

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 9 February 2016 Accepted 26 February 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; furanocoumarin; oroselone; *Artemisia reticulata*; photobiological property; hydrogen bonding.

CCDC reference: 1422810

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN ∂ ACCESS

Crystal structure of a photobiologically active furanocoumarin from *Artemisia reticulata*

A. K. Bauri,^a Sabine Foro^b and Nhu Quynh Nguyen Do^{c*}

^aBioorganic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, ^bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany, and ^cAccident & Emergency Department, Franco, Vietnamese Hospital, 7-Nguyen, Luong Bang Street, HoChiMinh City, Vietnam. *Correspondence e-mail: nguyendonhuquynh@yahoo.com

The title furanocoumarin, $C_{14}H_{12}O_4$ [systematic name: 9-hydroxy-2-(prop-1-en-2-yl)-2,3-dihydro-7*H*-furo[3,2-*g*]chromen-7-one], crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. The two molecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furanocoumarin moiety; the O-C(H)-C=C torsion angle is 122.2 (7)° in molecule *A* and -10.8 (11)° in molecule *B*. In the crystal, the *A* and *B* molecules are linked *via* O-H···O hydrogen bonds, forming zigzag -*A*-*B*-*A*-*B*- chains propagating along [001]. The chains are reinforced by bifurcated C-H···(O,O) hydrogen bonds, forming ribbons which are linked *via* C-H··· π and π - π interactions [intercentroid distance = 3.602 (2) Å], forming a threedimensional structure.

1. Chemical context

The title furanocoumarin was isolated from the Indian herb A. reticulata, by column chromatography over silica gel with a mixture of binary solvent hexane and ethyl acetate by gradient elution. Furanocoumarins, such as oroselone [systematic name: 8-(prop-1-en-2-yl)-2H-furo[2,3-h]chromen-2-one], whose atomic connectivity has been established by spectrometric and spectroscopic analyses (Schroeder et al., 1959; Dorofeenko et al., 1973) but not vet by single crystal X-ray diffraction, exhibit photobiological activity. For example such compounds are employed as photoprotective agents to prevent absorption of harmful UV radiation (Chen et al., 2007, 2009). Anti-oxidant and anti-inflammatory activities have also been reported for furano as well as pyrano coumarins and their derivatives (Appendino et al., 2004; Scott et al., 1976).

2. Structural commentary

The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the asymmetric unit. The compound is composed of three fused rings (furan, benzene and pyrone)

research communications

Table 1Selected geometry	ic parameters (Å, °).	
$C_{2}-C_{12}$	1 500 (8)	C16 - C26

C2-C12	1.500 (8)	C16-C26	1.489 (8)
C12-C14	1.313 (10)	C26-C28	1.363 (13)
C12-C13	1.461 (10)	C26-C27	1.422 (10)
C14-C12-C13	122.7 (7)	C28-C26-C27	123.5 (7)
C14-C12-C2	118.9 (7)	C28-C26-C16	121.9 (6)
C13-C12-C2	118.4 (5)	C27-C26-C16	114.7 (6)

with hydroxyl and propenyl substituents at positions 9 and 2, respectively. The furanocoumarin moieties are essentially planar with r.m.s. deviations of 0.05 Å for molecule A (O1/O2/ C1–C11) and 0.079 Å for molecule B (O5/O6/C16–C25). The furan ring in molecule A has an envelope conformation with atom C2 as the flap, deviating by 0.120 (4) Å from the mean plane of the furanocoumarin moiety. In molecule B, the furan ring has a twisted conformation on bond C17-C16 with atoms C16 and C17 deviating by -0.232 (6) and 0.076 (6) Å, respectively, from the other atoms of the twisted fivemembered ring. The two molecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furanocoumarin moiety, as shown by AutoMolFit analysis (Spek, 2009); see Fig. 2. The O1-C2-C12=C14 torsion angle is 122.2 (7)° in molecule A, while the O5-C16-C26=C28 torsion angle is $-10.8 (11)^{\circ}$ in molecule B. The bond distances and bond angles in the propenyl side chains (C2,C12–C14 in molecule A and C16,C26–C28 in molecule B) also differ in the two molecules (Table 1), probably due to libration and bond rotation. Overall the bond distances and bond angles in the furanocoumarin moieties are in good agreement with the corresponding values reported for related structures (Stemple & Watson, 1972; Gupta et al., 1993; Singh

Figure 2 The molecular fit (Spek, 2009) of molecules A (black) and B (red) of the title compound.

et al. 1995; Magotra *et al.*, 1995; Thailambal *et al.*, 1986; Thailambal & Pattabhi, 1987, 1985).

The absolute structure of the molecule in the crystal could not be determined by resonant scattering. In order to determine the chirality at atom C2 (in molecule A; C16 in molecule B), the circular dichroism (CD) spectrum was measured in a solution of chloroform at concentration of 1 mg/ml using a cell with path length 1 cm. This CD measurement revealed that the absolute configuration of atom C2 (in molecule A; C16 in molecule B) is S.

3. Supramolecular features

In the crystal, the *A* and *B* molecules are linked *via* $O-H\cdots O$ hydrogen bonds, forming zigzag -A-B-A-B- chains propagating along the *c*-axis direction; see Table 2 and Fig. 3. The chains are reinforced by bifurcated $C-H\cdots (O,O)$ hydrogen

Figure 1

The molecular structure of the two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 2 Hydrogen-bond geometry (Å, °).

Cg2 and Cg9 are the centroids of rings O2/C6/C7/C9–C11 and C15–C22, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3 - H3O \cdots O8^{i}$	0.83	1.85	2,676 (5)	174
$O7-H7O\cdots O4^{ii}$	0.84	1.85	2.671 (5)	168
C10-H10···O3 ⁱⁱⁱ	0.93	2.53	3.199 (5)	129
$C10-H10\cdots O8^{iv}$	0.93	2.50	3.415 (6)	166
$C24-H24\cdots O7^{v}$	0.93	2.58	3.229 (5)	128
$C24-H24\cdots O4^{vi}$	0.93	2.53	3.434 (5)	164
$C3-H3B\cdots Cg2^{vii}$	0.97	2.95	3.871 (5)	160
C13−H13 <i>B</i> ··· <i>Cg</i> 9	0.96	2.92	3.680 (9)	137

Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + 1$; (ii) $-x + 2, y - \frac{1}{2}, -z$; (iii) x, y, z - 1; (iv) $-x + 2, y + \frac{1}{2}, -z$; (v) x, y, z + 1; (vi) $-x + 2, y - \frac{1}{2}, -z + 1$; (vii) x - 1, y, z.

bonds, forming ribbons (Table 2 and Fig. 3). The ribbons are arranged in a herringbone fashion, and are linked *via* C– H··· π and slipped parallel π - π interactions, forming a three-dimensional network; see Fig. 4 and Table 2 [Cg2··· $Cg9^{i}$ =

A view along the a axis of the crystal packing of the title compound (A molecules are blue; B molecules are red). The hydrogen bonds are shown as dashed lines (see Table 2), and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.

A view along the *c* axis of the crystal packing of the title compound. Hydrogen bonds and $C-H\cdots\pi$ interactions are shown as dashed lines (see Table 2), and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.

3.602 (2) Å, interplanar distance = 3.4168 (2) Å, slippage 1.284 Å, where Cg2 and Cg9 are the centroids of rings C1/C4–C8 and C15/C18–C22, respectively; symmetry code: (i) – x + 1, $y + \frac{1}{2}, - z$].

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom & Allen, 2014) gave 21 hits for the furanocoumarin substructure, but only one hit for a 9-hydroxy furanocoumarin, *viz.* 2,3-dihydro-9-hydroxy-2-(1-hydroxy-1-methylethyl)-7*H*-furo(3,2-g)(1) benzopyran-7-one monohydrate (refcode FUGVOS; Thailambal & Pattabhi, 1987).

5. Synthesis and crystallization

The title compound was isolated as a colourless solid from the methanol extract of *A. reticulata* by means of column chromatography over silica gel by gradient elution with a mixture of binary solvents system hexane and ethyl acetate. It was purified by reverse-phase high-pressure liquid chromatography. Colourless rod-like crystals suitable for X ray diffraction analysis were obtained after the title compound was recrystallized three times from ethyl acetate:hexane (1:4) at room temperature by slow evaporation of the solvents (m.p. 498 K). ¹H NMR data (CHCl₃, 200 MHz) 7.60 (*d*, 1H, *J* = 9.6 Hz, H-9), 6.85 (*s*, 1H, H-5), 6.20 (*d*, 1H, *J* = 9.6 Hz, H-10), 5.35 (*dd*, 1H, *J* = 8.8 and 8.8 Hz, H-7), 5.11 (*s*, 1H, H_a-14), 4.94

(s, 1H, H_b-14), 3.47–3.34 (dd, 1H, J = 9.0 and 1.2 Hz, H_a-3),3.16–3.04 (dd, 1H, J = 9.0 and 1.2 Hz, H_b-3), 1.78 (s, 3H, –CH₃). EIMS (70 ev) data: m/z (%) 244(15.9) [M^+], 226 (68.6) [$M^+ - H_2O$), 198 (100) [base peak], 185 (30),171 (16.8), 155 (30.1), 140 (16.4), 127 (13.5), 115 (25.10,85 (11.1), 75 (22.3), 63 (26.5), 41 (16.0).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydroxyl H atoms were located in a difference Fourier map and refined as riding with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm O})$. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93– 0.98 Å with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The limited number of Friedel pairs measured were merged for refinement.

Acknowledgements

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, for diffractometer time, and Professor N. Komatsu, Shiga University of Medical Science, Shiga, Otsu, Japan, for recording the CD spectrum.

References

- Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso,
 E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich,
 B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.
- Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.
- Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.
- Dorofeenko, G. N., Tkachenko, V. V. & Mezheritskii, V. V. (1973). Chem. Heterocycl. Compd. 9, 948–950.
- Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Gupta, V. K., Rajnikant, Goswami, K. N., Mazumdar, S. K., Gupta, B. D. & Banerjee, S. K. (1993). *Cryst. Res. Technol.* 28, 187–191.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Table	3	
Experi	mental	details

Crystal data	
Chemical formula	$C_{14}H_{12}O_4$
Mr	244.24
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	299
a, b, c (Å)	7.2738 (9), 21.426 (2), 8.0152 (9)
β (°)	100.88 (1)
$V(\dot{A}^3)$	1226.7 (2)
Z	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.81
Crystal size (mm)	$0.50\times0.18\times0.15$
Data collection	
Diffractometer	Enraf-Nonius CAD-4
Absorption correction	ψ scan (North <i>et al.</i> , 1968)
$T_{\min}, \overline{T}_{\max}$	0.688, 0.888
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2692, 2133, 1808
R _{int}	0.111
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.597
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.148, 1.08
No. of reflections	2133
No. of parameters	328
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.28, -0.34

Computer programs: CAD-4-PC (Enraf-Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

- Magotra, D. K., Gupta, V. K., Rajnikant, Goswami, K. N. & Gupta, B. D. (1995). *Acta Cryst.* C**51**, 2637–2639.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Schroeder, H. D., Bencze, W., Halpern, O. & Schmid, H. (1959). Chem. Ber. 92, 2338–2363.
- Scott, B. R., Pathak, M. A. & Mohn, G. R. (1976). Mutat. Res. 39, 29– 74.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, A., Gupta, V. K., Kant, R. & Goswami, K. N. (1995). Mol. Mater. 5, 289–297.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stemple, N. R. & Watson, W. H. (1972). Acta Cryst. B28, 2485-2489.
- Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.
- Thailambal, V. G. & Pattabhi, V. (1985). Acta Cryst. C41, 802-804.
- Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.
- Thailambal, V. G., Pattabhi, V. & Gabe, E. J. (1986). Acta Cryst. C42, 1017–1019.

Acta Cryst. (2016). E72, 463-466 [https://doi.org/10.1107/S2056989016003303]

Crystal structure of a photobiologically active furanocoumarin from *Artemisia reticulata*

A. K. Bauri, Sabine Foro and Nhu Quynh Nguyen Do

Computing details

Data collection: *CAD-4-PC* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC* (Enraf–Nonius, 1996); data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

9-Hydroxy-2-(prop-1-en-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one

Crystal data

C₁₄H₁₂O₄ $M_r = 244.24$ Monoclinic, P2₁ Hall symbol: P 2y1 a = 7.2738 (9) Å b = 21.426 (2) Å c = 8.0152 (9) Å $\beta = 100.88$ (1)° V = 1226.7 (2) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.688, T_{\max} = 0.888$ 2692 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.148$ S = 1.082133 reflections 328 parameters 1 restraint F(000) = 512 $D_x = 1.322 \text{ Mg m}^{-3}$ Melting point: 498 K Cu Ka radiation, $\lambda = 1.54180 \text{ Å}$ Cell parameters from 25 reflections $\theta = 6.0-19.8^{\circ}$ $\mu = 0.81 \text{ mm}^{-1}$ T = 299 KRod, colourless $0.50 \times 0.18 \times 0.15 \text{ mm}$

2133 independent reflections 1808 reflections with $I > 2\sigma(I)$ $R_{int} = 0.111$ $\theta_{max} = 66.9^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -25 \rightarrow 0$ $I = -9 \rightarrow 2$ 3 standard reflections every 120 min intensity decay: 1.0%

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0983P)^2 + 0.0698P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.045$ $\Delta\rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.34 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0058 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.5538 (5)	0.26546 (17)	0.2707 (4)	0.0718 (9)	
O2	1.0199 (4)	0.35147 (14)	0.0003 (3)	0.0584 (7)	
O3	0.8972 (4)	0.32756 (18)	0.2942 (3)	0.0716 (9)	
H3O	0.9962	0.3467	0.3283	0.086*	
O4	1.2459 (5)	0.3904 (2)	-0.1133 (4)	0.0760 (9)	
C1	0.6289 (6)	0.2805 (2)	0.1313 (5)	0.0593 (10)	
C2	0.3653 (7)	0.2416 (2)	0.2102 (6)	0.0677 (11)	
H2	0.2748	0.2741	0.2241	0.081*	
C3	0.3504 (7)	0.2283 (2)	0.0208 (6)	0.0717 (12)	
H3A	0.3550	0.1838	-0.0007	0.086*	
H3B	0.2354	0.2452	-0.0447	0.086*	
C4	0.5186 (6)	0.2609 (2)	-0.0213 (5)	0.0615 (10)	
C5	0.5778 (7)	0.2722 (2)	-0.1707 (5)	0.0646 (11)	
Н5	0.5045	0.2598	-0.2732	0.078*	
C6	0.7474 (6)	0.30226 (19)	-0.1693 (5)	0.0574 (10)	
C7	0.8535 (6)	0.32065 (19)	-0.0126 (4)	0.0510 (9)	
C8	0.7961 (6)	0.3100 (2)	0.1404 (5)	0.0559 (10)	
C9	0.8303 (7)	0.3148 (2)	-0.3149 (5)	0.0643 (11)	
H9	0.7672	0.3025	-0.4217	0.077*	
C10	0.9934 (7)	0.3435 (2)	-0.3019 (5)	0.0650 (11)	
H10	1.0412	0.3510	-0.3997	0.078*	
C11	1.0988 (7)	0.3634 (2)	-0.1407 (5)	0.0608 (10)	
C12	0.3366 (8)	0.1867 (3)	0.3189 (7)	0.0784 (14)	
C13	0.4654 (13)	0.1340 (4)	0.3277 (12)	0.120 (2)	
H13A	0.4677	0.1193	0.2150	0.144*	
H13B	0.4243	0.1010	0.3929	0.144*	
H13C	0.5888	0.1471	0.3810	0.144*	
C14	0.1973 (13)	0.1879 (5)	0.4018 (13)	0.131 (3)	
H14A	0.1775	0.1543	0.4697	0.157*	
H14B	0.1184	0.2224	0.3928	0.157*	
O5	0.0856 (5)	0.01320 (19)	-0.0052 (4)	0.0800 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O6	0.5536 (4)	-0.07278 (16)	0.4256 (3)	0.0632 (8)
O7	0.4356 (5)	-0.04541 (19)	0.0908 (3)	0.0761 (10)
H7O	0.5264	-0.0689	0.0873	0.091*
08	0.7736 (5)	-0.1141 (3)	0.6163 (4)	0.0985 (14)
C15	0.1590 (6)	-0.0022 (2)	0.1597 (5)	0.0605 (10)
C16	-0.1072 (8)	0.0320 (3)	-0.0122 (7)	0.0768 (13)
H16	-0.1887	-0.0035	-0.0522	0.092*
C17	-0.1231 (8)	0.0464 (3)	0.1738 (7)	0.0804 (14)
H17A	-0.1172	0.0909	0.1960	0.097*
H17B	-0.2382	0.0298	0.2005	0.097*
C18	0.0452 (6)	0.0134 (2)	0.2722 (6)	0.0648 (11)
C19	0.1022 (6)	0.0007 (2)	0.4429 (6)	0.0646 (11)
H19	0.0271	0.0117	0.5200	0.077*
C20	0.2723 (6)	-0.0287 (2)	0.4982 (5)	0.0555 (9)
C21	0.3829 (6)	-0.04370 (19)	0.3800 (5)	0.0536 (9)
C22	0.3273 (6)	-0.0310 (2)	0.2071 (5)	0.0564 (10)
C23	0.3455 (6)	-0.0475 (2)	0.6713 (5)	0.0617 (10)
H23	0.2751	-0.0397	0.7547	0.074*
C24	0.5094 (7)	-0.0754 (2)	0.7141 (5)	0.0670 (12)
H24	0.5520	-0.0865	0.8270	0.080*
C25	0.6234 (7)	-0.0890 (2)	0.5911 (5)	0.0658 (11)
C26	-0.1586 (9)	0.0850 (3)	-0.1320 (8)	0.0882 (16)
C27	-0.3538 (11)	0.0976 (4)	-0.1745 (13)	0.132 (3)
H27A	-0.4064	0.0762	-0.2778	0.159*
H27B	-0.3732	0.1417	-0.1900	0.159*
H27C	-0.4136	0.0834	-0.0845	0.159*
C28	-0.0275 (15)	0.1170 (6)	-0.1987 (19)	0.181 (5)
H28A	-0.0641	0.1490	-0.2764	0.217*
H28B	0.0986	0.1069	-0.1666	0.217*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0756 (18)	0.094 (2)	0.0482 (16)	-0.0229 (17)	0.0165 (13)	-0.0004 (15)
O2	0.0673 (16)	0.0776 (19)	0.0310 (12)	-0.0106 (14)	0.0109 (11)	-0.0007 (12)
O3	0.0767 (18)	0.107 (2)	0.0293 (13)	-0.0232 (17)	0.0062 (12)	-0.0107 (14)
O4	0.079 (2)	0.104 (2)	0.0474 (16)	-0.0193 (19)	0.0178 (14)	-0.0041 (16)
C1	0.074 (2)	0.066 (2)	0.0362 (19)	-0.007 (2)	0.0076 (17)	-0.0017 (18)
C2	0.072 (3)	0.073 (3)	0.059 (3)	-0.017 (2)	0.014 (2)	-0.003 (2)
C3	0.077 (3)	0.074 (3)	0.059 (2)	-0.016 (2)	0.000 (2)	0.001 (2)
C4	0.070 (2)	0.058 (2)	0.052 (2)	-0.0097 (19)	-0.0007 (18)	-0.0027 (17)
C5	0.087 (3)	0.066 (3)	0.0349 (19)	-0.006 (2)	-0.0039 (18)	-0.0053 (18)
C6	0.075 (3)	0.059 (2)	0.0347 (19)	-0.0034 (19)	0.0009 (16)	-0.0010 (16)
C7	0.067 (2)	0.057 (2)	0.0281 (17)	-0.0028 (18)	0.0071 (14)	-0.0035 (14)
C8	0.065 (2)	0.067 (2)	0.0328 (17)	-0.0066 (19)	0.0005 (16)	-0.0047 (17)
C9	0.092 (3)	0.069 (3)	0.0301 (17)	-0.002 (2)	0.0067 (17)	0.0000 (18)
C10	0.087 (3)	0.074 (3)	0.0349 (19)	-0.007 (2)	0.0131 (19)	0.0024 (18)
C11	0.075 (3)	0.073 (3)	0.0370 (19)	0.001 (2)	0.0156 (18)	-0.0007 (17)

C12	0.089 (3)	0.081 (3)	0.067 (3)	-0.022 (3)	0.021 (3)	-0.003 (2)
C13	0.146 (6)	0.094 (5)	0.120 (6)	0.009 (5)	0.023 (5)	0.028 (4)
C14	0.140 (6)	0.125 (6)	0.144 (8)	-0.029 (5)	0.066 (6)	0.018 (5)
05	0.087 (2)	0.104 (3)	0.0412 (15)	0.024 (2)	-0.0062 (14)	0.0061 (15)
06	0.0667 (16)	0.092 (2)	0.0293 (13)	0.0173 (15)	0.0059 (11)	0.0098 (13)
07	0.085 (2)	0.111 (3)	0.0339 (14)	0.0274 (19)	0.0166 (13)	0.0096 (15)
08	0.091 (2)	0.156 (4)	0.0462 (18)	0.048 (3)	0.0075 (16)	0.026 (2)
C15	0.069 (2)	0.069 (2)	0.039 (2)	0.004 (2)	-0.0011 (17)	0.0035 (18)
C16	0.080 (3)	0.079 (3)	0.063 (3)	0.008 (3)	-0.009 (2)	0.001 (2)
C17	0.073 (3)	0.092 (3)	0.074 (3)	0.019 (3)	0.006 (2)	-0.003 (3)
C18	0.065 (2)	0.069 (3)	0.057 (3)	0.006 (2)	0.0030 (19)	-0.003 (2)
C19	0.069 (2)	0.074 (3)	0.052 (2)	0.005 (2)	0.0156 (19)	-0.006 (2)
C20	0.066 (2)	0.063 (2)	0.0377 (19)	-0.0015 (19)	0.0103 (16)	-0.0041 (16)
C21	0.065 (2)	0.062 (2)	0.0330 (18)	0.0021 (18)	0.0053 (15)	0.0023 (15)
C22	0.067 (2)	0.067 (2)	0.0334 (18)	0.0069 (19)	0.0049 (16)	0.0051 (16)
C23	0.081 (3)	0.075 (3)	0.0317 (18)	0.000 (2)	0.0183 (17)	-0.0042 (17)
C24	0.082 (3)	0.085 (3)	0.0320 (19)	0.002 (2)	0.0072 (18)	0.0045 (19)
C25	0.076 (3)	0.088 (3)	0.0319 (18)	0.012 (2)	0.0070 (18)	0.0117 (18)
C26	0.096 (4)	0.068 (3)	0.087 (3)	0.010 (3)	-0.016 (3)	0.000 (3)
C27	0.111 (5)	0.114 (6)	0.152 (7)	0.017 (4)	-0.025 (5)	0.034 (5)
C28	0.136 (7)	0.150 (8)	0.241 (13)	-0.008 (7)	-0.003 (8)	0.106 (9)

Geometric parameters (Å, °)

01—C1	1.371 (5)	O5—C15	1.369 (5)
O1—C2	1.459 (5)	O5—C16	1.449 (6)
O2—C7	1.366 (5)	O6—C25	1.373 (5)
O2—C11	1.384 (5)	O6—C21	1.375 (5)
O3—C8	1.363 (5)	O7—C22	1.365 (5)
O3—H3O	0.8294	O7—H7O	0.8354
O4—C11	1.199 (5)	O8—C25	1.200 (6)
C1—C8	1.361 (6)	C15—C22	1.360 (6)
C1—C4	1.395 (6)	C15—C18	1.376 (7)
C2-C12	1.500 (8)	C16—C26	1.489 (8)
C2—C3	1.529 (7)	C16—C17	1.549 (8)
С2—Н2	0.9800	C16—H16	0.9800
C3—C4	1.501 (7)	C17—C18	1.502 (7)
С3—НЗА	0.9700	C17—H17A	0.9700
С3—Н3В	0.9700	C17—H17B	0.9700
C4—C5	1.369 (7)	C18—C19	1.379 (6)
C5—C6	1.389 (7)	C19—C20	1.384 (6)
С5—Н5	0.9300	C19—H19	0.9300
С6—С7	1.400 (5)	C20—C21	1.391 (6)
С6—С9	1.437 (7)	C20—C23	1.447 (5)
С7—С8	1.387 (6)	C21—C22	1.395 (5)
C9—C10	1.322 (7)	C23—C24	1.320 (7)
С9—Н9	0.9300	C23—H23	0.9300
C10-C11	1.437 (6)	C24—C25	1.433 (7)

C10—H10	0.9300	C24—H24	0.9300
C12—C14	1.313 (10)	C26—C28	1.363 (13)
C12—C13	1.461 (10)	C26—C27	1.422 (10)
C13—H13A	0.9600	С27—Н27А	0.9600
C13—H13B	0.9600	С27—Н27В	0.9600
C13—H13C	0.9600	С27—Н27С	0.9600
C14—H14A	0.9300	C28—H28A	0.9300
C14—H14B	0.9300	C28—H28B	0.9300
C1—O1—C2	107.8 (3)	C15—O5—C16	107.6 (4)
C7—O2—C11	121.7 (3)	C25—O6—C21	121.5 (3)
С8—О3—НЗО	136.1	С22—О7—Н7О	136.1
C8—C1—O1	123.7 (3)	C22—C15—O5	123.1 (4)
C8—C1—C4	123.2 (4)	C22—C15—C18	123.2 (4)
O1—C1—C4	113.1 (4)	O5—C15—C18	113.7 (4)
O1—C2—C12	107.9 (4)	O5—C16—C26	111.1 (5)
O1—C2—C3	106.3 (4)	O5—C16—C17	105.4 (3)
C12—C2—C3	116.1 (4)	C26—C16—C17	114.4 (5)
O1—C2—H2	108.8	O5—C16—H16	108.6
С12—С2—Н2	108.8	C26—C16—H16	108.6
С3—С2—Н2	108.8	C17—C16—H16	108.6
C4—C3—C2	103.2 (3)	C18—C17—C16	102.1 (4)
С4—С3—НЗА	111.1	C18—C17—H17A	111.3
С2—С3—Н3А	111.1	С16—С17—Н17А	111.3
C4—C3—H3B	111.1	C18—C17—H17B	111.3
С2—С3—Н3В	111.1	С16—С17—Н17В	111.3
НЗА—СЗ—НЗВ	109.1	H17A—C17—H17B	109.2
C5—C4—C1	119.3 (4)	C15—C18—C19	119.8 (4)
C5—C4—C3	133.1 (4)	C15—C18—C17	107.5 (4)
C1—C4—C3	107.6 (4)	C19—C18—C17	132.6 (4)
C4—C5—C6	120.0 (4)	C18—C19—C20	119.4 (4)
C4—C5—H5	120.0	С18—С19—Н19	120.3
C6—C5—H5	120.0	С20—С19—Н19	120.3
C5—C6—C7	118.4 (4)	C19—C20—C21	118.9 (4)
C5—C6—C9	126.0 (4)	C19—C20—C23	125.3 (4)
C7—C6—C9	115.5 (4)	C21—C20—C23	115.7 (4)
02	115.0 (3)	O6—C21—C20	122.2 (3)
02	122.3 (3)	O6—C21—C22	115.5 (3)
C8—C7—C6	122.7 (4)	C20—C21—C22	122.3 (4)
O3—C8—C1	120.0 (4)	C15—C22—O7	121.1(3)
03-C8-C7	123.6 (4)	C15-C22-C21	116.3 (4)
C1 - C8 - C7	116.4 (3)	07-C22-C21	122.6 (4)
C10-C9-C6	122.1 (4)	C_{24} C_{23} C_{20}	121.7(4)
С10—С9—Н9	119.0	C24—C23—H23	119.1
С6—С9—Н9	119.0	C20—C23—H23	119.1
C9—C10—C11	121.8 (4)	C_{23} C_{24} C_{25}	121.7 (4)
C9—C10—H10	119.1	C23—C24—H24	119.2
C11-C10-H10	119.1	C_{25} C_{24} H_{24}	119.2
			· · / · · ·

04 011 02	115(4)	09 025 00	1150(4)
04-011-02	115.6 (4)	08-025-06	115.8 (4)
04-011-010	127.9 (4)	08-025-024	127.0 (4)
02-C11-C10	116.5 (4)	06	117.2 (4)
C14—C12—C13	122.7 (7)	C28—C26—C27	123.5 (7)
C14—C12—C2	118.9 (7)	C28—C26—C16	121.9 (6)
C13—C12—C2	118.4 (5)	C27—C26—C16	114.7 (6)
C12—C13—H13A	109.5	С26—С27—Н27А	109.5
C12—C13—H13B	109.5	С26—С27—Н27В	109.5
H13A—C13—H13B	109.5	H27A—C27—H27B	109.5
С12—С13—Н13С	109.5	С26—С27—Н27С	109.5
H13A—C13—H13C	109.5	H27A—C27—H27C	109.5
H13B—C13—H13C	109.5	H27B—C27—H27C	109.5
C12—C14—H14A	120.0	C26—C28—H28A	120.0
C12—C14—H14B	120.0	C26—C28—H28B	120.0
H_{14A} $-C_{14}$ $-H_{14B}$	120.0	H_{28A} C_{28} H_{28B}	120.0
	120.0		120.0
C_{2} O_{1} C_{1} C_{8}	173 1 (5)	C16 O5 C15 C22	160 4 (5)
$C_2 = 01 = C_1 = C_8$	9 5 (C)	C16 O5 C15 C19	109.4(3)
$C_2 = 01 = C_1 = C_4$	-8.3(0)	C16 - 05 - C16 - C16	-9.7(0)
C1 = 01 = C2 = C12	139.0 (4)	C13 - 05 - C16 - C26	142.2 (4)
C1 = 01 = C2 = C3	13.8 (5)	C15—O5—C16—C17	17.7 (6)
01	-13.6 (5)	05	-18.6 (6)
C12—C2—C3—C4	-133.6 (5)	C26—C16—C17—C18	-141.0(5)
C8—C1—C4—C5	-0.9 (7)	C22—C15—C18—C19	1.1 (7)
O1—C1—C4—C5	-179.3 (4)	O5—C15—C18—C19	-179.8 (4)
C8—C1—C4—C3	177.8 (5)	C22-C15-C18-C17	177.9 (5)
O1—C1—C4—C3	-0.6 (6)	O5—C15—C18—C17	-3.1 (6)
C2—C3—C4—C5	-172.7 (5)	C16—C17—C18—C15	13.4 (6)
C2—C3—C4—C1	8.8 (5)	C16—C17—C18—C19	-170.5 (5)
C1—C4—C5—C6	0.9 (7)	C15—C18—C19—C20	-1.1 (7)
C3—C4—C5—C6	-177.5 (5)	C17—C18—C19—C20	-176.9(5)
C4—C5—C6—C7	-0.4 (6)	C18—C19—C20—C21	1.0 (7)
C4-C5-C6-C9	177 3 (4)	C18 - C19 - C20 - C23	-1769(4)
$C_{11} = 0^{2} = C_{11}^{2} =$	177.6 (4)	$C_{25} = 06 = C_{21} = C_{20}$	0.5 (6)
$C_{11} = 0^{2} = C_{11}^{2} =$	-36(6)	$C_{25} = 06 = C_{21} = C_{22}$	-1787(4)
$C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{3$	-178.7(4)	$C_{23} = 00 = C_{21} = 0.022$	170.7(4)
$C_{2} = C_{1} = C_{2}$	3 4 (6)	$C_{12}^{23} = C_{20}^{20} = C_{21}^{21} = 00$	-20(6)
$C_{2} = C_{1} = C_{2}$	5.4(0)	$C_{23} = C_{20} = C_{21} = C_{20}$	-2.0(0)
$C_{3} = C_{0} = C_{1} = C_{8}$	0.0(0)	C19 - C20 - C21 - C22	-1.0(7)
$C_{9} - C_{6} - C_{7} - C_{8}$	-1/.9(4)	C_{23} C_{20} C_{21} C_{22}	1//.2 (4)
01-01-03	-1.3 (/)	05-015-022-07	1.2 (/)
C4—C1—C8—O3	-179.6 (4)	C18—C15—C22—O7	-179.8 (4)
O1—C1—C8—C7	178.7 (4)	O5—C15—C22—C21	-180.0 (4)
C4—C1—C8—C7	0.5 (7)	C18—C15—C22—C21	-1.0 (7)
O2—C7—C8—O3	-1.2 (6)	O6—C21—C22—C15	-179.9 (4)
C6—C7—C8—O3	-180.0 (4)	C20-C21-C22-C15	0.9 (6)
O2—C7—C8—C1	178.8 (4)	O6—C21—C22—O7	-1.1 (6)
C6—C7—C8—C1	-0.1 (6)	C20—C21—C22—O7	179.7 (4)
C5-C6-C9-C10	-179.6 (5)	C19—C20—C23—C24	180.0 (5)
C7—C6—C9—C10	-1.9 (7)	C21—C20—C23—C24	2.0 (6)
	~ /		· /

C6—C9—C10—C11	0.5 (7)	C20—C23—C24—C25	-0.5 (8)
C7—O2—C11—O4	-179.5 (4)	C21—O6—C25—O8	-180.0 (5)
C7—O2—C11—C10	2.0 (6)	C21—O6—C25—C24	1.1 (7)
C9—C10—C11—O4	-178.8 (5)	C23—C24—C25—O8	-179.9 (6)
C9—C10—C11—O2	-0.5 (7)	C23—C24—C25—O6	-1.1 (8)
O1-C2-C12-C14	122.2 (7)	O5-C16-C26-C28	-10.8 (11)
C3—C2—C12—C14	-118.7 (7)	C17—C16—C26—C28	108.4 (10)
O1-C2-C12-C13	-57.9 (7)	O5-C16-C26-C27	167.1 (6)
C3—C2—C12—C13	61.3 (7)	C17—C16—C26—C27	-73.7 (8)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg9 are the centroids of rings O2/C6/C7/C9–C11 and C15–C22, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>O</i> …O8 ⁱ	0.83	1.85	2.676 (5)	174
O7—H7 <i>O</i> ···O4 ⁱⁱ	0.84	1.85	2.671 (5)	168
C10—H10…O3 ⁱⁱⁱ	0.93	2.53	3.199 (5)	129
C10—H10…O8 ^{iv}	0.93	2.50	3.415 (6)	166
C24—H24…O7 ^v	0.93	2.58	3.229 (5)	128
C24—H24···O4 ^{vi}	0.93	2.53	3.434 (5)	164
C3—H3 <i>B</i> ··· <i>Cg</i> 2 ^{vii}	0.97	2.95	3.871 (5)	160
C13—H13 <i>B</i> ··· <i>Cg</i> 9	0.96	2.92	3.680 (9)	137

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*; (iii) *x*, *y*, *z*-1; (iv) -*x*+2, *y*+1/2, -*z*; (v) *x*, *y*, *z*+1; (vi) -*x*+2, *y*-1/2, -*z*+1; (vii) *x*-1, *y*, *z*.