research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 387-390

Crystal structure of 5′′-benzyl­­idene-1′-methyl-4′-phenyl­tri­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,1′′-cyclo­hexane-3′′,2′′′-[1,3]dioxane]-2,6′′-dione

CROSSMARK_Color_square_no_text.svg

aResearch Department of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 13 January 2016; accepted 17 February 2016; online 20 February 2016)

In the title compound, C36H31NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace­naphthyl­ene and cyclo­hexa­none rings. The cyclo­hexa­none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace­naphthylen-1-one ring system adopts a flattened envelope conformation with the ketonic C atom as flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo­hexa­none ring assumes a boat conformation. Three intra­molecular C—H⋯O hydrogen bonds involving both ketonic O atoms as acceptors are present. In the crystal, C—H⋯O hydrogen bonds connect centrosymmetrically related mol­ecule into chains parallel to the b axis, forming rings of R22(10)and R22(8) graph-set motifs.

1. Chemical context

The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014[Molvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536-563.]). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several spiro compounds show diverse biological activities such as anti­cancer (Chin et al., 2008[Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390-395.]), anti­bacterial (van der Sar et al., 2006[Sar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059-2061.]), anti­convulsant (Obniska & Kaminski, 2006[Obniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101-108.]), anti­microbial (Pawar et al., 2009[Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97-107.]), anti­tuberculosis (Chande et al., 2005[Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143-1148.]), anti-oxidant (Sarma et al., 2010[Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.]) and pain-relief agents (Frank et al., 2008[Frank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.]). Some spiro compounds are used as pesticides (Wei et al., 2009[Wei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476-487.]) and laser dyes (Kreuder et al., 1999[Kreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655.]). They are also used as electroluminescent devices (Lupo et al., 1998[Lupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217.]). The spiro­pyrrolidine-3,3′-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992[Tan, R. X., Jia, Z. J., Zhao, J. & Feng, S. L. (1992). Phytochemistry, 31, 3135-3138.]). Spiro pyrrolidines act as inhibitors of human NK-I receptor activity (Kumar, Perumal, Manju et al., 2009[Kumar, R. R., Perumal, S., Manju, S. C., Bhatt, P., Yogeeswari, P. & Sriram, D. (2009). Bioorg. Med. Chem. Lett. 19, 3461-3465.]). They are also exhibit anti­microbial (Sureshbabu et al., 2008[Sureshbabu, A. R., Raghunathan, R., Mathivanan, M., Omprabha, G., Velmurugan, D. & Raghu, R. (2008). Curr. Chem. Biol. 2, 312-320.]), anti­convulsant and neurotoxic properties (Obniska et al., 2006[Obniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207-214.]) and anti­proliferative activities (Almansour et al., 2014[Almansour, A. I., Kumar, R. S., Beevi, F., Shirazi, A. N., Osman, H., Ismail, R., Choon, T. S., Sullivan, B., McCaffrey, K., Nahhas, A., Parang, K. & Ali, M. A. (2014). Molecules, 19, 10033-10055.]). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979[Smith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464-1469.]), anti­microbial (El-Ayaan & Abdel-Aziz, 2005[El-Ayaan, U. & Abdel-Aziz, A. A. M. (2005). Eur. J. Med. Chem. 40, 1214-1221.]), anti­fungal (McDavids & Daniels, 1951[McDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325-326.]), anti­tumor (El-Ayaan et al., 2007[El-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325-1333.]) and insecticidal activities (Chen et al., 2014[Chen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197-200.]). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006[Liang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178-2189.]).

[Scheme 1]

An efficient synthesis of di­spiro­indeno­quinoxaline pyrrolizidine derivatives was accomplished by a one-pot four-component 1,3-dipolar cyclo­addition reaction. A rare di­spiro­heterocyclic compound was synthesized through 1,3-dipolar cyclo­addition of azomethine ylide for the purpose of designing a new class of complex di­spiro­heterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2′] acenaphthen-1′-one-spiro­[3,2′′]indane −1′,3′′-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006[Suresh Babu, A. R. & Raghunathan, R. (2006). J. Heterocycl. Chem. 43, 1357-1360.]). Novel spiro cyclo­hexa­nones have been synthesized by 1,3-dipolar cyclo­addition of azomethine ylides with anti­tuberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009[Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821-3829.]). Twelve novel acenaphthene derivatives were reported with anti­tumor activity (Xie et al., 2011[Xie, Y.-M., Deng, Y., Dai, X.-Y., Liu, J., Ouyang, L., Wei, Y.-Q. & Zhao, Y.-L. (2011). Molecules, 16, 2519-2526.]). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as anti­muscarinic agents (Marucci et al., 2005[Marucci, G., Angeli, P., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A., Sagratini, G. & Franchini, S. (2005). Med. Chem. Res. 14, 309-331.]). A series of new enanti­omerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011[Küçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806-6815.]).

The crystal structures of several biologically significant mono­spiro­pyrrolidines (Chandralekha et al., 2014[Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2014). Acta Cryst. E70, 124-126.]) and di­spiro­pyrrolidines (Palani et al., 2006[Palani, K., Ponnuswamy, M. N., Suresh Babu, A. R., Raghunathan, R. & Ravikumar, K. (2006). Acta Cryst. E62, o52-o54.]) have been reported in the literature, but only few reports are available on the crystal structure of tris­piropyrrolidines. In continuation of our work in this field, the crystal structure of title tris­piropyrrolidine is reported on herein.

2. Structural commentary

In the title compound (Fig. 1[link]), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened envelope conformation [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclo­hexa­none ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclo­hexa­none and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexa­none and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related tris­piropyrrolidine compound (Chandralekha et al., 2015[Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2015). Acta Cryst. E71, o814-o815.]). Three intra­molecular C—H⋯O hydrogen bonds (Table 1[link]) are present, involving both ketonic O atoms as acceptors.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O4i 0.97 2.47 3.352 (3) 152
C17—H17A⋯O1 0.97 2.52 3.052 (2) 114
C22—H22⋯O1ii 0.93 2.44 3.291 (2) 153
C28—H28⋯O2 0.93 2.59 3.199 (3) 123
C36—H36⋯O1 0.93 2.31 3.174 (3) 155
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, centrosymmetrically-related mol­ecules are linked into dimers forming rings of [R_{2}^{2}](10) graph-set motif. The dimers are further connected by C—H⋯O contacts forming rings of [R_{2}^{2}](8) graph-set motif, producing chains parallel to the b axis (Fig. 2[link]).

[Figure 2]
Figure 2
Partial crystal packing of the title compound showing the formation of a mol­ecular chain parallel to the b axis through C—H⋯O hydrogen bonds (dashed lines).

4. Synthesis and crystallization

An equimolar mixture of 7,9-bis [(E)-benzyl­idine)]-1,4-dioxo-spiro­[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25-30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tris­piropyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C36H31NO4
Mr 541.62
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.8861 (4), 11.4899 (4), 11.9171 (4)
α, β, γ (°) 83.83 (1), 65.253 (8), 86.397 (10)
V3) 1345.60 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33777, 4744, 3465
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.122, 1.09
No. of reflections 4744
No. of parameters 372
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several spiro compounds show diverse biological activities such as anti­cancer (Chin et al., 2008), anti­bacterial (van der Sar et al., 2006), anti­convulsant (Obniska & Kaminski, 2006), anti­microbial (Pawar et al., 2009), anti­tuberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some spiro compounds are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiro­pyrrolidine-3,3'-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK—I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit anti­microbial (Sureshbabu et al., 2008), anti­convulsant and neurotoxic properties (Obniska et al., 2006) and anti­proliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), anti­microbial (El-Ayaan & Abdel-Aziz, 2005), anti­fungal (McDavids & Daniels, 1951), anti­tumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).

An efficient synthesis of di­spiro­indeno­quinoxaline pyrrolizidine derivatives was accomplished by one-pot four-component 1,3-dipolar cyclo­addition reaction. A rare di­spiro­heterocyclic compound was synthesized through 1,3-dipolar cyclo­addition of azomethine ylide for the purpose of designing a new class of complex di­spiro­heterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2'] acenaphthen-1'-one-spiro­[3,2'']indane −1',3''-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclo­hexano­nes have been synthesized by 1,3-dipolar cyclo­addition of azomethine ylides with anti­tuberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with anti­tumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as anti­muscarinic agents (Marucci et al., 2005). A series of new enanti­omerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).

The crystal structures of several biologically significant mono­spiro­pyrrolidines (Chandralekha et al., 2014) and di­spiro­pyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the crystal structure of tri­spiro­pyrrolidines. In continuation of our work in this field, the crystal structure of title tri­spiro­pyrrolidine is reported on herein.

Structural commentary top

In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened envelope conformation [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclo­hexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclo­hexanone and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related tri­spiro­pyrrolidine compound (Chandralekha et al., 2015). Three intra­molecular C—H···O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.

Supra­molecular features top

In the crystal, centrosymmetrically related molecules are linked into dimers forming rings of R22(10) graph-set motif. The dimers are further connected by C—H···O contacts forming rings of R22(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).

Synthesis and crystallization top

An equimolar mixture of 7,9-bis [(E)-benzyl­idine)]-1,4-dioxo-spiro­[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25–30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tri­spiro­pyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Structure description top

The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several spiro compounds show diverse biological activities such as anti­cancer (Chin et al., 2008), anti­bacterial (van der Sar et al., 2006), anti­convulsant (Obniska & Kaminski, 2006), anti­microbial (Pawar et al., 2009), anti­tuberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some spiro compounds are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiro­pyrrolidine-3,3'-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK—I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit anti­microbial (Sureshbabu et al., 2008), anti­convulsant and neurotoxic properties (Obniska et al., 2006) and anti­proliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), anti­microbial (El-Ayaan & Abdel-Aziz, 2005), anti­fungal (McDavids & Daniels, 1951), anti­tumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).

An efficient synthesis of di­spiro­indeno­quinoxaline pyrrolizidine derivatives was accomplished by one-pot four-component 1,3-dipolar cyclo­addition reaction. A rare di­spiro­heterocyclic compound was synthesized through 1,3-dipolar cyclo­addition of azomethine ylide for the purpose of designing a new class of complex di­spiro­heterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2'] acenaphthen-1'-one-spiro­[3,2'']indane −1',3''-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclo­hexano­nes have been synthesized by 1,3-dipolar cyclo­addition of azomethine ylides with anti­tuberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with anti­tumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as anti­muscarinic agents (Marucci et al., 2005). A series of new enanti­omerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).

The crystal structures of several biologically significant mono­spiro­pyrrolidines (Chandralekha et al., 2014) and di­spiro­pyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the crystal structure of tri­spiro­pyrrolidines. In continuation of our work in this field, the crystal structure of title tri­spiro­pyrrolidine is reported on herein.

In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened envelope conformation [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclo­hexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclo­hexanone and cyclo­penta­none ring, respectively. The mean planes through the cyclo­hexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related tri­spiro­pyrrolidine compound (Chandralekha et al., 2015). Three intra­molecular C—H···O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.

In the crystal, centrosymmetrically related molecules are linked into dimers forming rings of R22(10) graph-set motif. The dimers are further connected by C—H···O contacts forming rings of R22(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).

Synthesis and crystallization top

An equimolar mixture of 7,9-bis [(E)-benzyl­idine)]-1,4-dioxo-spiro­[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25–30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure tri­spiro­pyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing the formation of a molecular chain parallel to the b axis through C—H···O hydrogen bonds (dashed lines).
5''-Benzylidene-1'-methyl-4'-phenyltrispiro[acenaphthylene-1,2'-pyrrolidine-3',1''-cyclohexane-3'',2'''-[1,3]dioxane]-2,6''-dione top
Crystal data top
C36H31NO4Z = 2
Mr = 541.62F(000) = 572
Triclinic, P1Dx = 1.337 Mg m3
a = 10.8861 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4899 (4) ÅCell parameters from 43585 reflections
c = 11.9171 (4) Åθ = 5.0–25.7°
α = 83.83 (1)°µ = 0.09 mm1
β = 65.253 (8)°T = 293 K
γ = 86.397 (10)°Block, colourless
V = 1345.60 (12) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3465 reflections with I > 2σ(I)
Radiation source: graphiteRint = 0.031
bruker axs kappa axes2 CCD Diffractometer scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.710, Tmax = 0.746k = 1313
33777 measured reflectionsl = 1414
4744 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2573P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.16 e Å3
4744 reflectionsΔρmin = 0.16 e Å3
372 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0109 (19)
Crystal data top
C36H31NO4γ = 86.397 (10)°
Mr = 541.62V = 1345.60 (12) Å3
Triclinic, P1Z = 2
a = 10.8861 (4) ÅMo Kα radiation
b = 11.4899 (4) ŵ = 0.09 mm1
c = 11.9171 (4) ÅT = 293 K
α = 83.83 (1)°0.30 × 0.25 × 0.20 mm
β = 65.253 (8)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4744 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3465 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.746Rint = 0.031
33777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
4744 reflectionsΔρmin = 0.16 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84726 (14)0.91261 (12)0.05682 (13)0.0608 (4)
O20.50588 (12)0.57346 (11)0.30977 (12)0.0541 (4)
O30.68858 (14)0.52854 (12)0.03539 (12)0.0570 (4)
O40.91793 (14)0.51361 (12)0.12148 (10)0.0575 (4)
N10.59384 (15)0.83289 (13)0.27966 (13)0.0454 (4)
C10.7188 (2)0.23372 (19)0.45586 (18)0.0613 (6)
H10.65320.27130.52070.074*
C20.7788 (3)0.1317 (2)0.4816 (2)0.0742 (7)
H20.75300.10120.56360.089*
C30.8757 (2)0.07441 (19)0.3887 (2)0.0670 (6)
H30.91740.00640.40680.080*
C40.9100 (2)0.11882 (19)0.2691 (2)0.0687 (6)
H40.97460.07980.20480.082*
C50.8507 (2)0.22040 (17)0.24213 (19)0.0612 (6)
H50.87560.24900.15970.073*
C60.75437 (18)0.28139 (15)0.33522 (16)0.0433 (4)
C70.68667 (17)0.39106 (15)0.31676 (16)0.0420 (4)
H70.62020.41720.38920.050*
C80.70355 (16)0.46033 (14)0.21391 (15)0.0378 (4)
C90.80155 (18)0.43569 (15)0.08521 (14)0.0431 (4)
H9A0.89150.42410.08310.052*
H9B0.77670.36380.06480.052*
C100.80439 (18)0.53226 (15)0.00983 (15)0.0416 (4)
C110.81188 (17)0.64916 (15)0.03375 (14)0.0381 (4)
H11A0.82870.70930.03430.046*
H11B0.88770.64720.05660.046*
C120.68310 (16)0.68198 (14)0.14449 (14)0.0353 (4)
C130.62004 (17)0.57025 (15)0.22897 (15)0.0387 (4)
C140.7340 (3)0.5253 (2)0.1650 (2)0.0846 (8)
H14A0.68360.58140.19710.102*
H14B0.72380.44780.18490.102*
C150.8790 (3)0.5564 (2)0.21767 (19)0.0808 (8)
H15A0.93090.51850.29280.097*
H15B0.89010.64040.23560.097*
C160.56971 (17)0.75410 (16)0.11499 (16)0.0414 (4)
H160.48710.70840.15580.050*
C170.5450 (2)0.86368 (17)0.18436 (18)0.0515 (5)
H17A0.59420.92930.12880.062*
H17B0.44940.88440.22090.062*
C180.6007 (2)0.93114 (19)0.3440 (2)0.0649 (6)
H18A0.63680.90470.40350.097*
H18B0.51150.96390.38600.097*
H18C0.65820.98970.28510.097*
C190.71736 (16)0.76445 (14)0.22511 (15)0.0369 (4)
C200.84408 (18)0.83941 (15)0.13886 (16)0.0400 (4)
C210.95258 (17)0.81145 (14)0.18008 (16)0.0398 (4)
C221.08238 (19)0.84868 (17)0.13612 (19)0.0520 (5)
H221.11990.89730.06300.062*
C231.1570 (2)0.81119 (19)0.2049 (2)0.0642 (6)
H231.24630.83410.17530.077*
C241.1034 (2)0.7423 (2)0.3136 (2)0.0655 (6)
H241.15610.72060.35720.079*
C250.9692 (2)0.70332 (17)0.36125 (18)0.0506 (5)
C260.89807 (17)0.73763 (14)0.28903 (15)0.0388 (4)
C270.76373 (17)0.70795 (15)0.32229 (15)0.0388 (4)
C280.6979 (2)0.64478 (17)0.43281 (16)0.0516 (5)
H280.60760.62600.45910.062*
C290.7674 (3)0.6081 (2)0.50699 (18)0.0656 (6)
H290.72210.56350.58180.079*
C300.8985 (3)0.6354 (2)0.47332 (19)0.0658 (6)
H300.94150.60910.52450.079*
C310.58927 (18)0.78399 (16)0.01796 (17)0.0443 (4)
C320.5014 (2)0.74079 (19)0.0592 (2)0.0581 (5)
H320.43210.69230.00510.070*
C330.5148 (3)0.7683 (2)0.1794 (2)0.0712 (7)
H330.45330.73940.20450.085*
C340.6167 (3)0.8373 (2)0.2614 (2)0.0690 (6)
H340.62690.85370.34300.083*
C350.7037 (2)0.8819 (2)0.2225 (2)0.0651 (6)
H350.77360.92940.27770.078*
C360.6887 (2)0.85717 (18)0.10156 (19)0.0559 (5)
H360.74710.89060.07580.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0743 (10)0.0539 (8)0.0669 (9)0.0217 (7)0.0449 (8)0.0206 (7)
O20.0389 (7)0.0505 (8)0.0549 (8)0.0014 (6)0.0022 (6)0.0034 (6)
O30.0746 (9)0.0565 (9)0.0537 (8)0.0048 (7)0.0393 (7)0.0069 (6)
O40.0744 (9)0.0536 (8)0.0295 (6)0.0091 (7)0.0074 (6)0.0072 (6)
N10.0481 (9)0.0442 (9)0.0493 (9)0.0106 (7)0.0240 (7)0.0177 (7)
C10.0773 (15)0.0592 (13)0.0438 (11)0.0070 (11)0.0234 (10)0.0016 (9)
C20.1051 (19)0.0647 (15)0.0581 (13)0.0087 (14)0.0431 (14)0.0053 (11)
C30.0782 (15)0.0480 (12)0.0836 (16)0.0034 (11)0.0452 (14)0.0048 (12)
C40.0709 (15)0.0444 (12)0.0719 (15)0.0082 (11)0.0135 (12)0.0002 (11)
C50.0709 (14)0.0433 (11)0.0507 (12)0.0067 (10)0.0094 (10)0.0027 (9)
C60.0467 (10)0.0383 (10)0.0425 (10)0.0048 (8)0.0164 (8)0.0008 (8)
C70.0421 (10)0.0406 (10)0.0367 (9)0.0028 (8)0.0094 (8)0.0042 (8)
C80.0379 (9)0.0347 (9)0.0371 (9)0.0041 (7)0.0112 (7)0.0040 (7)
C90.0505 (11)0.0371 (10)0.0359 (9)0.0032 (8)0.0123 (8)0.0056 (7)
C100.0485 (10)0.0416 (10)0.0318 (9)0.0020 (8)0.0136 (8)0.0065 (7)
C110.0401 (9)0.0386 (9)0.0332 (9)0.0001 (7)0.0132 (7)0.0020 (7)
C120.0354 (9)0.0348 (9)0.0350 (9)0.0008 (7)0.0141 (7)0.0045 (7)
C130.0368 (10)0.0405 (10)0.0377 (9)0.0025 (7)0.0133 (8)0.0067 (7)
C140.139 (3)0.0786 (17)0.0646 (15)0.0387 (17)0.0697 (17)0.0342 (13)
C150.141 (3)0.0565 (14)0.0338 (11)0.0209 (15)0.0278 (14)0.0083 (10)
C160.0383 (9)0.0424 (10)0.0469 (10)0.0024 (8)0.0211 (8)0.0067 (8)
C170.0536 (11)0.0497 (11)0.0611 (12)0.0155 (9)0.0329 (10)0.0166 (9)
C180.0775 (15)0.0575 (13)0.0730 (14)0.0181 (11)0.0408 (12)0.0322 (11)
C190.0393 (9)0.0357 (9)0.0371 (9)0.0006 (7)0.0170 (7)0.0058 (7)
C200.0508 (10)0.0345 (9)0.0407 (9)0.0027 (8)0.0244 (8)0.0041 (8)
C210.0444 (10)0.0323 (9)0.0470 (10)0.0008 (7)0.0223 (8)0.0080 (7)
C220.0477 (11)0.0421 (11)0.0675 (13)0.0033 (9)0.0242 (10)0.0072 (9)
C230.0516 (12)0.0566 (13)0.0990 (18)0.0005 (10)0.0439 (12)0.0151 (12)
C240.0692 (14)0.0612 (14)0.0915 (17)0.0121 (11)0.0579 (13)0.0167 (13)
C250.0642 (13)0.0458 (11)0.0552 (11)0.0111 (9)0.0373 (10)0.0144 (9)
C260.0483 (10)0.0338 (9)0.0404 (9)0.0077 (8)0.0238 (8)0.0114 (7)
C270.0456 (10)0.0384 (9)0.0325 (9)0.0036 (8)0.0161 (8)0.0075 (7)
C280.0600 (12)0.0565 (12)0.0352 (9)0.0020 (9)0.0164 (9)0.0057 (8)
C290.0916 (18)0.0690 (15)0.0353 (10)0.0018 (13)0.0271 (11)0.0001 (9)
C300.0944 (18)0.0678 (14)0.0519 (12)0.0149 (13)0.0486 (13)0.0074 (11)
C310.0478 (10)0.0398 (10)0.0541 (11)0.0070 (8)0.0301 (9)0.0081 (8)
C320.0603 (12)0.0606 (13)0.0683 (13)0.0010 (10)0.0404 (11)0.0096 (10)
C330.0901 (17)0.0723 (15)0.0794 (16)0.0019 (13)0.0619 (15)0.0128 (13)
C340.0984 (18)0.0633 (14)0.0622 (14)0.0162 (13)0.0523 (14)0.0060 (11)
C350.0805 (15)0.0593 (13)0.0619 (13)0.0006 (11)0.0402 (12)0.0111 (10)
C360.0655 (13)0.0526 (12)0.0631 (13)0.0049 (10)0.0417 (11)0.0049 (10)
Geometric parameters (Å, º) top
O1—C201.210 (2)C16—C311.511 (2)
O2—C131.2137 (19)C16—C171.528 (3)
O3—C141.415 (3)C16—H160.9800
O3—C101.420 (2)C17—H17A0.9700
O4—C151.412 (3)C17—H17B0.9700
O4—C101.412 (2)C18—H18A0.9600
N1—C171.447 (2)C18—H18B0.9600
N1—C191.447 (2)C18—H18C0.9600
N1—C181.453 (2)C19—C271.518 (2)
C1—C21.375 (3)C19—C201.573 (2)
C1—C61.381 (3)C20—C211.464 (2)
C1—H10.9300C21—C221.365 (2)
C2—C31.364 (3)C21—C261.392 (2)
C2—H20.9300C22—C231.398 (3)
C3—C41.362 (3)C22—H220.9300
C3—H30.9300C23—C241.360 (3)
C4—C51.371 (3)C23—H230.9300
C4—H40.9300C24—C251.411 (3)
C5—C61.386 (3)C24—H240.9300
C5—H50.9300C25—C261.394 (2)
C6—C71.462 (3)C25—C301.406 (3)
C7—C81.338 (2)C26—C271.400 (2)
C7—H70.9300C27—C281.358 (2)
C8—C131.490 (2)C28—C291.404 (3)
C8—C91.502 (2)C28—H280.9300
C9—C101.490 (2)C29—C301.359 (3)
C9—H9A0.9700C29—H290.9300
C9—H9B0.9700C30—H300.9300
C10—C111.510 (2)C31—C361.379 (3)
C11—C121.530 (2)C31—C321.381 (3)
C11—H11A0.9700C32—C331.380 (3)
C11—H11B0.9700C32—H320.9300
C12—C131.545 (2)C33—C341.360 (3)
C12—C191.581 (2)C33—H330.9300
C12—C161.583 (2)C34—C351.362 (3)
C14—C151.486 (4)C34—H340.9300
C14—H14A0.9700C35—C361.380 (3)
C14—H14B0.9700C35—H350.9300
C15—H15A0.9700C36—H360.9300
C15—H15B0.9700
C14—O3—C10107.71 (17)C17—C16—H16106.6
C15—O4—C10105.68 (16)C12—C16—H16106.6
C17—N1—C19107.28 (13)N1—C17—C16105.12 (14)
C17—N1—C18114.20 (15)N1—C17—H17A110.7
C19—N1—C18116.15 (15)C16—C17—H17A110.7
C2—C1—C6121.1 (2)N1—C17—H17B110.7
C2—C1—H1119.5C16—C17—H17B110.7
C6—C1—H1119.5H17A—C17—H17B108.8
C3—C2—C1121.0 (2)N1—C18—H18A109.5
C3—C2—H2119.5N1—C18—H18B109.5
C1—C2—H2119.5H18A—C18—H18B109.5
C4—C3—C2118.7 (2)N1—C18—H18C109.5
C4—C3—H3120.6H18A—C18—H18C109.5
C2—C3—H3120.6H18B—C18—H18C109.5
C3—C4—C5120.8 (2)N1—C19—C27111.87 (13)
C3—C4—H4119.6N1—C19—C20113.93 (14)
C5—C4—H4119.6C27—C19—C20100.90 (13)
C4—C5—C6121.37 (19)N1—C19—C12103.00 (13)
C4—C5—H5119.3C27—C19—C12118.24 (13)
C6—C5—H5119.3C20—C19—C12109.36 (12)
C1—C6—C5116.96 (18)O1—C20—C21126.20 (16)
C1—C6—C7117.30 (17)O1—C20—C19124.92 (16)
C5—C6—C7125.74 (16)C21—C20—C19108.76 (14)
C8—C7—C6131.30 (16)C22—C21—C26120.60 (16)
C8—C7—H7114.4C22—C21—C20132.49 (17)
C6—C7—H7114.4C26—C21—C20106.78 (15)
C7—C8—C13117.37 (15)C21—C22—C23117.69 (19)
C7—C8—C9124.61 (16)C21—C22—H22121.2
C13—C8—C9118.02 (14)C23—C22—H22121.2
C10—C9—C8112.48 (15)C24—C23—C22122.25 (19)
C10—C9—H9A109.1C24—C23—H23118.9
C8—C9—H9A109.1C22—C23—H23118.9
C10—C9—H9B109.1C23—C24—C25121.07 (19)
C8—C9—H9B109.1C23—C24—H24119.5
H9A—C9—H9B107.8C25—C24—H24119.5
O4—C10—O3106.59 (13)C26—C25—C30116.33 (19)
O4—C10—C9108.20 (14)C26—C25—C24115.90 (18)
O3—C10—C9110.29 (15)C30—C25—C24127.77 (19)
O4—C10—C11110.75 (14)C21—C26—C25122.38 (17)
O3—C10—C11110.65 (14)C21—C26—C27113.75 (15)
C9—C10—C11110.27 (14)C25—C26—C27123.74 (16)
C10—C11—C12113.28 (14)C28—C27—C26118.09 (16)
C10—C11—H11A108.9C28—C27—C19132.38 (17)
C12—C11—H11A108.9C26—C27—C19109.35 (14)
C10—C11—H11B108.9C27—C28—C29119.40 (19)
C12—C11—H11B108.9C27—C28—H28120.3
H11A—C11—H11B107.7C29—C28—H28120.3
C11—C12—C13109.58 (13)C30—C29—C28122.28 (19)
C11—C12—C19110.40 (13)C30—C29—H29118.9
C13—C12—C19107.26 (12)C28—C29—H29118.9
C11—C12—C16117.13 (13)C29—C30—C25120.12 (19)
C13—C12—C16108.78 (13)C29—C30—H30119.9
C19—C12—C16103.13 (13)C25—C30—H30119.9
O2—C13—C8120.57 (15)C36—C31—C32116.90 (18)
O2—C13—C12120.24 (15)C36—C31—C16123.34 (16)
C8—C13—C12119.12 (14)C32—C31—C16119.72 (17)
O3—C14—C15104.76 (18)C33—C32—C31121.2 (2)
O3—C14—H14A110.8C33—C32—H32119.4
C15—C14—H14A110.8C31—C32—H32119.4
O3—C14—H14B110.8C34—C33—C32120.8 (2)
C15—C14—H14B110.8C34—C33—H33119.6
H14A—C14—H14B108.9C32—C33—H33119.6
O4—C15—C14102.62 (18)C33—C34—C35119.1 (2)
O4—C15—H15A111.2C33—C34—H34120.5
C14—C15—H15A111.2C35—C34—H34120.5
O4—C15—H15B111.2C34—C35—C36120.4 (2)
C14—C15—H15B111.2C34—C35—H35119.8
H15A—C15—H15B109.2C36—C35—H35119.8
C31—C16—C17111.74 (15)C31—C36—C35121.60 (19)
C31—C16—C12120.01 (14)C31—C36—H36119.2
C17—C16—C12104.64 (13)C35—C36—H36119.2
C31—C16—H16106.6
C6—C1—C2—C30.2 (4)C16—C12—C19—N125.69 (15)
C1—C2—C3—C41.5 (4)C11—C12—C19—C2784.50 (17)
C2—C3—C4—C51.3 (4)C13—C12—C19—C2734.84 (19)
C3—C4—C5—C60.2 (4)C16—C12—C19—C27149.60 (14)
C2—C1—C6—C51.3 (3)C11—C12—C19—C2030.10 (18)
C2—C1—C6—C7179.1 (2)C13—C12—C19—C20149.44 (13)
C4—C5—C6—C11.5 (3)C16—C12—C19—C2095.80 (15)
C4—C5—C6—C7179.0 (2)N1—C19—C20—O149.5 (2)
C1—C6—C7—C8176.3 (2)C27—C19—C20—O1169.53 (17)
C5—C6—C7—C84.2 (3)C12—C19—C20—O165.1 (2)
C6—C7—C8—C13177.51 (17)N1—C19—C20—C21126.69 (15)
C6—C7—C8—C91.7 (3)C27—C19—C20—C216.65 (16)
C7—C8—C9—C10176.22 (17)C12—C19—C20—C21118.69 (15)
C13—C8—C9—C103.0 (2)O1—C20—C21—C225.9 (3)
C15—O4—C10—O328.40 (19)C19—C20—C21—C22177.94 (18)
C15—O4—C10—C9147.01 (17)O1—C20—C21—C26169.93 (18)
C15—O4—C10—C1192.02 (18)C19—C20—C21—C266.18 (18)
C14—O3—C10—O48.6 (2)C26—C21—C22—C230.7 (3)
C14—O3—C10—C9125.79 (17)C20—C21—C22—C23174.71 (18)
C14—O3—C10—C11111.93 (17)C21—C22—C23—C241.6 (3)
C8—C9—C10—O4167.52 (14)C22—C23—C24—C251.2 (3)
C8—C9—C10—O376.25 (18)C23—C24—C25—C261.4 (3)
C8—C9—C10—C1146.3 (2)C23—C24—C25—C30177.8 (2)
O4—C10—C11—C12172.25 (13)C22—C21—C26—C253.4 (3)
O3—C10—C11—C1254.28 (18)C20—C21—C26—C25173.06 (16)
C9—C10—C11—C1268.01 (19)C22—C21—C26—C27179.57 (16)
C10—C11—C12—C1334.08 (18)C20—C21—C26—C273.11 (19)
C10—C11—C12—C19152.01 (14)C30—C25—C26—C21175.62 (17)
C10—C11—C12—C1690.41 (18)C24—C25—C26—C213.6 (3)
C7—C8—C13—O233.8 (2)C30—C25—C26—C270.2 (3)
C9—C8—C13—O2146.87 (17)C24—C25—C26—C27179.42 (17)
C7—C8—C13—C12143.18 (16)C21—C26—C27—C28174.28 (16)
C9—C8—C13—C1236.1 (2)C25—C26—C27—C281.8 (3)
C11—C12—C13—O2167.12 (15)C21—C26—C27—C191.4 (2)
C19—C12—C13—O273.01 (19)C25—C26—C27—C19177.50 (15)
C16—C12—C13—O237.9 (2)N1—C19—C27—C2848.5 (3)
C11—C12—C13—C815.8 (2)C20—C19—C27—C28170.00 (19)
C19—C12—C13—C8104.02 (16)C12—C19—C27—C2870.9 (2)
C16—C12—C13—C8145.07 (15)N1—C19—C27—C26126.33 (15)
C10—O3—C14—C1513.4 (2)C20—C19—C27—C264.83 (17)
C10—O4—C15—C1435.8 (2)C12—C19—C27—C26114.29 (16)
O3—C14—C15—O430.2 (2)C26—C27—C28—C292.3 (3)
C11—C12—C16—C312.1 (2)C19—C27—C28—C29176.79 (18)
C13—C12—C16—C31122.82 (16)C27—C28—C29—C301.3 (3)
C19—C12—C16—C31123.53 (16)C28—C29—C30—C250.5 (3)
C11—C12—C16—C17124.29 (16)C26—C25—C30—C291.0 (3)
C13—C12—C16—C17110.81 (15)C24—C25—C30—C29178.2 (2)
C19—C12—C16—C172.85 (17)C17—C16—C31—C3657.8 (2)
C19—N1—C17—C1640.07 (19)C12—C16—C31—C3665.2 (2)
C18—N1—C17—C16170.29 (16)C17—C16—C31—C32119.55 (19)
C31—C16—C17—N1152.50 (15)C12—C16—C31—C32117.45 (19)
C12—C16—C17—N121.15 (19)C36—C31—C32—C331.1 (3)
C17—N1—C19—C27169.24 (14)C16—C31—C32—C33178.67 (19)
C18—N1—C19—C2761.6 (2)C31—C32—C33—C341.2 (4)
C17—N1—C19—C2077.11 (17)C32—C33—C34—C351.9 (4)
C18—N1—C19—C2052.0 (2)C33—C34—C35—C360.2 (3)
C17—N1—C19—C1241.23 (17)C32—C31—C36—C352.9 (3)
C18—N1—C19—C12170.35 (15)C16—C31—C36—C35179.70 (18)
C11—C12—C19—N1151.59 (13)C34—C35—C36—C312.2 (3)
C13—C12—C19—N189.07 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O4i0.972.473.352 (3)152
C17—H17A···O10.972.523.052 (2)114
C22—H22···O1ii0.932.443.291 (2)153
C28—H28···O20.932.593.199 (3)123
C36—H36···O10.932.313.174 (3)155
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O4i0.972.473.352 (3)152
C17—H17A···O10.972.523.052 (2)114
C22—H22···O1ii0.932.443.291 (2)153
C28—H28···O20.932.593.199 (3)123
C36—H36···O10.932.313.174 (3)155
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC36H31NO4
Mr541.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8861 (4), 11.4899 (4), 11.9171 (4)
α, β, γ (°)83.83 (1), 65.253 (8), 86.397 (10)
V3)1345.60 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.710, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
33777, 4744, 3465
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.122, 1.09
No. of reflections4744
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.

References

First citationAlmansour, A. I., Kumar, R. S., Beevi, F., Shirazi, A. N., Osman, H., Ismail, R., Choon, T. S., Sullivan, B., McCaffrey, K., Nahhas, A., Parang, K. & Ali, M. A. (2014). Molecules, 19, 10033–10055.  CrossRef PubMed Google Scholar
First citationBruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2014). Acta Cryst. E70, 124–126.  CSD CrossRef IUCr Journals Google Scholar
First citationChandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2015). Acta Cryst. E71, o814–o815.  CSD CrossRef IUCr Journals Google Scholar
First citationChen, N. Y., Ren, L. P., Zou, M. M., Xu, Z. P., Shao, X. S., Xu, X. Y. & Li, Z. (2014). Chin. Chem. Lett. 25, 197–200.  Web of Science CrossRef CAS Google Scholar
First citationChin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Ayaan, U. & Abdel-Aziz, A. A. M. (2005). Eur. J. Med. Chem. 40, 1214–1221.  PubMed CAS Google Scholar
First citationEl-Ayaan, U., Abdel-Aziz, A. A.-M. & Al-Shihry, S. (2007). Eur. J. Med. Chem. 42, 1325–1333.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.  Google Scholar
First citationKreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655.  Google Scholar
First citationKüçük, H., Yusufoğlu, A., Mataracı, E. & Döşler, S. (2011). Molecules, 16, 6806–6815.  Web of Science PubMed Google Scholar
First citationKumar, R. R., Perumal, S., Manju, S. C., Bhatt, P., Yogeeswari, P. & Sriram, D. (2009). Bioorg. Med. Chem. Lett. 19, 3461–3465.  PubMed Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yogeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 3821–3829.  PubMed Google Scholar
First citationLiang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178–2189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217.  Google Scholar
First citationMarucci, G., Angeli, P., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A., Sagratini, G. & Franchini, S. (2005). Med. Chem. Res. 14, 309–331.  CrossRef CAS Google Scholar
First citationMcDavids, J. E. & Daniels, T. C. (1951). J. Pharm. Sci. 40, 325–326.  CrossRef Google Scholar
First citationMolvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536–563.  Google Scholar
First citationObniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108.  PubMed CAS Google Scholar
First citationObniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207–214.  Web of Science PubMed CAS Google Scholar
First citationPalani, K., Ponnuswamy, M. N., Suresh Babu, A. R., Raghunathan, R. & Ravikumar, K. (2006). Acta Cryst. E62, o52–o54.  CSD CrossRef IUCr Journals Google Scholar
First citationPawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107.  CrossRef Google Scholar
First citationSar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059–2061.  PubMed Google Scholar
First citationSarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, C. E., Williamson, W. R. N., Cashin, C. N. & Kitchen, E. A. (1979). J. Med. Chem. 22, 1464–1469.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh Babu, A. R. & Raghunathan, R. (2006). J. Heterocycl. Chem. 43, 1357–1360.  Google Scholar
First citationSureshbabu, A. R., Raghunathan, R., Mathivanan, M., Omprabha, G., Velmurugan, D. & Raghu, R. (2008). Curr. Chem. Biol. 2, 312–320.  Google Scholar
First citationTan, R. X., Jia, Z. J., Zhao, J. & Feng, S. L. (1992). Phytochemistry, 31, 3135–3138.  CrossRef CAS Google Scholar
First citationWei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476–487.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-M., Deng, Y., Dai, X.-Y., Liu, J., Ouyang, L., Wei, Y.-Q. & Zhao, Y.-L. (2011). Molecules, 16, 2519–2526.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 387-390
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds