig. 1) is almost orthogonal with respect to the S2—S3 thio­ether bond (Fig. 2). The S2—S3 bond distance of 2.0373 (4) Å lies within a range of S—S single-bond lengths (2.03–2.36 Å) (Knop et al., 1988). In each of the Schiff base moieties, the benzene ring and the di­thio­carbazate fragment are arranged trans across the CN bond (C7N1 and C25N4). The (imino­ethyl)­phenol fragments (C1–C8/O1/N1 and C25–C32/O2/N4) are essentially planar with maximum deviations of 0.0559 (12) Å for N1 and 0.0200 (11) Å for N4 and make dihedral angles of 18.17 (4) and 17.49 (4)° with the N2/S1/S2/C9 and N3/S3/S4/C17 planes, respectively. The C—S distances (C9—S1, C9—S2, C10—S1, C17—S4, C17—S3 and C18—S4) of 1.7461 (12)–1.8220 (13) Å are comparable to the values of most similar di­thio­carbazate derivatives (Zangrando et al., 2015; Crouse et al., 2004). The C—N distances (C7—N1, C9—N2, C25—N4 and C17—N3) of 1.2789 (15)–1.2983 (15) Å indicate double-bond character (Tarafder et al., 2008) but these values are slightly shorter than the CN bond of the S-2-picolyl di­thio­carbazate Schiff base of 2-acetyl pyrrole (Crouse et al., 2004). The bond angles S1—C9—S2 [117.77 (6)°], S2—C9—N2 [120.78 (9)°], S3—C17—S4 [118.82 (7)°] and S3—C17—N3 [120.15 (12)°] also agree with those observed in trans-cis S-benzyl di­thio­carbazate (Tarafder et al., 2008). Intra­molecular O—H···N and O—H···S hydrogen bonds are observed (Table 1).

Pairs of inter­molecular C—H···O hydrogen bonds (Table 1) link the molecules into inversion dimers. C—H···π inter­actions are also observed in the crystal, which link the dimers into a column along the b axis (Fig. 3)

A search of the CSD (Version 5.36; Groom & Allen 2014) gave three structures (VAHYAE: Dunstan et al., 1998; FIVQAD Liu et al., 2005; CUHHET: How et al., 2009) closely related to the title compound. S-benzyl-β-N-(2-hy­droxy­phenyl­ethyl­idene)di­thio­carbazate was prepared by Pramanik et al. (2007) and its crystal structure was reported by Biswal et al. (2015).

Synthesis and crystallization top

The ligand precursor, S-benzyl di­thio­carbazate (SBDTC), was prepared according to the literature method (Ali & Tarafder, 1977). The title compound was prepared as follows: to the ligand precursor, SBDTC (0.99 g, 5 mmol) dissolved in ethanol (40 ml) was added 2-hy­droxy aceto­phenone (0.68 g, 5 mmol) and the aliquot was heated under reflux for an 1 h. The resultant yellow solution was cooled to room temperature. The light-yellow precipitate which had had formed was filtered off, washed with hot ethanol and dried under vacuum over anhydrous CaCl2 (yield: 1.23 g, 73.65%). The prepared compound (0.17 g) was dissolved in aceto­nitrile (20 ml) on warming and mixed with ethanol (10 ml). Light yellow platelet single crystals of the title compound (m.p. 386–387 K) suitable for X-ray study were obtained after 17 days along with colorless needle-shaped crystalline solids (m.p. 413–418 K).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were positioned geometrically (C—H = 0.95–0.98 Å and O—H = 0.84 Å) and treated as riding with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Chemical scheme of S-benzyl-β-N-(2-hydroxyphenylethylidene)dithiocarbazate (systematic name: benzyl 2-[1-(2-hydroxyphenyl)ethylidene]hydrazinecarbodithioate).
[Figure 2] Fig. 2. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering. H atoms are drawn as circles of arbitrary size. O—H···N and O—H···S hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. A packing diagram of the title compound. The C—H···π interactions are shown as green lines.
2-[1-(2-{(Benzylsulfanyl)[((benzylsulfanyl){2-[1-(2-hydroxyphenyl)ethylidene]hydrazin-1-ylidene}methyl)disulfanyl]methylidene}hydrazin-1-ylidene)ethyl]phenol top
Crystal data top
C32H30N4O2S4Z = 2
Mr = 630.85F(000) = 660.00
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 10.5556 (3) ÅCell parameters from 14309 reflections
b = 11.0236 (3) Åθ = 3.0–27.5°
c = 15.5261 (5) ŵ = 0.34 mm1
α = 75.9922 (8)°T = 173 K
β = 71.9673 (7)°Chunk, yellow
γ = 65.5889 (7)°0.41 × 0.33 × 0.20 mm
V = 1550.67 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6443 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.024
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1311
Tmin = 0.842, Tmax = 0.935k = 1414
15605 measured reflectionsl = 2020
7075 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.052P)2 + 0.2991P]
where P = (Fo2 + 2Fc2)/3
7075 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.35 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C32H30N4O2S4γ = 65.5889 (7)°
Mr = 630.85V = 1550.67 (8) Å3
Triclinic, P1Z = 2
a = 10.5556 (3) ÅMo Kα radiation
b = 11.0236 (3) ŵ = 0.34 mm1
c = 15.5261 (5) ÅT = 173 K
α = 75.9922 (8)°0.41 × 0.33 × 0.20 mm
β = 71.9673 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7075 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6443 reflections with F2 > 2.0σ(F2)
Tmin = 0.842, Tmax = 0.935Rint = 0.024
15605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
7075 reflectionsΔρmin = 0.35 e Å3
383 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are stimated using the full convariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; corrections between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09853 (4)0.18474 (3)0.26158 (2)0.04004 (9)
S20.33374 (3)0.22999 (3)0.10197 (2)0.03546 (9)
S30.43320 (3)0.06584 (3)0.18428 (2)0.03183 (8)
S40.33603 (3)0.04421 (3)0.06498 (2)0.03407 (9)
O10.34089 (12)0.48991 (10)0.06903 (8)0.0512 (3)
O20.65619 (13)0.09530 (10)0.33489 (8)0.0490 (3)
N10.12722 (11)0.47399 (10)0.06318 (7)0.0301 (2)
N20.06147 (11)0.40274 (11)0.13886 (7)0.0328 (3)
N30.48465 (11)0.19327 (10)0.18757 (7)0.0314 (2)
N40.55167 (11)0.19781 (10)0.25420 (7)0.0296 (2)
C10.26385 (16)0.62281 (13)0.08014 (9)0.0363 (3)
C20.32953 (18)0.70237 (15)0.14798 (10)0.0444 (4)
C30.2587 (2)0.83934 (16)0.16257 (11)0.0504 (4)
C40.1229 (2)0.89887 (16)0.11067 (14)0.0588 (5)
C50.05661 (18)0.82114 (14)0.04409 (12)0.0492 (4)
C60.12461 (14)0.68087 (12)0.02668 (9)0.0332 (3)
C70.05349 (13)0.60139 (12)0.04772 (9)0.0317 (3)
C80.09410 (15)0.66931 (15)0.10333 (11)0.0444 (4)
C90.15035 (13)0.28791 (12)0.16418 (8)0.0309 (3)
C100.08614 (15)0.29472 (15)0.30185 (10)0.0452 (4)
C110.14947 (14)0.22557 (13)0.39113 (9)0.0363 (3)
C120.25928 (15)0.18530 (16)0.39580 (10)0.0431 (3)
C130.32091 (17)0.12327 (17)0.47688 (12)0.0530 (4)
C140.27240 (19)0.09964 (17)0.55326 (11)0.0567 (5)
C150.1638 (3)0.1396 (2)0.55012 (11)0.0635 (5)
C160.10211 (19)0.20308 (18)0.46934 (11)0.0522 (4)
C170.42626 (12)0.07400 (12)0.14963 (8)0.0278 (3)
C180.34252 (15)0.21244 (14)0.06891 (9)0.0367 (3)
C190.24950 (14)0.26450 (14)0.15237 (8)0.0335 (3)
C200.27934 (16)0.40188 (15)0.16988 (10)0.0409 (3)
C210.19396 (18)0.45535 (16)0.24294 (10)0.0466 (4)
C220.07643 (17)0.37179 (17)0.29866 (10)0.0465 (4)
C230.04675 (16)0.23501 (17)0.28200 (11)0.0469 (4)
C240.13335 (15)0.18127 (15)0.20996 (10)0.0399 (3)
C250.58044 (12)0.30944 (12)0.30954 (8)0.0286 (3)
C260.54341 (18)0.42358 (14)0.30248 (11)0.0450 (4)
C270.64827 (12)0.31886 (12)0.38200 (8)0.0292 (3)
C280.68143 (14)0.21190 (13)0.39196 (9)0.0333 (3)
C290.74129 (15)0.22298 (15)0.46335 (10)0.0412 (3)
C300.77032 (17)0.33862 (17)0.52459 (10)0.0459 (4)
C310.73998 (18)0.44566 (17)0.51615 (11)0.0493 (4)
C320.67943 (16)0.43490 (14)0.44601 (10)0.0398 (3)
H10.29190.45080.02800.0614*
H20.61980.09860.29490.0587*
H30.42310.66180.18400.0533*
H40.30360.89300.20860.0604*
H50.07480.99350.12060.0705*
H60.03730.86360.00920.0591*
H70.15660.72710.06240.0533*
H80.08980.72390.14290.0533*
H90.13240.60120.14110.0533*
H100.08910.38170.31110.0542*
H110.14170.31220.25620.0542*
H120.29310.20030.34270.0517*
H130.39720.09720.47920.0635*
H140.31360.05570.60850.0680*
H150.13040.12370.60360.0762*
H160.02740.23100.46780.0626*
H170.31470.21480.01420.0440*
H180.44300.27520.06440.0440*
H190.35900.46000.13150.0491*
H200.21640.54970.25470.0560*
H210.01680.40800.34790.0558*
H220.03370.17710.32020.0563*
H230.11310.08730.20000.0479*
H240.44540.41150.33800.0539*
H250.61010.50850.32650.0539*
H260.55060.42530.23830.0539*
H270.76220.15010.46970.0495*
H280.81130.34520.57280.0551*
H290.76060.52570.55820.0592*
H300.65830.50830.44100.0478*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03573 (18)0.03325 (17)0.03854 (18)0.01161 (13)0.00120 (13)0.00559 (13)
S20.02997 (16)0.02973 (16)0.03605 (17)0.00918 (12)0.00505 (12)0.00752 (12)
S30.03227 (16)0.02733 (15)0.03573 (16)0.01093 (12)0.01294 (12)0.00250 (11)
S40.03448 (17)0.03974 (17)0.02849 (15)0.01494 (13)0.01321 (12)0.00453 (12)
O10.0525 (7)0.0291 (5)0.0504 (6)0.0123 (5)0.0081 (5)0.0011 (5)
O20.0697 (8)0.0361 (5)0.0575 (7)0.0282 (5)0.0396 (6)0.0129 (5)
N10.0316 (5)0.0271 (5)0.0319 (5)0.0112 (4)0.0111 (4)0.0013 (4)
N20.0318 (6)0.0308 (5)0.0336 (6)0.0120 (5)0.0077 (5)0.0005 (4)
N30.0327 (6)0.0298 (5)0.0317 (5)0.0097 (4)0.0127 (4)0.0005 (4)
N40.0297 (5)0.0275 (5)0.0304 (5)0.0085 (4)0.0112 (4)0.0005 (4)
C10.0509 (8)0.0292 (6)0.0328 (6)0.0177 (6)0.0165 (6)0.0027 (5)
C20.0642 (10)0.0437 (8)0.0342 (7)0.0305 (7)0.0161 (7)0.0045 (6)
C30.0827 (12)0.0453 (8)0.0449 (8)0.0409 (9)0.0389 (8)0.0184 (7)
C40.0758 (12)0.0299 (7)0.0794 (12)0.0194 (8)0.0495 (11)0.0180 (8)
C50.0497 (9)0.0294 (7)0.0694 (11)0.0078 (6)0.0339 (8)0.0059 (7)
C60.0416 (7)0.0270 (6)0.0373 (7)0.0125 (5)0.0242 (6)0.0035 (5)
C70.0326 (6)0.0291 (6)0.0365 (6)0.0085 (5)0.0180 (5)0.0023 (5)
C80.0361 (7)0.0366 (7)0.0529 (9)0.0028 (6)0.0143 (6)0.0065 (6)
C90.0308 (6)0.0300 (6)0.0314 (6)0.0132 (5)0.0062 (5)0.0009 (5)
C100.0330 (7)0.0435 (8)0.0435 (8)0.0098 (6)0.0025 (6)0.0054 (6)
C110.0338 (7)0.0347 (7)0.0335 (7)0.0099 (6)0.0024 (5)0.0040 (5)
C120.0388 (8)0.0491 (8)0.0399 (7)0.0165 (7)0.0046 (6)0.0088 (6)
C130.0425 (8)0.0479 (9)0.0595 (10)0.0204 (7)0.0064 (7)0.0085 (8)
C140.0595 (10)0.0454 (9)0.0407 (8)0.0146 (8)0.0136 (7)0.0042 (7)
C150.0872 (14)0.0642 (11)0.0331 (8)0.0215 (10)0.0174 (8)0.0033 (8)
C160.0597 (10)0.0561 (10)0.0486 (9)0.0271 (8)0.0195 (8)0.0013 (7)
C170.0252 (6)0.0313 (6)0.0255 (5)0.0109 (5)0.0057 (5)0.0006 (5)
C180.0411 (7)0.0453 (8)0.0290 (6)0.0198 (6)0.0093 (5)0.0061 (6)
C190.0356 (7)0.0425 (7)0.0296 (6)0.0183 (6)0.0147 (5)0.0012 (5)
C200.0491 (8)0.0422 (8)0.0361 (7)0.0167 (7)0.0166 (6)0.0047 (6)
C210.0651 (10)0.0441 (8)0.0427 (8)0.0284 (8)0.0250 (7)0.0045 (6)
C220.0517 (9)0.0599 (10)0.0384 (7)0.0335 (8)0.0164 (7)0.0063 (7)
C230.0386 (8)0.0572 (9)0.0447 (8)0.0220 (7)0.0045 (6)0.0052 (7)
C240.0372 (7)0.0418 (8)0.0418 (7)0.0171 (6)0.0098 (6)0.0022 (6)
C250.0258 (6)0.0252 (6)0.0307 (6)0.0063 (5)0.0072 (5)0.0014 (5)
C260.0611 (9)0.0325 (7)0.0517 (9)0.0217 (7)0.0298 (8)0.0059 (6)
C270.0256 (6)0.0287 (6)0.0295 (6)0.0074 (5)0.0073 (5)0.0008 (5)
C280.0323 (6)0.0310 (6)0.0360 (7)0.0112 (5)0.0117 (5)0.0006 (5)
C290.0438 (8)0.0448 (8)0.0416 (7)0.0195 (7)0.0160 (6)0.0033 (6)
C300.0499 (9)0.0573 (9)0.0357 (7)0.0226 (7)0.0200 (6)0.0029 (7)
C310.0614 (10)0.0489 (9)0.0411 (8)0.0243 (8)0.0264 (7)0.0142 (7)
C320.0475 (8)0.0344 (7)0.0398 (7)0.0175 (6)0.0182 (6)0.0059 (6)
Geometric parameters (Å, º) top
S1—C91.7461 (12)C25—C271.473 (2)
S1—C101.8220 (13)C27—C281.414 (3)
S2—S32.0373 (4)C27—C321.4041 (18)
S2—C91.7909 (12)C28—C291.395 (3)
S3—C171.7862 (16)C29—C301.376 (2)
S4—C171.7464 (15)C30—C311.388 (4)
S4—C181.8139 (18)C31—C321.384 (3)
O1—C11.3480 (16)O1—H10.840
O2—C281.3491 (16)O2—H20.840
N1—N21.4065 (15)C2—H30.950
N1—C71.2980 (15)C3—H40.950
N2—C91.2818 (15)C4—H50.950
N3—N41.4043 (19)C5—H60.950
N3—C171.2789 (15)C8—H70.980
N4—C251.2983 (15)C8—H80.980
C1—C21.401 (3)C8—H90.980
C1—C61.4082 (18)C10—H100.990
C2—C31.377 (2)C10—H110.990
C3—C41.377 (3)C12—H120.950
C4—C51.383 (3)C13—H130.950
C5—C61.4070 (18)C14—H140.950
C6—C71.4773 (19)C15—H150.950
C7—C81.4997 (17)C16—H160.950
C10—C111.5117 (19)C18—H170.990
C11—C121.380 (3)C18—H180.990
C11—C161.383 (3)C20—H190.950
C12—C131.385 (3)C21—H200.950
C13—C141.361 (3)C22—H210.950
C14—C151.373 (4)C23—H220.950
C15—C161.390 (3)C24—H230.950
C18—C191.5135 (19)C26—H240.980
C19—C201.388 (3)C26—H250.980
C19—C241.3904 (18)C26—H260.980
C20—C211.389 (3)C29—H270.950
C21—C221.383 (2)C30—H280.950
C22—C231.382 (3)C31—H290.950
C23—C241.390 (3)C32—H300.950
C25—C261.499 (3)
C9—S1—C1099.56 (6)C28—O2—H2109.466
S3—S2—C9104.38 (4)C1—C2—H3119.943
S2—S3—C17105.39 (5)C3—C2—H3119.937
C17—S4—C1899.70 (7)C2—C3—H4119.877
N2—N1—C7115.35 (9)C4—C3—H4119.879
N1—N2—C9112.35 (10)C3—C4—H5119.948
N4—N3—C17113.08 (13)C5—C4—H5119.947
N3—N4—C25114.85 (13)C4—C5—H6119.129
O1—C1—C2116.61 (12)C6—C5—H6119.136
O1—C1—C6122.57 (13)C7—C8—H7109.476
C2—C1—C6120.82 (12)C7—C8—H8109.462
C1—C2—C3120.12 (14)C7—C8—H9109.472
C2—C3—C4120.24 (16)H7—C8—H8109.476
C3—C4—C5120.10 (14)H7—C8—H9109.473
C4—C5—C6121.73 (14)H8—C8—H9109.468
C1—C6—C5116.97 (13)S1—C10—H10110.101
C1—C6—C7122.56 (11)S1—C10—H11110.109
C5—C6—C7120.41 (11)C11—C10—H10110.096
N1—C7—C6116.53 (10)C11—C10—H11110.108
N1—C7—C8123.33 (12)H10—C10—H11108.444
C6—C7—C8120.10 (11)C11—C12—H12119.542
S1—C9—S2117.77 (6)C13—C12—H12119.538
S1—C9—N2121.43 (9)C12—C13—H13119.911
S2—C9—N2120.78 (9)C14—C13—H13119.899
S1—C10—C11107.98 (9)C13—C14—H14120.123
C10—C11—C12119.49 (15)C15—C14—H14120.120
C10—C11—C16121.90 (17)C14—C15—H15119.748
C12—C11—C16118.60 (14)C16—C15—H15119.742
C11—C12—C13120.92 (17)C11—C16—H16119.988
C12—C13—C14120.2 (2)C15—C16—H16120.002
C13—C14—C15119.76 (16)S4—C18—H17108.133
C14—C15—C16120.5 (2)S4—C18—H18108.131
C11—C16—C15120.0 (3)C19—C18—H17108.132
S3—C17—S4118.82 (7)C19—C18—H18108.138
S3—C17—N3120.15 (12)H17—C18—H18107.308
S4—C17—N3121.03 (13)C19—C20—H19119.639
S4—C18—C19116.64 (10)C21—C20—H19119.640
C18—C19—C20117.90 (11)C20—C21—H20119.866
C18—C19—C24123.27 (13)C22—C21—H20119.868
C20—C19—C24118.79 (13)C21—C22—H21120.357
C19—C20—C21120.72 (13)C23—C22—H21120.354
C20—C21—C22120.27 (16)C22—C23—H22119.677
C21—C22—C23119.29 (15)C24—C23—H22119.671
C22—C23—C24120.65 (13)C19—C24—H23119.868
C19—C24—C23120.25 (15)C23—C24—H23119.878
N4—C25—C26122.05 (14)C25—C26—H24109.480
N4—C25—C27117.20 (14)C25—C26—H25109.474
C26—C25—C27120.73 (11)C25—C26—H26109.469
C25—C27—C28122.18 (11)H24—C26—H25109.472
C25—C27—C32120.68 (15)H24—C26—H26109.464
C28—C27—C32117.12 (15)H25—C26—H26109.468
O2—C28—C27122.60 (15)C28—C29—H27119.731
O2—C28—C29116.91 (16)C30—C29—H27119.725
C27—C28—C29120.48 (12)C29—C30—H28119.862
C28—C29—C30120.54 (18)C31—C30—H28119.853
C29—C30—C31120.28 (18)C30—C31—H29120.257
C30—C31—C32119.47 (15)C32—C31—H29120.269
C27—C32—C31122.09 (17)C27—C32—H30118.957
C1—O1—H1109.472C31—C32—H30118.953
C9—S1—C10—C11176.67 (11)S1—C10—C11—C12114.03 (11)
C10—S1—C9—S2175.25 (11)S1—C10—C11—C1667.04 (15)
C10—S1—C9—N23.17 (15)C10—C11—C12—C13179.14 (11)
S3—S2—C9—S19.83 (11)C10—C11—C16—C15179.74 (11)
S3—S2—C9—N2168.60 (11)C12—C11—C16—C150.8 (2)
C9—S2—S3—C1791.54 (6)C16—C11—C12—C130.2 (2)
S2—S3—C17—S43.18 (7)C11—C12—C13—C140.8 (3)
S2—S3—C17—N3177.93 (7)C12—C13—C14—C151.1 (3)
C17—S4—C18—C1970.94 (11)C13—C14—C15—C160.5 (3)
C18—S4—C17—S3172.82 (7)C14—C15—C16—C110.5 (3)
C18—S4—C17—N36.06 (10)S4—C18—C19—C20162.98 (10)
N2—N1—C7—C6175.20 (12)S4—C18—C19—C2419.4 (2)
N2—N1—C7—C82.3 (3)C18—C19—C20—C21177.02 (14)
C7—N1—N2—C9164.04 (13)C18—C19—C24—C23175.75 (14)
N1—N2—C9—S1175.36 (12)C20—C19—C24—C231.9 (3)
N1—N2—C9—S23.0 (2)C24—C19—C20—C210.7 (3)
N4—N3—C17—S30.88 (13)C19—C20—C21—C220.9 (3)
N4—N3—C17—S4179.74 (8)C20—C21—C22—C231.4 (3)
C17—N3—N4—C25163.60 (9)C21—C22—C23—C240.2 (3)
N3—N4—C25—C260.41 (14)C22—C23—C24—C191.4 (3)
N3—N4—C25—C27178.84 (8)N4—C25—C27—C280.01 (14)
O1—C1—C2—C3178.99 (16)N4—C25—C27—C32178.36 (9)
O1—C1—C6—C5178.96 (15)C26—C25—C27—C28178.44 (10)
O1—C1—C6—C71.9 (3)C26—C25—C27—C320.09 (15)
C2—C1—C6—C50.7 (3)C25—C27—C28—O21.44 (16)
C2—C1—C6—C7177.74 (16)C25—C27—C28—C29177.84 (9)
C6—C1—C2—C30.7 (3)C25—C27—C32—C31178.45 (9)
C1—C2—C3—C40.1 (3)C28—C27—C32—C310.02 (17)
C2—C3—C4—C50.5 (4)C32—C27—C28—O2179.85 (10)
C3—C4—C5—C60.5 (4)C32—C27—C28—C290.57 (16)
C4—C5—C6—C10.1 (3)O2—C28—C29—C30179.98 (10)
C4—C5—C6—C7177.23 (19)C27—C28—C29—C300.67 (17)
C1—C6—C7—N11.4 (3)C28—C29—C30—C310.16 (19)
C1—C6—C7—C8178.99 (15)C29—C30—C31—C320.4 (2)
C5—C6—C7—N1175.60 (16)C30—C31—C32—C270.5 (2)
C5—C6—C7—C82.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.842.5725 (15)145
O2—H2···N40.841.842.576 (3)146
O1—H1···S20.842.733.4112 (12)139
O2—H2···S30.842.783.4792 (14)141
C18—H18···O1i0.992.523.4750 (19)161
C18—H17···Cg1ii0.992.543.5123 (17)165
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.842.5725 (15)145
O2—H2···N40.841.842.576 (3)146
O1—H1···S20.842.733.4112 (12)139
O2—H2···S30.842.783.4792 (14)141
C18—H18···O1i0.992.523.4750 (19)161
C18—H17···Cg1ii0.992.543.5123 (17)165
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC32H30N4O2S4
Mr630.85
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.5556 (3), 11.0236 (3), 15.5261 (5)
α, β, γ (°)75.9922 (8), 71.9673 (7), 65.5889 (7)
V3)1550.67 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.41 × 0.33 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.842, 0.935
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
15605, 7075, 6443
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.09
No. of reflections7075
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.35

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

MAAAAI and AAM are grateful to the Department of Chemistry, Rajshahi University of Engineering & Technology (RUET), for the provision of laboratory facilities. MCS and RM acknowledge the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Japan, and the Center for Environmental Conservation and Research Safety, University of Toyama, Japan, for providing facilities for single-crystal X-ray analyses.

References

First citationAli, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBiswal, D., Pramanik, N. R., Chakrabarti, S., Chakraborty, N., Acharya, K., Mandal, S. S., Ghosh, S., Drew, M. G. B., Mondal, T. K. & Biswas, S. (2015). New J. Chem. 39, 2778–2794.  CSD CrossRef CAS Google Scholar
First citationCrouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunstan, J. B. F., Elsey, G. M., Russell, R. A., Savage, G. P., Simpson, G. W. & Tiekink, E. R. T. (1998). Aust. J. Chem. 51, 499–510.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHow, F. N. F., Crouse, K. A., Tahir, M. I. M. & Watkin, D. J. (2009). J. Chem. Crystallogr. 39, 894–897.  CSD CrossRef CAS Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, o103–o104.  CSD CrossRef IUCr Journals Google Scholar
First citationKnop, O., Boyd, R. J. & Choi, S. C. (1988). J. Am. Chem. Soc. 110, 7299–7301.  CrossRef CAS Web of Science Google Scholar
First citationLiu, L., Ji, Y.-L., Jia, D.-Z., Liu, G.-F. & Yu, K.-B. (2005). Chin. J. Chem. 23, 63–67.  CSD CrossRef Google Scholar
First citationPramanik, N. R., Ghosh, S., Raychaudhuri, T. K., Chaudhuri, S., Drew, M. G. B. & Mandal, S. S. (2007). J. Coord. Chem. 60, 2177–2190.  CSD CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZangrando, E., Islam, M. T., Islam, M. A. A. A., Sheikh, M. C., Tarafder, M. T. H., Miyatake, R., Zahan, R. & Hossain, M. A. (2015). Inorg. Chim. Acta, 427, 278–284.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 337-339
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds