CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 11 January 2016
Accepted 9 March 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; N, N^{\prime}-dimethylethanolamine; heterometal $\mathrm{Pb}^{\prime \prime} / \mathrm{Cr}^{\text {III }}$ complex.

CCDC reference: 1460850

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\odot A C C E S S$

Crystal structure of tetrakis[μ_{2}-2-(dimethylamino)-ethanolato- $\left.\kappa^{3} \mathrm{~N}, \mathrm{O}: \mathrm{O}\right]$ di- μ_{3}-hydroxido-dithio-cyanato- $\kappa^{2} N$-dichromium(III)dilead(II) dithiocyanate acetonitrile monosolvate

Julia A. Rusanova, ${ }^{\text {a }}$ Valentyna V. Semenaka ${ }^{\text {a }}$ and Irina V. Omelchenko ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 01601, Ukraine, and ${ }^{\mathbf{b}}$ SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61072, Ukraine. *Correspondence e-mail: rusanova.j@gmail.com

The tetranuclear complex cation of the title compound, $\left[\mathrm{Cr}_{2} \mathrm{~Pb}_{2}(\mathrm{NCS})_{2^{-}}\right.$ $\left.(\mathrm{OH})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{4}\right](\mathrm{SCN})_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}$, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane $\mathrm{Pb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{6}$ cage with a central four-membered $\mathrm{Cr}_{2} \mathrm{O}_{2}$ ring. The $\mathrm{Cr}^{\text {III }}$ ion is coordinated in a distorted octahedron, which involves two N atoms of one bidentate ligand and one thiocyanate anion, two $\mu_{2}-\mathrm{O}$ atoms of 2-(dimethylamino)ethanolate ligands and two $\mu_{3}-\mathrm{O}$ atoms of hydroxide ions. The coordination geometry of the $\mathrm{Pb}^{\mathrm{II}}$ ion is a distorted disphenoid, which involves one N atom, two $\mu_{2}-\mathrm{O}$ atoms and one $\mu_{3^{-}}$ O atom. In addition, weak $\mathrm{Pb} \cdots \mathrm{S}$ interactions involving the coordinating and non-coordinating thiocyanate anions are observed. In the crystal, the complex cations are linked through the thiocyanate anions via the $\mathrm{Pb} \cdots \mathrm{S}$ interactions and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into chains along the c axis. The chains are further linked together via S..S contacts. The contribution of the disordered solvent acetonitrile molecule was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18] procedure in PLATON. The solvent is included in the reported molecular formula, weight and density.

1. Chemical context

There is considerable interest in polynuclear heterometallic complexes as a result of their potential for interesting physicochemical properties such as magnetic (Gheorghe et al., 2010), catalytic (Trettenhahn et al., 2006) and useful lightand/or redox-induced functions (Balzani et al., 2009). The interest currently paid to the synthesis of polynuclear transition metal complexes is stimulated, in particular, by attempts to design and construct multicomponent systems. Despite of a lot of work already done in this field, a limited number of synthetic strategies have been developed to date. Spontaneous self-assembly of Schiff base ligands or rigid building blocks appears to be an extremely powerful tool for the construction of novel polynuclear assemblies incorporating metal atoms by utilizing the various coordination modes of small and flexible ligands (Buvaylo et al., 2005; Kirillov et al., 2005). Metal powders have been successfully applied in direct synthesis of coordination compounds to yield a number of novel monometallic (Babich et al., 1996) and heterometallic complexes (Buvaylo et al., 2005) of various composition, nuclearities and dimensionalities. This work is a continuation of our investigations in the field of direct synthesis of heterometallic coordination compounds based on spontaneous self-assembly,
in which one of the metals is introduced as a powder (zerovalent state) and oxidized during the synthesis (Nesterov et al., 2011), in particular the application of Reinecke's salt in direct synthesis of heterometallic complexes (Nikitina et al., 2008).

2. Structural commentary

The complex cation with a distorted seco-norcubane $\mathrm{Pb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{6}$ framework is centrosymmetric, as shown in Fig. 1. The two crystallographically independent dimethylaminoethanol ligands form five-membered chelate rings with the $\mathrm{Cr}^{\mathrm{III}}$ and $\mathrm{Pb}^{\text {II }}$ ions. The $\mathrm{Cr}^{\text {III }}$ ion adopts a distorted octahedral coordination environment with one N atom and two $\mu_{2}-\mathrm{O}$ atoms from the dimethylaminoethanol ligands and one $\mu_{3}-\mathrm{O}$ atom from the hydroxide ion in the equatorial plane, and one N atom of the thiocyanate ion and one $\mu_{3}-\mathrm{O}$ atom of the second hydroxide ion in the axial positions. The $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{N}$ bond lengths are 1.950 (3)-1.993 (3) \AA and 2.008 (4)2.158 (4) \AA, respectively, and the $\mathrm{N}-\mathrm{Cr}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles are $79.10(11)-93.48(12)^{\circ}$ for cis-positions and $168.63(13)-173.46(12)^{\circ}$ for trans-positions. The $\mathrm{Pb}^{\mathrm{II}}$ ion is

Figure 1
The molecular structure of the title compound, shown with 30% probability displacement ellipsoids. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2$	0.82	1.95	$2.757(6)$	169

tetracoordinated by the one $\mu_{3}-\mathrm{O}$ atom of the hydroxide ion, one N atom and two $\mu_{2}-\mathrm{O}$ atoms of the dimethylaminoethanol ligands and adopts a distorted disphenoidal coordination. There are additional weak $\mathrm{Pb} \cdots \mathrm{S}$ interactions $[\mathrm{Pb} 1 \cdots \mathrm{~S} 1$ $3.2749(14) \AA$ and $\mathrm{Pb} 1 \cdots \mathrm{~S} 23.4056$ (16) \AA], and thus the coordination geometry of the $\mathrm{Pb}^{\mathrm{II}}$ ion can be considered as a strongly distorted trigonal prism, if these interactions are included. The $\mathrm{Pb}-\mathrm{O}$ bond lengths [2.308 (3) -2.686 (3) \AA] as well as the $\mathrm{Pb}-\mathrm{N}$ distance $[2.547$ (4) \AA] are in a good agreement with literature values. In general, all geometric parameters of the title complex cation are in good agreement with those in related aminoalcohol complexes (Shahid et al., 2011).

3. Supramolecular features

In the crystal, the tetranuclear complex cations are linked through thiocyanate anions with the above-mentioned intermolecular $\mathrm{Pb} \cdots \mathrm{S}$ interactions and by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 1) into chains along the c axis (Fig. 2). The chains are further linked together by an S..S sigma-hole bond [S1 \cdots S2 3.585 (2) Å], where atom S2 acts as a lone-pair donor.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom \& Allen, 2014) for related complexes with 2-dimethylaminoethanol gave 260 hits, including some closely related structures with a distorted seconorcubane cage with Ti (Hollingsworth et al., 2008), $\mathrm{Ge}(\mathrm{Sn})-$

Figure 2
Crystal packing diagram of the title compound, viewed along the b axis. $\mathrm{Pb} \cdots \mathrm{S}$ contacts and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines.

Table 2
Experimental details.
Crystal data

Chemical formula	$\begin{aligned} & {\left[\mathrm{Cr}_{2} \mathrm{~Pb}_{2}(\mathrm{NCS})_{2}(\mathrm{OH})_{2}-\right.} \\ & \left.\quad\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{4}\right](\mathrm{NCS})_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \end{aligned}$
$M_{\text {r }}$	1178.29
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	298
$a, b, c(\AA)$	17.533 (1), 13.8815 (7), 16.6179 (8)
β (${ }^{\circ}$)	104.771 (6)
$V\left(\mathrm{~A}^{3}\right)$	3910.9 (4)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	9.39
Crystal size (mm)	$0.4 \times 0.1 \times 0.1$
Data collection	
Diffractometer	Agilent Xcalibur Sapphire 3
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}, T_{\text {max }}$	0.382, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	20193, 5680, 4133
$R_{\text {int }}$	0.064
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.703
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.035, 0.058, 0.93
No. of reflections	5680
No. of parameters	190
H -atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.00, -0.69

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 and SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Li (Khrustalev et al., 2004, 2008) and $\mathrm{Na}(\mathrm{Li})-\mathrm{Al}$ (Nöth et al., 2001).

5. Synthesis and crystallization

Lead monoxide ($0,279 \mathrm{~g}, 1.25 \mathrm{mmol}$), $\mathrm{NH}_{4}\left[\mathrm{Cr}(\mathrm{NCS})_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]$-$\mathrm{H}_{2} \mathrm{O}(0.443 \mathrm{~g}, 1.25 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{SCN}(0.095 \mathrm{~g}, 1.25 \mathrm{mmol})$, 2-dimethylaminoethanol $(0.5 \mathrm{ml}, 5 \mathrm{mmol})$ and acetonitrile $(20 \mathrm{ml})$ were heated in air at $323-333 \mathrm{~K}$ and stirred for 110 min until complete PbO dissolution occurred. Dark-grey crystals suitable for the crystallographic study were formed by slow evaporation of the resulting solution in air. The crystals were filtered off, washed with dry isopropyl alcohol and finally dried in vacuo at room temperature. Yield: $0.11 \mathrm{~g}, 10.3 \%$.

The IR spectrum of the title compound (as KBr pellets) exhibited absorbance at $2250 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{CN})$ of the solvent acetonitrile molecule, as well two additional bands at $2080 \mathrm{~cm}^{-1}$ and $1610 \mathrm{~cm}^{-1}$, which were assigned, respectively, to stretch and vibrational $v(\mathrm{CN})$ modes of the SCN anion. Analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{Cr}_{2} \mathrm{~N}_{9} \mathrm{~S}_{4} \mathrm{~Pb}_{2}$: C 22.43, H 3.85, N 10.69, S 10.88\%; found: C 22.21, H 3.78, N 10.45, S 10.64%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in
idealized positions and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for methyl and hydroxyl groups.

During the refinement, several isolated electron density peaks were located, which were assignable to a solvent acetnitrile molecule(s) from the IR data and elementary analysis. Satisfactory results $\left(R_{1}=0.045\right)$ were obtained modeling the disordered C and N atoms, but very large displacement parameters for them were observed. The SQUEEZE (Spek, 2015) procedure in PLATON (Spek, 2009) indicated solvent cavities of volume $118 \AA^{3}$ centered at $(0.5,0,0.25),(0.5,0$, $0.75),(0,0.5,0.75)$ and ($0,0.5,0.25$), each containing approximately 18 electrons. In the final refinement, this contribution was removed from the intensity data, producing better refinement results. We assumed full occupancy of the solvent molecule for each cavity, although the estimated 18 electrons are fewer than the 22 electrons expected for full occupancy. The solvent molecule is included in the reported molecular formula, weight and density.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Babich, O. A., Kokozay, V. N. \& Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.
Balzani, V., Bergamini, G. \& Ceroni, P. (2009). Nanoparticles and Nanodevices in Biological Applications, Vol. 4, edited by S. Bellucci, pp. 131-158. Berlin, Heidelberg: Springer.
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. \& Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Gheorghe, R., Madalan, A. M., Costes, J.-P., Wernsdorfer, W. \& Andruh, M. (2010). Dalton Trans. 39, 4734-4736.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Hollingsworth, N., Kanna, M., Kociok-Köhn, G., Molloy, K. C. \& Wongnawa, S. (2008). Dalton Trans. pp. 631-641.
Khrustalev, V. N., Antipin, M. Yu., Zemlyansky, N. N., Borisova, I. V., Ustynyuk, Yu. A., Lunin, V. V., Barrau, J. \& Rima, G. (2004). J. Organomet. Chem. 689, 478-483.
Khrustalev, V. N., Chernov, O. V., Aysin, R., Portnyagin, I. A., Nechaev, M. S. \& Bukalov, S. S. (2008). Dalton Trans. pp. 11401143.

Kirillov, A. M., Kopylovich, M. N., Kirillova, M. V., Haukka, M., da Silva, M. F. C. G. \& Pombeiro, A. J. L. (2005). Angew. Chem. Int. Ed. 44, 4345-4349.
Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. \& Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. \& Jezierska, J. (2008). Polyhedron, 27, 2426-2430.
Nöth, H., Schlegel, A. \& Lima, S. R. (2001). Z. Anorg. Allg. Chem. 627, 1793-1800.
Shahid, M., Hamid, M., Mazhar, M., Akhtar, J., Zeller, M. \& Hunter, A. D. (2011). Inorg. Chem. Commun. 14, 288-291.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Trettenhahn, G., Nagl, M., Neuwirth, N., Arion, V. B., Jary, W., Pöchlauer, P. \& Schmid, W. (2006). Angew. Chem. Int. Ed. 45, 27942798.

supporting information

Acta Cryst. (2016). E72, 489-491 [https://doi.org/10.1107/S2056989016003996]

Crystal structure of tetrakis $\left[\mu_{2}\right.$-2-(dimethylamino)ethanolato- $\left.\kappa^{3} \mathrm{~N}, \mathrm{O}: O\right] \mathrm{di}-\mu_{3}-$ hydroxido-dithiocyanato- $\kappa^{2} N$-dichromium(III)dilead(II) dithiocyanate acetonitrile monosolvate

Julia A. Rusanova, Valentyna V. Semenaka and Irina V. Omelchenko

Computing details

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and PLATON (Spek, 2009).

Tetrakis[μ_{2}-2-(dimethylamino)ethanolato- $\kappa^{3} N, O: O$]di- μ_{3}-hydroxido-dithiocyanato- $\kappa^{2} N$-dichromium(III)dilead(II) dithiocyanate acetonitrile monosolvate

Crystal data

$\left[\mathrm{Cr}_{2} \mathrm{~Pb}_{2}(\mathrm{NCS})_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)_{4}\right](\mathrm{NCS})_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \quad F(000)=2256$
$M_{r}=1178.29$
Monoclinic, $C 2 / c$
$a=17.533$ (1) \AA
$b=13.8815$ (7) \AA
$c=16.6179(8) \AA$
$\beta=104.771$ (6) ${ }^{\circ}$
$V=3910.9(4) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=2.001 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4335 reflections
$\theta=2.9-32.5^{\circ}$
$\mu=9.39 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, metallic dark gray
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Agilent Xcalibur Sapphire 3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1827 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.382, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.058$
$S=0.93$
5680 reflections

190 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0118 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=1.00 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.69 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Pb 1	0.369714 (9)	0.456817 (12)	0.330204 (9)	0.03296 (5)
Cr 1	0.46177 (4)	0.59683 (5)	0.51003 (4)	0.02815 (15)
S1	0.33608 (10)	0.73222 (11)	0.70835 (8)	0.0651 (4)
S2	0.75622 (10)	0.58870 (14)	0.31923 (11)	0.0865 (6)
O1	0.35991 (16)	0.5544 (2)	0.44114 (16)	0.0327 (7)
O2	0.56441 (17)	0.6487 (2)	0.56837 (17)	0.0365 (7)
O3	0.50477 (15)	0.52564 (19)	0.42849 (15)	0.0294 (6)
H3	0.5314	0.5554	0.4027	0.044*
N1	0.4136 (2)	0.6465 (3)	0.5993 (2)	0.0412 (9)
N2	0.6095 (3)	0.6076 (4)	0.3499 (3)	0.0735 (14)
N3	0.2425 (2)	0.4171 (3)	0.3704 (2)	0.0385 (9)
N4	0.4503 (2)	0.7343 (3)	0.4474 (2)	0.0410 (9)
C1	0.3816 (3)	0.6803 (3)	0.6461 (3)	0.0395 (11)
C2	0.6716 (3)	0.6005 (4)	0.3384 (3)	0.0513 (13)
C3	0.2214 (3)	0.5127 (3)	0.3976 (3)	0.0441 (12)
H3A	0.1746	0.5067	0.4181	0.053*
H3B	0.2094	0.5561	0.3504	0.053*
C4	0.2877 (2)	0.5549 (3)	0.4655 (3)	0.0402 (11)
H4A	0.2746	0.6205	0.4770	0.048*
H4B	0.2939	0.5176	0.5161	0.048*
C5	0.2516 (3)	0.3465 (4)	0.4382 (3)	0.0536 (13)
H5A	0.2014	0.3357	0.4499	0.080*
H5B	0.2882	0.3708	0.4871	0.080*
H5C	0.2710	0.2870	0.4217	0.080*
C6	0.1806 (3)	0.3839 (4)	0.2987 (3)	0.0568 (14)
H6A	0.1336	0.3700	0.3160	0.085*
H6B	0.1980	0.3267	0.2762	0.085*
H6C	0.1697	0.4332	0.2568	0.085*
C7	0.5302 (3)	0.7792 (4)	0.4780 (3)	0.0604 (15)
H7A	0.5637	0.7591	0.4429	0.072*

H7B	0.5253	0.8488	0.4747	0.072^{*}
C8	$0.5662(3)$	$0.7508(3)$	$0.5642(3)$	$0.0510(13)$
H8A	0.6202	0.7736	0.5813	0.061^{*}
H8B	0.5371	0.7786	0.6010	0.061^{*}
C9	$0.4340(4)$	$0.7257(4)$	$0.3548(3)$	$0.0702(17)$
H9A	0.4295	0.7889	0.3305	0.105^{*}
H9B	0.3855	0.6913	0.3338	0.105^{*}
H9C	0.4764	0.6916	0.3407	0.105^{*}
C10	$0.3883(3)$	$0.7963(4)$	$0.4640(4)$	$0.0733(18)$
H10A	0.3869	0.8559	0.4344	0.110^{*}
H10B	0.3992	0.8090	0.5226	0.110^{*}
H10C	0.3382	0.7645	0.4459	0.110^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb 1	$0.03289(9)$	$0.03895(10)$	$0.02546(8)$	$-0.00140(8)$	$0.00458(6)$	$-0.00003(8)$
Cr 1	$0.0277(4)$	$0.0296(4)$	$0.0261(3)$	$0.0001(3)$	$0.0050(3)$	$-0.0017(3)$
S 1	$0.0878(12)$	$0.0615(10)$	$0.0580(8)$	$0.0261(8)$	$0.0407(8)$	$0.0061(7)$
S 2	$0.0671(11)$	$0.1125(15)$	$0.0917(12)$	$-0.0349(10)$	$0.0421(10)$	$-0.0433(11)$
O 1	$0.0271(15)$	$0.0382(17)$	$0.0324(14)$	$-0.0022(12)$	$0.0070(12)$	$-0.0052(13)$
O 2	$0.0353(17)$	$0.0310(17)$	$0.0376(15)$	$-0.0028(13)$	$-0.0009(13)$	$0.0001(13)$
O 3	$0.0298(15)$	$0.0320(17)$	$0.0285(13)$	$-0.0004(12)$	$0.0111(12)$	$0.0022(12)$
N 1	$0.044(2)$	$0.044(2)$	$0.0354(19)$	$0.0010(18)$	$0.0085(18)$	$-0.0085(18)$
N 2	$0.075(4)$	$0.085(4)$	$0.069(3)$	$-0.007(3)$	$0.033(3)$	$0.004(3)$
N 3	$0.032(2)$	$0.044(2)$	$0.0366(19)$	$-0.0103(17)$	$0.0048(17)$	$-0.0009(18)$
N 4	$0.042(2)$	$0.036(2)$	$0.040(2)$	$0.0025(17)$	$0.0008(18)$	$0.0030(18)$
C 1	$0.044(3)$	$0.035(3)$	$0.037(2)$	$0.004(2)$	$0.007(2)$	$-0.004(2)$
C 2	$0.060(4)$	$0.059(4)$	$0.037(2)$	$-0.017(3)$	$0.015(3)$	$-0.004(2)$
C 3	$0.031(2)$	$0.052(3)$	$0.047(3)$	$0.002(2)$	$0.007(2)$	$0.002(2)$
C 4	$0.026(2)$	$0.052(3)$	$0.044(2)$	$0.002(2)$	$0.011(2)$	$-0.008(2)$
C 5	$0.056(3)$	$0.049(3)$	$0.057(3)$	$-0.007(2)$	$0.018(3)$	$0.007(3)$
C 6	$0.035(3)$	$0.077(4)$	$0.052(3)$	$-0.017(3)$	$-0.001(2)$	$-0.006(3)$
C 7	$0.061(4)$	$0.046(3)$	$0.066(3)$	$-0.015(3)$	$0.001(3)$	$0.011(3)$
C 8	$0.045(3)$	$0.034(3)$	$0.065(3)$	$-0.011(2)$	$-0.002(3)$	$0.001(2)$
C 9	$0.086(5)$	$0.068(4)$	$0.048(3)$	$0.009(3)$	$0.003(3)$	$0.019(3)$
C 10	$0.081(4)$	$0.051(4)$	$0.089(4)$	$0.025(3)$	$0.025(4)$	$0.015(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Pb} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.308(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{~Pb} 1-\mathrm{O} 1$	$2.329(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{~Pb} 1-\mathrm{N} 3$	$2.547(4)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{~Pb} 1-\mathrm{O} 3$	$2.686(3)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{Cr} 1-\mathrm{O} 1$	$1.950(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9600
$\mathrm{Cr} 1-\mathrm{O} 2$	$1.951(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9600
$\mathrm{Cr} 1-\mathrm{O} 3$	$1.975(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9600
$\mathrm{Cr} 1-\mathrm{O}^{\mathrm{i}}$	$1.993(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600

Cr1-N1	2.008 (4)
Cr1-N4	2.158 (4)
S1-C1	1.627 (5)
S2-C2	1.603 (6)
O1-C4	1.424 (5)
$\mathrm{O} 3-\mathrm{Cr}^{1}{ }^{\text {i }}$	1.993 (3)
O3-H3	0.8211
N1-C1	1.167 (5)
N2-C2	1.157 (6)
N3-C6	1.467 (5)
N3-C5	1.471 (5)
N3-C3	1.479 (6)
N4-C10	1.466 (6)
N4-C9	1.497 (6)
N4-C7	1.498 (6)
C3-C4	1.515 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{O} 1$	85.15 (10)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{N} 3$	88.84 (11)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 3$	70.85 (10)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 3$	65.32 (9)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 3$	62.83 (8)
$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{O} 3$	127.79 (9)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 2$	173.46 (12)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 3$	84.20 (11)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 3$	93.48 (12)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O}^{\text {i }}$	98.58 (11)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O}^{\text {i }}$	86.94 (11)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O}^{\text {i }}$	79.10 (11)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{N} 1$	92.45 (13)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{N} 1$	90.82 (14)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{N} 1$	170.07 (13)
O3 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 1$	92.21 (13)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{N} 4$	91.44 (13)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{N} 4$	82.75 (13)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{N} 4$	96.70 (13)
O3 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 4$	168.63 (13)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 4$	92.71 (15)
C4-O1-Cr1	125.4 (2)
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{Pb} 1$	118.6 (2)
$\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{Pb} 1$	113.50 (12)
Cr1-O3-Cr1 ${ }^{\text {i }}$	100.90 (11)
$\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Pb} 1$	99.42 (10)
Cr1 ${ }^{\text {i }}$ - $\mathrm{O} 3-\mathrm{Pb} 1$	96.14 (10)
Cr1-O3-H3	118.3
$\mathrm{Cr} 1^{\mathrm{i}}-\mathrm{O} 3-\mathrm{H} 3$	124.4
$\mathrm{Pb} 1-\mathrm{O} 3-\mathrm{H} 3$	113.0
C1-N1-Cr1	174.3 (4)

$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9600
$\mathrm{C} 7-\mathrm{C} 8$	$1.465(6)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9700
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9700
$\mathrm{C} 8-\mathrm{O} 2$	$1.419(5)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9600
$\mathrm{O} 2-\mathrm{Pb} 1^{\mathrm{i}}$	$2.308(3)$

109.3
109.3
107.9
110.8 (3)
109.5
109.5
109.5
109.5
108.1
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
110.6 (4)
109.5
109.5
109.5
109.5
108.1
107.9 (4)
110.1
110.1
110.1

C6-N3-C5	109.0 (4)
C6-N3-C3	109.9 (4)
C5-N3-C3	110.6 (3)
C6-N3-Pb1	111.8 (3)
C5-N3-Pb1	114.4 (3)
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{Pb} 1$	100.9 (2)
C10-N4-C9	106.5 (4)
C10-N4-C7	111.4 (4)
C9-N4-C7	107.4 (4)
C10-N4-Cr1	114.3 (3)
C9-N4-Cr1	113.3 (3)
C7-N4-Cr1	103.9 (3)
N1-C1-S1	177.1 (4)
N2-C2-S2	177.9 (5)
N3-C3-C4	111.8 (4)
N3-C3-H3A	109.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.3
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 4$	-126.9 (10)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 4$	163.7 (3)
$\mathrm{O3}^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 4$	85.6 (3)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 4$	-7.0 (3)
N4- $\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 4$	-99.7 (3)
$\mathrm{O} 2-\mathrm{Cr1}-\mathrm{O} 1-\mathrm{Pb} 1$	71.6 (11)
$\mathrm{O} 3-\mathrm{Cr1}-\mathrm{O} 1-\mathrm{Pb} 1$	2.16 (13)
O3 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{Pb} 1$	-75.86 (13)
N1-Cr1-O1-Pb1	-168.47 (15)
$\mathrm{N} 4-\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{Pb} 1$	98.76 (15)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{C} 4$	-100.0 (3)
$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{C} 4$	-9.5 (3)
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{C} 4$	-164.7 (3)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{Cr} 1$	62.91 (14)
$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{Cr} 1$	153.37 (16)
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{Cr} 1$	-1.78 (10)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Cr}^{\text {i }}$	-99.92 (12)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Cr}^{\text {i }}$	86.21 (12)
O3- ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Cr}^{\text {i }}$	0.0
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Cr}^{\text {i }}$	-29.3 (8)
$\mathrm{N} 4-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Cr}^{\text {i }}$	169.31 (13)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Pb} 1$	-1.74 (10)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Pb} 1$	-175.61 (11)
O3 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Pb} 1$	98.18 (12)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Pb} 1$	68.9 (8)
$\mathrm{N} 4-\mathrm{Cr} 1-\mathrm{O} 3-\mathrm{Pb} 1$	-92.51 (12)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{O} 3-\mathrm{Cr} 1$	-95.92 (12)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 3-\mathrm{Cr} 1$	1.63 (10)
N3-Pb1-O3-Cr1	-28.53 (17)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 3-\mathrm{Cr}^{\text {i }}$	6.24 (9)

C7-C8-H8B	110.1
H8A-C8-H8B	108.4
N4-C9-H9A	109.5
N4-C9-H9B	109.5
H9A-C9-H9B	109.5
N4-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
N4-C10-H10A	109.5
N4-C10-H10B	109.5
H10A-C10-H10B	109.5
N4-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C8-O2-Cr1	111.9 (3)
C8-O2-Pb1 ${ }^{\text {i }}$	131.0 (3)
Cr1-O2-Pb1 ${ }^{\text {i }}$	110.78 (13)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 3$	33.2 (2)
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 3$	61.4 (3)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{Cl0}$	68.5 (4)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 10$	-114.5 (4)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 10$	152.8 (3)
O3- ${ }^{\text {i }}$ - $1-\mathrm{N} 4-\mathrm{C} 10$	-139.6 (6)
N1-Cr1-N4-C10	-24.0 (4)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 9$	-53.7 (3)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 9$	123.3 (4)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 9$	30.6 (3)
O3i-Cr1-N4-C9	98.2 (7)
N1-Cr1-N4-C9	-146.2 (3)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 7$	-169.9 (3)
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 7$	7.1 (3)
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{N} 4-\mathrm{C} 7$	-85.6 (3)
O3i-Cr1-N4-C7	-18.0 (8)
N1-Cr1-N4-C7	97.6 (3)
C6-N3-C3-C4	-173.7 (4)
C5-N3-C3-C4	65.9 (5)
$\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4$	-55.6 (4)
$\mathrm{Cr} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	-177.4 (3)
$\mathrm{Pb} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	-16.7 (5)
N3-C3-C4-O1	52.2 (5)
C10-N4-C7-C8	90.1 (5)
C9-N4-C7-C8	-153.7 (4)
Cr1-N4-C7-C8	-33.4 (5)
N4-C7-C8-O2	52.8 (6)
C7-C8-O2-Cr1	-45.9 (5)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2-\mathrm{Pb1}{ }^{\mathrm{i}}$	165.2 (3)
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{C} 8$	48.5 (12)

$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 3-\mathrm{Cr} 1^{\mathrm{i}}$	$103.79(11)$
$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{O} 3-\mathrm{Cr}^{\mathrm{i}}$	$73.63(15)$
$\mathrm{O} 2 \mathrm{i}^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 6$	$-124.8(3)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 6$	$149.9(3)$
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 6$	$178.2(3)$
$\mathrm{O} 2 \mathrm{~Pb} 1-\mathrm{N} 3-\mathrm{C} 5$	$-0.3(3)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 5$	$-85.5(3)$
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 5$	$-57.3(3)$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{N} 3-\mathrm{C} 3$	$118.4(2)$

$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{C} 8$	$117.4(3)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{C} 8$	$-163.7(3)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{C} 8$	$-71.6(3)$
$\mathrm{N} 4-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{C} 8$	$21.1(3)$
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{Pb}^{\mathrm{i}}$	$-156.1(10)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{Pb}^{\mathrm{i}}$	$-87.20(13)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{Pb}^{\mathrm{i}}$	$-8.32(13)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{Pb}^{\mathrm{i}}$	$83.85(15)$
$\mathrm{N} 4-\mathrm{Cr} 1-\mathrm{O} 2-\mathrm{Pb}^{\mathrm{i}}$	$176.47(16)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 2$	0.82	1.95	$2.757(6)$	169

