



Received 9 March 2016 Accepted 24 March 2016

Edited by A. J. Lough, University of Toronto, Canada

**Keywords:** crystal structure; Schiff base ligand; boat conformation; piperidines; copper(II) complex.

CCDC reference: 1470356

**Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of a tetranuclear Cu<sup>II</sup> complex with an O,N,N'-donor Schiff base ligand: hexa- $\mu_2$ acetato-bis(2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolato- $\kappa^3 O,N,N'$ )tetracopper(II)

## Guohui Huang and Xiaoxuan Liu\*

School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou, Guangdong 510006, People's Republic of China. \*Correspondence e-mail: p-xxliu@gdut.edu.cn

The title compound,  $[Cu_4(CH_3COO)_6(C_{16}H_{23}N_2O)_2]$ , lies across a twofold rotation axis. The asymmetric unit contains two independent Cu<sup>II</sup> ions. The symmetry-unique terminal Cu<sup>II</sup> ion is O,N,N'-coordinated by a 2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolate ligand and an O atom from an acetate group in a slightly distorted square-planar coordination environment. The symmetry-unique central Cu<sup>II</sup> ion is coordinated by a different O atom from the same acetate group and by four bridging acetate ligands, which connect the asymmetric unit into a dimeric complex and form a distorted square-pyramidal coordination environment. Within the complex there are two symmetry-equivalent intramolecular N-H···O hydrogen bonds. In the crystal, weak C-H···O hydrogen bonds link the complex molecules, forming a three-dimensional network.

### 1. Chemical context

The chemistry of metal complexes with Schiff base ligands and their applications has attracted considerable attention, mainly due to their preparative accessibility, structural variability, magnetic properties and biological properties (Karahan *et al.*, 2015). The design of suitable building blocks and the utilization of coordinate bonds and non-covalent interactions to generate self-assemblies of various dimensions having aesthetic beauty and properties for possible use as functional materials are the major objectives in supramolecular chemistry and crystal engineering (Sasmal *et al.*, 2011). Within this context, we report herein the crystal structure of the title complex.





2. Structural commentary

The molecular structure of the title complex is shown in Fig. 1. The complex lies across a twofold rotation axis. The asymmetric unit contains two independent  $Cu^{II}$  ions, Cu1 and Cu2. Cu1 is coordinated by atoms O1, N1 and N2 of a 2-{[(2,2,6,6-

# research communications



Figure 1

The molecular structure of the title compound with 50% probability ellipsoids. For clarity, H atoms bonded to C atoms are not shown. The unlabeled part of the molecule is related by the symmetry code  $(-x + 1, y, -z + \frac{1}{2})$ .



Figure 2

Part of the crystal structure, viewed along the b axis, with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonding are shown.

tetramethylpiperidin-4-yl)imino]methyl}phenolate ligand and by atom O2 from an acetate group in a slightly distorted square-planar coordination environment. Cu2 is coordinated by atom O3 of the same acetate group mentioned above and by four bridging acetate ligands, which connect the asymmetric unit into a dimeric complex. Cu2 is in a distorted square-pyramidal coordination environment. The Cu···Cu distance is 2.6225 (9) Å. The piperidine rings are in boat conformations. Within the complex, there are two symmetryequivalent intramolecular N-H···O hydrogen bonds (Table 1).

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|--------------------------|-------------|-------------------------|--------------|-----------------------------|
| N2-H2···O3               | 0.92        | 1.96                    | 2.789 (3)    | 149                         |
| $C7-H7\cdots O1^{i}$     | 0.94        | 2.27                    | 3.026 (3)    | 137                         |
| $C7-H7\cdots O2^{i}$     | 0.94        | 2.59                    | 3.460 (3)    | 153                         |
| $C15-H15B\cdots O1^{ii}$ | 0.97        | 2.54                    | 3.490 (4)    | 165                         |

Symmetry codes: (i)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ , z; (ii) x, -y + 2,  $z + \frac{1}{2}$ .

#### 3. Supramolecular features

In the crystal, weak  $C-H \cdots O$  hydrogen bonds link the complex molecules, forming a three-dimensional network (see Table 1 and Figs. 2 and 3).

### 4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update 1; Groom & Allen, 2014) for compounds containing the same Schiff base ligand as the title compound found only one hit, namely bis [N-(2,2,6,6-tetramethylpiperidin-4-yl)salicylaldiminato]copper(II) (Golovina et al., 1975). In this compound, the ligand acts as only an N,O donor with the -N-H group remaining non-coordinating, unlike in the title compound. However, the precision of the determined geometric parameters is not sufficient to make a meaningful comparison with the title compound. Although, in a closely related compound, namely, hexakis( $\mu_2$ -acetato)bis[1-(5bromosalicylaldimino)-3-(2-methylpiperidino)propane]tetracopper (Chiari et al., 1993), the Cu-O and Cu-N distances for each coordination center are in agreement. A comprehensive study of the compound tetrakis( $\mu_2$ -acetato)bis(acetic acid)dicopper(II), which is the basic core of the title compound, has been carried out by Vives et al. (2003).

#### 5. Synthesis and crystallization

All chemicals and solvents used in the synthesis were analytical grade and used without further purification. A mixture of



Figure 3 Part of the crystal structure, viewed along the *c* axis, with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonding are shown.

Table 2Experimental details.

| Crystal data                                                                 |                                           |
|------------------------------------------------------------------------------|-------------------------------------------|
| Chemical formula                                                             | $[Cu_4(C_2H_3O_2)_6(C_{16}H_{23}N_2O)_2]$ |
| $M_{\rm r}$                                                                  | 1127.19                                   |
| Crystal system, space group                                                  | Orthorhombic, Pbcn                        |
| Temperature (K)                                                              | 250                                       |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                           | 31.2431 (6), 10.7872 (2),<br>15.2556 (3)  |
| $V(Å^3)$                                                                     | 5141.53 (18)                              |
| Z                                                                            | 4                                         |
| Radiation type                                                               | Cu Ka                                     |
| $\mu (\text{mm}^{-1})$                                                       | 2.40                                      |
| Crystal size (mm)                                                            | $0.10 \times 0.10 \times 0.05$            |
| • • • •                                                                      |                                           |
| Data collection                                                              |                                           |
| Diffractometer                                                               | Agilent Gemini S Ultra CCD                |
| Absorption correction                                                        | Multi-scan (CrysAlis PRO;                 |
|                                                                              | Agilent, 2014)                            |
| $T_{\min}, T_{\max}$                                                         | 0.718, 1.000                              |
| No. of measured, independent and                                             | 12793, 5096, 3794                         |
| observed $[I > 2\sigma(I)]$ reflections                                      |                                           |
| R <sub>int</sub>                                                             | 0.025                                     |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                     | 0.623                                     |
|                                                                              |                                           |
| Refinement                                                                   |                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.038, 0.109, 1.05                        |
| No. of reflections                                                           | 5096                                      |
| No. of parameters                                                            | 305                                       |
| H-atom treatment                                                             | H-atom parameters constrained             |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.24, -0.43                               |

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009), OLEX2 (Dolomanov et al., 2009).

 $Cu(CH_3COO)_2 \cdot 6H_2O$  (12mg, 0.06 mmol) and SL ([2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolate]) (13 mg, 0.05 mmol) was treated in MeOH solvent (4 mL) under ultrasonic irradiation at ambient temperature to give a clear solution. The resultant solution was allowed to evaporate

slowly in darkness at ambient temperature for several days to give blue crystals suitable for X-ray diffraction.

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions with C-H = 0.94–0.99, N-H = 0.92 Å and were included in a riding-motion approximation with  $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C,N})$  or  $1.5U_{\rm eq}({\rm C_{methyl}})$ .

## Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (No. 20874022) and the PhD Programs Foundation of the Ministry of Education of P.R. China (No. 20094420110006).

### References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1993). *Inorg. Chem.* **32**, 4834–4838.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Golovina, N. I., Klitskaya, G. A., Medzhidov, A. A. & Atovmyan, L. O. (1975). *Zh. Strukt. Khim.* 16, 132–134.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Karahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1–7.
- Sasmal, S., Sarkar, S., Aliaga-Alcalde, N. & Mohanta, S. (2011). *Inorg. Chem.* 50, 5687–5695.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704.

# supporting information

Acta Cryst. (2016). E72, 597-599 [https://doi.org/10.1107/S2056989016005041]

Crystal structure of a tetranuclear Cu<sup>II</sup> complex with an O,N,N'-donor Schiff base ligand: hexa- $\mu_2$ -acetato-bis(2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolato- $\kappa^3 O,N,N'$ )tetracopper(II)

## Guohui Huang and Xiaoxuan Liu

## **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *PLATON* (Spek, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Hexa- $\mu_2$ -acetato-bis(2-{[(2,2,6,6-tetramethylpiperidin-4-yl)imino]methyl}phenolato- $\kappa^3O$ , N, N')tetracopper(II)

## Crystal data

 $\begin{bmatrix} Cu_4(C_2H_3O_2)_6(C_{16}H_{23}N_2O)_2 \end{bmatrix}$   $M_r = 1127.19$ Orthorhombic, *Pbcn*  a = 31.2431 (6) Å b = 10.7872 (2) Å c = 15.2556 (3) Å V = 5141.53 (18) Å<sup>3</sup> Z = 4 F(000) = 2336Data collection Agilent Gemini S Ultra CCD different mater

diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014)  $T_{\min} = 0.718, T_{\max} = 1.000$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.109$ S = 1.055096 reflections 305 parameters 0 restraints  $D_x = 1.456 \text{ Mg m}^{-3}$ Cu *Ka* radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 4275 reflections  $\theta = 5.2-73.9^{\circ}$  $\mu = 2.40 \text{ mm}^{-1}$ T = 250 KBlock, blue  $0.1 \times 0.1 \times 0.05 \text{ mm}$ 

12793 measured reflections 5096 independent reflections 3794 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{max} = 74.0^{\circ}, \ \theta_{min} = 4.3^{\circ}$  $h = -37 \rightarrow 38$  $k = -12 \rightarrow 13$  $l = -18 \rightarrow 12$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0512P)^{2} + 2.024P] \qquad \Delta_{a}$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta_{a}$  $(\Delta/\sigma)_{max} = 0.002$ 

 $\begin{array}{l} \Delta\rho_{\rm max}=0.24~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.43~{\rm e}~{\rm \AA}^{-3} \end{array}$ 

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| Fractional atomic coordinates and | l isotropic or | <sup>r</sup> equivalent | isotropic | displacement | parameters | $(Å^2)$ |
|-----------------------------------|----------------|-------------------------|-----------|--------------|------------|---------|
|                                   | 1              | 1                       | 1         | 1            | 1          | · /     |

|      | x             | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|---------------|--------------|---------------|-----------------------------|
| Cul  | 0.684926 (12) | 0.97594 (3)  | 0.05439 (3)   | 0.03840 (12)                |
| Cu2  | 0.537735 (15) | 0.84119 (4)  | 0.21238 (3)   | 0.05264 (14)                |
| 01   | 0.71888 (6)   | 0.89442 (17) | -0.03139 (13) | 0.0428 (4)                  |
| N1   | 0.72175 (7)   | 1.1220 (2)   | 0.05451 (16)  | 0.0419 (5)                  |
| O2   | 0.65473 (7)   | 0.81724 (18) | 0.06203 (15)  | 0.0551 (6)                  |
| O3   | 0.59817 (7)   | 0.85329 (19) | 0.14558 (16)  | 0.0592 (6)                  |
| O5   | 0.55006 (8)   | 0.9679 (2)   | 0.30302 (16)  | 0.0652 (6)                  |
| N2   | 0.64737 (7)   | 1.0688 (2)   | 0.13950 (15)  | 0.0410 (5)                  |
| H2   | 0.6248        | 1.0176       | 0.1529        | 0.049*                      |
| O4   | 0.51510 (8)   | 0.9730 (2)   | 0.13830 (16)  | 0.0665 (6)                  |
| C6   | 0.77655 (9)   | 1.0411 (2)   | -0.04343 (18) | 0.0398 (6)                  |
| C7   | 0.75839 (9)   | 1.1298 (2)   | 0.0151 (2)    | 0.0444 (6)                  |
| H7   | 0.7747        | 1.2014       | 0.0263        | 0.053*                      |
| O7   | 0.50945 (8)   | 0.7157 (2)   | 0.13683 (17)  | 0.0713 (7)                  |
| O6   | 0.55359 (8)   | 0.7104 (2)   | 0.29423 (17)  | 0.0677 (7)                  |
| C2   | 0.77766 (9)   | 0.8474 (3)   | -0.12210 (18) | 0.0447 (6)                  |
| H2A  | 0.7654        | 0.7700       | -0.1355       | 0.054*                      |
| C12  | 0.62916 (10)  | 1.1791 (3)   | 0.0926 (2)    | 0.0487 (7)                  |
| C5   | 0.81565 (9)   | 1.0710 (3)   | -0.0834 (2)   | 0.0501 (7)                  |
| Н5   | 0.8288        | 1.1469       | -0.0698       | 0.060*                      |
| C4   | 0.83518 (10)  | 0.9928 (3)   | -0.1415 (2)   | 0.0545 (8)                  |
| H4   | 0.8611        | 1.0152       | -0.1686       | 0.065*                      |
| C19  | 0.52267 (12)  | 1.0102 (3)   | 0.3548 (2)    | 0.0578 (8)                  |
| C17  | 0.62166 (10)  | 0.7826 (3)   | 0.1042 (2)    | 0.0491 (7)                  |
| C1   | 0.75614 (8)   | 0.9269 (2)   | -0.06385 (17) | 0.0385 (6)                  |
| C21  | 0.47211 (12)  | 0.6744 (3)   | 0.1491 (2)    | 0.0622 (9)                  |
| C11  | 0.67169 (11)  | 1.0900 (3)   | 0.2232 (2)    | 0.0507 (7)                  |
| C8   | 0.70868 (11)  | 1.2271 (3)   | 0.1102 (2)    | 0.0518 (8)                  |
| H8   | 0.7300        | 1.2945       | 0.1042        | 0.062*                      |
| C20  | 0.53536 (14)  | 1.1180 (4)   | 0.4132 (3)    | 0.0764 (11)                 |
| H20A | 0.5659        | 1.1330       | 0.4078        | 0.115*                      |
| H20B | 0.5286        | 1.0983       | 0.4737        | 0.115*                      |

| H20C      | 0.5108                | 1 1016     | 0 3056      | 0.115*                         |
|-----------|-----------------------|------------|-------------|--------------------------------|
| C15       | 0.5178<br>0.64393(14) | 1.1910     | 0.3930      | $0.115^{\circ}$<br>0.0746 (11) |
| H15A      | 0.6317                | 1.1303 (4) | 0.2975      | 0.112*                         |
|           | 0.6612                | 1.1252     | 0.2675      | 0.112*                         |
|           | 0.0013                | 1.1332     | 0.3323      | 0.112*                         |
|           | 0.0211                | 1.0703     | 0.5085      | $0.112^{\circ}$                |
| U2        | 0.81390 (10)          | 0.8795 (5) | -0.1399 (2) | 0.0520(7)                      |
| П3<br>C12 | 0.6294                | 0.8239     | -0.1987     | $0.002^{\circ}$                |
|           | 0.61459 (16)          | 1.1326 (4) | 0.0033 (3)  | 0.0863 (14)                    |
| HIJA      | 0.6390                | 1.1004     | -0.0287     | 0.129*                         |
| HI3B      | 0.6019                | 1.2004     | -0.0293     | 0.129*                         |
| H13C      | 0.5936                | 1.0673     | 0.0110      | 0.129*                         |
| C16       | 0.69203 (16)          | 0.9646 (3) | 0.2464 (3)  | 0.0882 (15)                    |
| H16A      | 0.6698                | 0.9024     | 0.2519      | 0.132*                         |
| H16B      | 0.7074                | 0.9718     | 0.3014      | 0.132*                         |
| H16C      | 0.7118                | 0.9405     | 0.2004      | 0.132*                         |
| C10       | 0.70695 (12)          | 1.1862 (3) | 0.2050 (2)  | 0.0604 (9)                     |
| H10A      | 0.7021                | 1.2590     | 0.2421      | 0.073*                         |
| H10B      | 0.7347                | 1.1507     | 0.2212      | 0.073*                         |
| C18       | 0.61159 (14)          | 0.6453 (3) | 0.1017 (3)  | 0.0853 (14)                    |
| H18A      | 0.5920                | 0.6285     | 0.0539      | 0.128*                         |
| H18B      | 0.5985                | 0.6207     | 0.1567      | 0.128*                         |
| H18C      | 0.6378                | 0.5988     | 0.0929      | 0.128*                         |
| С9        | 0.66490 (11)          | 1.2754 (3) | 0.0824 (2)  | 0.0597 (9)                     |
| H9A       | 0.6663                | 1.3016     | 0.0210      | 0.072*                         |
| H9B       | 0.6578                | 1.3485     | 0.1177      | 0.072*                         |
| C14       | 0.59022 (12)          | 1.2356 (3) | 0.1380 (3)  | 0.0743 (11)                    |
| H14A      | 0.5704                | 1.1702     | 0.1542      | 0.111*                         |
| H14B      | 0.5762                | 1.2930     | 0.0984      | 0.111*                         |
| H14C      | 0.5993                | 1.2795     | 0.1903      | 0.111*                         |
| C22       | 0.45822 (14)          | 0.5698 (4) | 0.0893 (3)  | 0.0949 (15)                    |
| H22A      | 0.4715                | 0.5800     | 0.0322      | 0.142*                         |
| H22B      | 0.4273                | 0.5712     | 0.0829      | 0.142*                         |
| H22C      | 0.4670                | 0.4911     | 0.1144      | 0.142*                         |
|           | · · · · ·             |            |             |                                |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|-----------------|-------------|---------------|--------------|---------------|
| Cul | 0.0381 (2)  | 0.0315 (2)      | 0.0456 (2)  | -0.00219 (16) | 0.00017 (17) | -0.00167 (16) |
| Cu2 | 0.0483 (3)  | 0.0563 (3)      | 0.0533 (3)  | -0.0039 (2)   | 0.0161 (2)   | -0.0029 (2)   |
| O1  | 0.0406 (10) | 0.0352 (9)      | 0.0526 (11) | -0.0049 (8)   | 0.0037 (9)   | -0.0039 (8)   |
| N1  | 0.0436 (12) | 0.0312 (11)     | 0.0509 (13) | -0.0015 (10)  | -0.0007 (11) | -0.0017 (10)  |
| O2  | 0.0482 (11) | 0.0408 (11)     | 0.0763 (15) | -0.0090 (9)   | 0.0235 (11)  | -0.0121 (10)  |
| O3  | 0.0553 (13) | 0.0473 (12)     | 0.0752 (15) | -0.0109 (10)  | 0.0275 (12)  | -0.0134 (11)  |
| O5  | 0.0609 (14) | 0.0704 (15)     | 0.0645 (14) | -0.0060 (12)  | 0.0162 (12)  | -0.0173 (12)  |
| N2  | 0.0447 (12) | 0.0349 (11)     | 0.0436 (12) | -0.0033 (10)  | -0.0003 (10) | -0.0008 (10)  |
| O4  | 0.0607 (15) | 0.0753 (16)     | 0.0634 (14) | 0.0009 (12)   | 0.0160 (12)  | 0.0144 (12)   |
| C6  | 0.0365 (13) | 0.0383 (14)     | 0.0444 (14) | 0.0005 (11)   | -0.0040 (11) | 0.0067 (11)   |
| C7  | 0.0458 (16) | 0.0327 (13)     | 0.0546 (16) | -0.0046 (12)  | -0.0058 (13) | 0.0029 (12)   |
|     |             |                 |             |               |              |               |

| 07  | 0.0599 (14) | 0.0801 (17) | 0.0738 (16) | -0.0107 (13) | 0.0179 (13)  | -0.0235 (13) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 06  | 0.0575 (14) | 0.0693 (15) | 0.0763 (16) | 0.0094 (12)  | 0.0200 (12)  | 0.0133 (13)  |
| C2  | 0.0485 (16) | 0.0435 (15) | 0.0421 (14) | -0.0018 (13) | -0.0002 (13) | -0.0025 (12) |
| C12 | 0.0517 (17) | 0.0435 (16) | 0.0508 (16) | 0.0091 (13)  | -0.0024 (14) | -0.0015 (13) |
| C5  | 0.0420 (15) | 0.0479 (16) | 0.0604 (17) | -0.0067 (13) | -0.0029 (14) | 0.0053 (14)  |
| C4  | 0.0404 (16) | 0.063 (2)   | 0.0597 (18) | -0.0049 (15) | 0.0061 (14)  | 0.0055 (16)  |
| C19 | 0.064 (2)   | 0.0598 (19) | 0.0500 (17) | 0.0040 (17)  | 0.0046 (16)  | 0.0012 (15)  |
| C17 | 0.0456 (16) | 0.0427 (15) | 0.0590 (18) | -0.0077 (13) | 0.0100 (15)  | -0.0057 (14) |
| C1  | 0.0392 (13) | 0.0367 (13) | 0.0397 (13) | 0.0001 (11)  | -0.0047 (11) | 0.0062 (11)  |
| C21 | 0.058 (2)   | 0.062 (2)   | 0.066 (2)   | -0.0063 (17) | 0.0101 (17)  | -0.0064 (17) |
| C11 | 0.0637 (19) | 0.0457 (16) | 0.0428 (15) | -0.0044 (15) | -0.0083 (14) | -0.0011 (13) |
| C8  | 0.0570 (18) | 0.0350 (14) | 0.0635 (19) | -0.0107 (13) | 0.0066 (15)  | -0.0096 (13) |
| C20 | 0.082 (3)   | 0.081 (3)   | 0.066 (2)   | 0.001 (2)    | 0.003 (2)    | -0.023 (2)   |
| C15 | 0.091 (3)   | 0.085 (3)   | 0.0481 (18) | -0.024 (2)   | 0.0074 (19)  | -0.0137 (18) |
| C3  | 0.0524 (17) | 0.0567 (18) | 0.0470 (16) | 0.0070 (15)  | 0.0061 (14)  | 0.0001 (14)  |
| C13 | 0.121 (4)   | 0.065 (2)   | 0.073 (3)   | 0.029 (2)    | -0.045 (3)   | -0.0074 (19) |
| C16 | 0.136 (4)   | 0.053 (2)   | 0.076 (3)   | 0.007 (2)    | -0.053 (3)   | 0.0001 (19)  |
| C10 | 0.064 (2)   | 0.060 (2)   | 0.0573 (19) | -0.0151 (17) | -0.0029 (16) | -0.0133 (16) |
| C18 | 0.081 (3)   | 0.0451 (19) | 0.130 (4)   | -0.0187 (19) | 0.047 (3)    | -0.016 (2)   |
| C9  | 0.066 (2)   | 0.0383 (16) | 0.075 (2)   | 0.0073 (15)  | 0.0198 (18)  | 0.0052 (15)  |
| C14 | 0.056 (2)   | 0.060 (2)   | 0.106 (3)   | 0.0113 (18)  | 0.015 (2)    | 0.003 (2)    |
| C22 | 0.078 (3)   | 0.093 (3)   | 0.114 (4)   | -0.021 (2)   | 0.012 (3)    | -0.041 (3)   |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| Cu1—01               | 1.9004 (19) | C19—C20             | 1.518 (5) |
|----------------------|-------------|---------------------|-----------|
| Cu1—N1               | 1.951 (2)   | C17—C18             | 1.515 (4) |
| Cu1—O2               | 1.958 (2)   | C21—O6 <sup>i</sup> | 1.242 (4) |
| Cu1—N2               | 2.017 (2)   | C21—C22             | 1.515 (5) |
| Cu2—Cu2 <sup>i</sup> | 2.6225 (9)  | C11—C15             | 1.520 (5) |
| Cu2—O3               | 2.150 (2)   | C11—C16             | 1.535 (5) |
| Cu2—O5               | 1.982 (2)   | C11—C10             | 1.539 (4) |
| Cu2—O4               | 1.949 (2)   | C8—H8               | 0.9900    |
| Cu2—O7               | 1.986 (2)   | C8—C10              | 1.513 (5) |
| Cu2—O6               | 1.948 (2)   | C8—C9               | 1.524 (5) |
| O1—C1                | 1.313 (3)   | C20—H20A            | 0.9700    |
| N1—C7                | 1.295 (4)   | C20—H20B            | 0.9700    |
| N1—C8                | 1.474 (4)   | C20—H20C            | 0.9700    |
| O2—C17               | 1.273 (3)   | C15—H15A            | 0.9700    |
| O3—C17               | 1.232 (4)   | C15—H15B            | 0.9700    |
| O5—C19               | 1.251 (4)   | C15—H15C            | 0.9700    |
| N2—H2                | 0.9200      | С3—Н3               | 0.9400    |
| N2                   | 1.500 (4)   | C13—H13A            | 0.9700    |
| N2                   | 1.503 (4)   | C13—H13B            | 0.9700    |
| O4—C19 <sup>i</sup>  | 1.251 (4)   | C13—H13C            | 0.9700    |
| C6—C7                | 1.427 (4)   | C16—H16A            | 0.9700    |
| C6—C5                | 1.403 (4)   | C16—H16B            | 0.9700    |
| C6—C1                | 1.421 (4)   | C16—H16C            | 0.9700    |
|                      |             |                     |           |

# supporting information

| С7—Н7                      | 0.9400               | C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9800            |
|----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| O7—C21                     | 1.262 (4)            | C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9800            |
| O6-C21 <sup>i</sup>        | 1.242 (4)            | C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C2—H2A                     | 0.9400               | C18—H18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C2—C1                      | 1.406 (4)            | C18—H18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C2—C3                      | 1.372 (4)            | С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800            |
| C12—C13                    | 1.522 (5)            | С9—Н9В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800            |
| С12—С9                     | 1.533 (5)            | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C12—C14                    | 1.527 (4)            | C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C5—H5                      | 0.9400               | C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C5—C4                      | 1 368 (5)            | C22—H22A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 9700            |
| C4—H4                      | 0.9400               | C22_H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9700            |
| C4-C3                      | 1 392 (4)            | $C^{22}$ H <sup>22D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9700            |
| $C19 - C4^{i}$             | 1.352(4)<br>1.251(4) | 022-11220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9700            |
| 019-04                     | 1.231 (4)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| O1—Cu1—N1                  | 92.58 (9)            | N2—C11—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.1 (3)         |
| O1—Cu1—O2                  | 84.57 (8)            | N2—C11—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105.7 (2)         |
| 01— $Cu1$ — $N2$           | 176.50 (9)           | N2-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.1(2)          |
| N1-Cu1-O2                  | 171.93 (10)          | $C_{15}$ $C_{11}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.1(3)          |
| N1-Cu1-N2                  | 86 64 (9)            | $C_{15}$ $-C_{11}$ $-C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.7(3)          |
| $\Omega^2$ —Cu1—N2         | 96 65 (9)            | C16-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.8(3)          |
| $03-Cu^2-Cu^{2i}$          | 175 77 (7)           | N1-C8-H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.0             |
| $05 - Cu^2 - Cu^{2i}$      | 82 49 (7)            | N1 - C8 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.0<br>109.7(3) |
| $05 - Cu^2 - 03$           | 96 79 (9)            | N1 - C8 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.7(3)          |
| $05 - Cu^2 - 05$           | 164.08(10)           | $\begin{array}{ccc} 11 & 12 \\ 11 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12 \\ 12 & 12$ | 100.0             |
| $O_{3}$ $C_{u2}$ $C_{u2i}$ | 85 84 (7)            | $C_{10} = C_{8} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0<br>100.5(3) |
| $O_4 = Cu_2 = Cu_2$        | 80.04(7)             | $C_{10} = C_{3} = C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5 (3)         |
| $04 - Cu^2 = 05$           | 88.41 (11)           | $C_{2} = C_{3} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.0             |
| $04 - Cu^2 - 03$           | 80.06 (12)           | $C_{19} = C_{20} = H_{20}R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5             |
| 04— $Cu2$ — $07$           | 89.90 (12)           | C19 - C20 - H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5             |
| 0/-Cu2-Cu2                 | 81.00(/)             | C19—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| 0/Cu203                    | 99.04 (9)            | H20A—C20—H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| 06—Cu2—Cu2 <sup>4</sup>    | 87.02 (7)            | H20A-C20-H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| 06—Cu2—O3                  | 97.15 (10)           | H20B—C20—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| 06—Cu2—O5                  | 90.16 (11)           | CII—CI5—HI5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| 06—Cu2—04                  | 172.85 (10)          | CII—CI5—HI5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| 06—Cu2—O7                  | 89.50 (12)           | C11—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| C1—O1—Cu1                  | 129.15 (17)          | H15A—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| C7—N1—Cu1                  | 125.01 (19)          | H15A—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| C7—N1—C8                   | 117.5 (2)            | H15B—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| C8—N1—Cu1                  | 117.26 (19)          | C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.8 (3)         |
| C17—O2—Cu1                 | 132.64 (19)          | С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.6             |
| C17—O3—Cu2                 | 136.77 (19)          | С4—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.6             |
| C19—O5—Cu2                 | 124.0 (2)            | C12—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| Cu1—N2—H2                  | 106.9                | C12—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| C12—N2—Cu1                 | 107.93 (17)          | C12—C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5             |
| C12—N2—H2                  | 106.9                | H13A—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| C11—N2—Cu1                 | 109.16 (18)          | H13A—C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |
| C11—N2—H2                  | 106.9                | H13B—C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5             |

| C11—N2—C12                | 118.5 (2)   | C11—C16—H16A               | 109.5     |
|---------------------------|-------------|----------------------------|-----------|
| C19 <sup>i</sup> —O4—Cu2  | 121.9 (2)   | C11—C16—H16B               | 109.5     |
| C5—C6—C7                  | 117.6 (3)   | C11—C16—H16C               | 109.5     |
| C5—C6—C1                  | 119.7 (3)   | H16A—C16—H16B              | 109.5     |
| C1—C6—C7                  | 122.7 (3)   | H16A—C16—H16C              | 109.5     |
| N1—C7—C6                  | 126.7 (3)   | H16B—C16—H16C              | 109.5     |
| N1—C7—H7                  | 116.6       | C11—C10—H10A               | 108.9     |
| С6—С7—Н7                  | 116.6       | C11—C10—H10B               | 108.9     |
| C21—O7—Cu2                | 124.5 (2)   | C8—C10—C11                 | 113.2 (3) |
| $C21^{i}$ —O6—Cu2         | 120.5 (2)   | C8-C10-H10A                | 108.9     |
| C1—C2—H2A                 | 119.0       | C8-C10-H10B                | 108.9     |
| C3—C2—H2A                 | 119.0       | H10A—C10—H10B              | 107.7     |
| C3—C2—C1                  | 122.0 (3)   | C17—C18—H18A               | 109.5     |
| N2-C12-C13                | 106.2 (2)   | C17—C18—H18B               | 109.5     |
| N2-C12-C9                 | 108.0 (2)   | C17—C18—H18C               | 109.5     |
| N2-C12-C14                | 113.7 (3)   | H18A—C18—H18B              | 109.5     |
| $C_{13}$ $C_{12}$ $C_{9}$ | 110.5 (3)   | H18A - C18 - H18C          | 109.5     |
| C13 - C12 - C14           | 107 4 (3)   | H18B— $C18$ — $H18C$       | 109.5     |
| C14-C12-C9                | 110.8 (3)   | C12 - C9 - H9A             | 108.9     |
| C6-C5-H5                  | 119.1       | C12 - C9 - H9B             | 108.9     |
| C4-C5-C6                  | 121.9 (3)   | C8-C9-C12                  | 113.2 (3) |
| C4—C5—H5                  | 119.1       | C8—C9—H9A                  | 108.9     |
| C5—C4—H4                  | 120.6       | C8—C9—H9B                  | 108.9     |
| C5—C4—C3                  | 118.7 (3)   | H9A—C9—H9B                 | 107.8     |
| C3—C4—H4                  | 120.6       | C12—C14—H14A               | 109.5     |
| 05-C19-C20                | 118.1 (3)   | C12—C14—H14B               | 109.5     |
| O4 <sup>i</sup> —C19—O5   | 125.5 (3)   | C12—C14—H14C               | 109.5     |
| O4 <sup>i</sup> —C19—C20  | 116.3 (3)   | H14A—C14—H14B              | 109.5     |
| O2—C17—C18                | 116.3 (3)   | H14A—C14—H14C              | 109.5     |
| O3—C17—O2                 | 124.1 (3)   | H14B—C14—H14C              | 109.5     |
| O3—C17—C18                | 119.6 (3)   | C21—C22—H22A               | 109.5     |
| O1—C1—C6                  | 123.1 (2)   | C21—C22—H22B               | 109.5     |
| 01-C1-C2                  | 120.0 (2)   | C21—C22—H22C               | 109.5     |
| C2—C1—C6                  | 116.9 (2)   | H22A—C22—H22B              | 109.5     |
| O7—C21—C22                | 116.0 (3)   | H22A—C22—H22C              | 109.5     |
| $O6^{i}$ —C21—O7          | 126.2 (3)   | H22B—C22—H22C              | 109.5     |
| O6 <sup>i</sup> —C21—C22  | 117.8 (3)   |                            |           |
|                           |             |                            |           |
| Cu1—O1—C1—C6              | -5.6(4)     | O5—Cu2—O6—C21 <sup>i</sup> | 80.2 (3)  |
| Cu1—O1—C1—C2              | 174.72 (19) | N2—Cu1—O1—C1               | 85.2 (15) |
| Cu1—N1—C7—C6              | 7.8 (4)     | N2—Cu1—N1—C7               | 174.4 (3) |
| Cu1—N1—C8—C10             | 60.7 (3)    | N2—Cu1—N1—C8               | 0.2 (2)   |
| Cu1—N1—C8—C9              | -60.1 (3)   | N2—Cu1—O2—C17              | 1.7 (3)   |
| Cu1—O2—C17—O3             | 7.8 (5)     | N2—C12—C9—C8               | 7.7 (4)   |
| Cu1—O2—C17—C18            | -172.3 (3)  | N2-C11-C10-C8              | -2.6(4)   |
| Cu1—N2—C12—C13            | 44.4 (3)    | O4—Cu2—O3—C17              | -122.8(3) |
| Cu1—N2—C12—C9             | -74.1 (3)   | O4—Cu2—O5—C19              | 80.8 (3)  |
| Cu1 - N2 - C12 - C14      | 162.4 (2)   | $04-Cu^2-07-C^{21}$        | -90.6(3)  |
| 041 112 012 017           | 102.1(2)    | 01 042 07 021              | JU.U (J)  |

| Cu1—N2—C11—C15                       | -165.8 (2)   | O4-Cu2-O6-C21 <sup>i</sup> | 1.8 (11)   |
|--------------------------------------|--------------|----------------------------|------------|
| Cu1—N2—C11—C16                       | -47.1 (3)    | C6—C5—C4—C3                | -1.3 (5)   |
| Cu1—N2—C11—C10                       | 70.5 (3)     | C7—N1—C8—C10               | -113.9 (3) |
| Cu2 <sup>i</sup> —Cu2—O3—C17         | -131.2 (8)   | C7—N1—C8—C9                | 125.2 (3)  |
| Cu2 <sup>i</sup> —Cu2—O5—C19         | -5.2 (3)     | C7—C6—C5—C4                | -178.9 (3) |
| $Cu2^{i}$ — $Cu2$ — $O4$ — $C19^{i}$ | -1.9 (3)     | C7—C6—C1—O1                | 0.7 (4)    |
| Cu2 <sup>i</sup> —Cu2—O7—C21         | -4.8 (3)     | C7—C6—C1—C2                | -179.6 (3) |
| $Cu2^i$ — $Cu2$ — $O6$ — $C21^i$     | -2.2 (3)     | O7—Cu2—O3—C17              | -32.8 (4)  |
| Cu2—O3—C17—O2                        | 172.0 (2)    | O7—Cu2—O5—C19              | -3.5 (6)   |
| Cu2—O3—C17—C18                       | -7.9 (6)     | O7—Cu2—O4—C19 <sup>i</sup> | 79.7 (3)   |
| Cu2-05-C19-04 <sup>i</sup>           | 5.8 (5)      | O7—Cu2—O6—C21 <sup>i</sup> | -83.8 (3)  |
| Cu2—O5—C19—C20                       | -172.6 (3)   | O6—Cu2—O3—C17              | 57.8 (4)   |
| Cu2-07-C21-O6 <sup>i</sup>           | 4.9 (6)      | O6—Cu2—O5—C19              | -92.2 (3)  |
| Cu2—O7—C21—C22                       | -174.1 (3)   | O6—Cu2—O4—C19 <sup>i</sup> | -5.9 (11)  |
| O1—Cu1—N1—C7                         | -9.0 (2)     | O6—Cu2—O7—C21              | 82.3 (3)   |
| O1—Cu1—N1—C8                         | 176.8 (2)    | C12—N2—C11—C15             | 70.2 (4)   |
| O1—Cu1—O2—C17                        | -175.0 (3)   | C12—N2—C11—C16             | -171.1 (3) |
| O1—Cu1—N2—C12                        | -11.9 (15)   | C12—N2—C11—C10             | -53.5 (3)  |
| O1—Cu1—N2—C11                        | -141.9 (14)  | C5—C6—C7—N1                | 176.2 (3)  |
| N1—Cu1—O1—C1                         | 8.2 (2)      | C5-C6-C1-O1                | -177.7 (3) |
| N1—Cu1—O2—C17                        | 115.4 (7)    | C5—C6—C1—C2                | 2.0 (4)    |
| N1—Cu1—N2—C12                        | 65.23 (18)   | C5—C4—C3—C2                | 1.5 (5)    |
| N1—Cu1—N2—C11                        | -64.75 (18)  | C1—C6—C7—N1                | -2.2 (5)   |
| N1-C8-C10-C11                        | -66.2 (4)    | C1—C6—C5—C4                | -0.4 (4)   |
| N1-C8-C9-C12                         | 62.4 (4)     | C1—C2—C3—C4                | 0.2 (5)    |
| O2—Cu1—O1—C1                         | -164.2 (2)   | C11—N2—C12—C13             | 169.0 (3)  |
| O2—Cu1—N1—C7                         | 60.1 (8)     | C11—N2—C12—C9              | 50.5 (3)   |
| O2—Cu1—N1—C8                         | -114.1 (7)   | C11—N2—C12—C14             | -73.0 (4)  |
| O2—Cu1—N2—C12                        | -122.17 (18) | C8—N1—C7—C6                | -178.0 (3) |
| O2—Cu1—N2—C11                        | 107.85 (18)  | C15-C11-C10-C8             | -128.3 (3) |
| O3—Cu2—O5—C19                        | 170.6 (3)    | C3—C2—C1—O1                | 177.8 (3)  |
| O3—Cu2—O4—C19 <sup>i</sup>           | 178.8 (3)    | C3—C2—C1—C6                | -2.0 (4)   |
| O3—Cu2—O7—C21                        | 179.5 (3)    | C13—C12—C9—C8              | -108.1 (3) |
| O3—Cu2—O6—C21 <sup>i</sup>           | 177.1 (3)    | C16—C11—C10—C8             | 112.3 (3)  |
| O5—Cu2—O3—C17                        | 148.8 (3)    | C10—C8—C9—C12              | -58.6 (4)  |
| O5—Cu2—O4—C19 <sup>i</sup>           | -84.4 (3)    | C9—C8—C10—C11              | 55.3 (4)   |
| O5—Cu2—O7—C21                        | -6.5 (6)     | C14—C12—C9—C8              | 133.0 (3)  |

Symmetry code: (i) -x+1, *y*, -z+1/2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                    | D—H  | H···A | D···· $A$ | D—H··· $A$ |  |
|----------------------------|------|-------|-----------|------------|--|
| N2—H2…O3                   | 0.92 | 1.96  | 2.789 (3) | 149        |  |
| C7—H7···O1 <sup>ii</sup>   | 0.94 | 2.27  | 3.026 (3) | 137        |  |
| C7—H7···O2 <sup>ii</sup>   | 0.94 | 2.59  | 3.460 (3) | 153        |  |
| C15—H15B…O1 <sup>iii</sup> | 0.97 | 2.54  | 3.490 (4) | 165        |  |

Symmetry codes: (ii) -x+3/2, y+1/2, z; (iii) x, -y+2, z+1/2.