CRYSTALLOGRAPHIC COMMUNICATIONS

Received 9 February 2016
Accepted 8 March 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; redetermination; hydrogen bonding; refinement constraints; refinement restraints; Cambridge Structural Database.

CCDC reference: 1459296

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{gathered}\text { ACCESS }\end{gathered}$

Redetermination of cytosinium hydrogen maleatecytosine (1/1) from the original data

Jan Fábry*

Inst. of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic. ${ }^{*}$ Correspondence e-mail: fabry@fzu.cz

The title salt, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$, has been redetermined from the data published by Benali-Cherif, Falek \& Direm [Acta Cryst. (2009), E65, o3058-o3059]. The improvement of the present redetermination consists in the discovery of the splitting of one of the H atoms into two disordered positions, the occupancies of which are equal to 0.55 (2) and 0.45 (2). These H atoms are involved in an $\mathrm{N} \cdots \mathrm{N}$ hydrogen bond and are shifted towards its centre. The disorder of these H atoms is in agreement with a similar environment of the two independent, but chemically equivalent, cytosinium/cytosine molecules.

1. Chemical context

Structures which contain hydroxyl, secondary and primary amine groups are often determined incorrectly because of an assumed geometry of these groups and the subsequent applied constraints or restraints. In such cases, the correct geometry is missed as it is not verified by inspection of the difference electron-density maps. Thus a considerable number of structures could have been determined more correctly - cf. Figs. 1 and 2 in Fábry et al. (2014). The inclusion of such structures causes bias in the crystallographic databases.

.

In the course of recalculation of suspect structures which were retrieved from the Cambridge Crystallographic Database (Groom \& Allen, 2014), a defect in the structure determination of 2-amino-4,6-dimethoxypyrimidine-4-aminobenzoic acid (1/1) by Benali-Cherif et al. (2009) has been found; the CSD refcode is DUJCAN. The aim of the present article is to demonstrate how the original structure determination can be improved.

2. Structural commentary

The structure of the title compound has been described by Benali-Cherif et al. (2009). In that article, the hydrogen atom $\mathrm{H} 3 b$ was attached to atom $\mathrm{N} 3 b$ and refined with a distance constraint of $\mathrm{N} 3 b-\mathrm{H} 3 b=0.86 \AA$ with $U_{\text {iso }}(\mathrm{H} 3 b)=$ $1.2 U_{\text {eq }}(\mathrm{N} 3 b)$. This hydrogen is involved in the hydrogen bond $\mathrm{N} 3 b-\mathrm{H} 3 \mathrm{~b} \cdots \mathrm{~N} 3 a$ (Fig. 1).

Figure 1
View of the constituent molecules and atoms of the title structure in the original article [Benali-Cherif, Falek \& Direm (2009). Acta Cryst. E65, o3058-o3059]. The displacement ellipsoids are drawn at the 50% probability level.

However, inspection of the difference electron density map of the recalculated structure has shown that hydrogen atom $\mathrm{H} 3 b$ is disordered over two positions (Fig. 2), between atoms $\mathrm{N} 3 a$ and $\mathrm{N} 3 b$. Thus, atom H3b was split into two atoms, labelled as $\mathrm{H} 1 n 3 b$ and $\mathrm{H} 1 n 3 a$, with respective occupancies 0.52 (2) and 0.48 (2). These hydrogen atoms remain involved in the N3a $\cdots \mathrm{N} 3 b$ hydrogen bond (Table 1), as shown in Fig. 3.

The observed disorder of the secondary amine hydrogen atoms is probably due to the chemical equality of two symmetry-independent cytosinium/cytosine molecules and their quite similar environments. Otherwise, the description of

Figure 2
A section of the difference electron-density map for the present redetermined title structure, which shows the build up of the electron density between atoms N1 and N3. Positive and negative electron densities are indicated by continuous and dashed lines, respectively. The increment between the contours is $0.05 \mathrm{e}^{\AA^{-3}}$ (JANA2006; Petříček et al., 2014).

Figure 3
View of the constituent molecules and atoms of the present redetermined title structure. The displacement ellipsoids are drawn at the 50% probability level.
the hydrogen-bond pattern by Benali-Cherif et al. (2009) remains intact because locally one of the nitrogen atoms, $\mathrm{N} 3 a$ or N3b, acts as a donor while the other acts as an acceptor of the hydrogen bond.

The hydrogen atom H3, which was situated about the centre of the hydrogen bond $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ has also been checked (Fig. 4). It turns out that the build-up of the electron density is not split into two positions and the original position determined by Benali-Cherif et al. (2009) is correct.

In a broader sense, the present redetermination emphasizes how important it is to carefully examine the difference elec-tron-density maps during structure determinations.

Figure 4
A section of the difference electron-density map for the present redetermined title structure, which shows the build up of the electron density between atoms O 1 and O3. Positive and negative electron densities are indicated by continuous and dashed lines, respectively. The increment between the contours is 0.05 e \AA^{-3} (JANA2006; Petríček et al., 2014).

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 b-\mathrm{H} 1 b \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.956(15)$	$1.824(15)$	$2.7718(14)$	$170.8(13)$
$\mathrm{N} 8 b-\mathrm{H} 8 b 1 \cdots \mathrm{O} 7 b^{\mathrm{ii}}$	$0.900(17)$	$2.030(18)$	$2.8517(14)$	$151.2(13)$
$\mathrm{N} 8 b-\mathrm{H} 8 b 2 \cdots \mathrm{O} a a$	$0.992(15)$	$1.850(15)$	$2.8411(15)$	$177.4(12)$
$\mathrm{C} 5 b-\mathrm{H} 5 b \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.93	2.43	$3.3347(16)$	164.60
$\mathrm{~N} 1 a-\mathrm{H} 1 a \cdots \mathrm{O} 4$	$0.952(14)$	$1.793(14)$	$2.7411(14)$	$173.2(12)$
$\mathrm{N} 8 a-\mathrm{H} 8 a 1 \cdots \mathrm{O} 7 b$	$0.897(16)$	$1.959(16)$	$2.8555(15)$	$179.0(13)$
$\mathrm{N} 8 a-\mathrm{H} 8 a 2 \cdots \mathrm{O} 7 a^{\text {iv }}$	$0.885(17)$	$2.028(18)$	$2.8368(15)$	$151.5(14)$
$\mathrm{C} 5 a-\mathrm{H} 5 a \cdots 4^{\mathrm{iv}}$	0.93	2.37	$3.2970(16)$	175.15
$\mathrm{O} 1-\mathrm{H} 3 \cdots \mathrm{O} 3$	$1.223(14)$	$1.201(14)$	$2.4155(12)$	$170.6(15)$
$\mathrm{O} 1-\mathrm{H} 3 \cdots \mathrm{C} 1$	$1.223(14)$	$2.071(15)$	$3.0775(15)$	$136.7(11)$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	$1.201(14)$	$1.223(14)$	$2.4155(12)$	$170.6(15)$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{C} 4$	$1.201(14)$	$2.100(15)$	$3.0927(15)$	$137.4(12)$
$\mathrm{N} 3 b-\mathrm{H} 1 n 3 b \cdots \mathrm{~N} 3 a$	$0.861(16)$	$1.979(16)$	$2.8398(14)$	$178(2)$
$\mathrm{N} 3 a-\mathrm{H} 1 n 3 a \cdots \mathrm{~N} 3 b$	$0.873(18)$	$1.970(18)$	$2.8398(14)$	$174(3)$

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $x, y+1, z$.

3. Supramolecular features

The graph set analysis (Etter et al., 1990) of the title compound has been described by Benali-Cherif et al. (2009).

4. Database survey

The CIF file of the article by Benali-Cherif et al. (2009) has been included in the Cambridge Crystallographic Database (Groom \& Allen, 2014) under the refcode DUJCAN.

5. Synthesis and crystallization

The preparation of the title compound has been described by Benali-Cherif et al. (2009).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the hydrogen atoms were discernible in the difference electron density maps. The aryl hydrogen atoms were refined as constrained with $\mathrm{C}_{\text {aryl }}-\mathrm{H}_{\text {aryl }}$ $=0.93 \AA$ and $U_{\text {iso }}\left(\mathrm{H}_{\text {aryl }}\right)=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aryl }}\right)$. The displacement parameter of the hydroxyl hydrogen atom H 3 was constrained by $U_{\text {iso }}(\mathrm{H} 3)=1.5 U_{\text {eq }}(\mathrm{O} 3)$. The hydrogen atoms of the primary and secondary amine groups were constrained by $U_{\text {iso }}\left(\mathrm{H}_{\text {amine }}\right)$ $=1.2 U_{\text {eq }}\left(\mathrm{N}_{\text {amine }}\right)$. In addition, the distances of the disordered amine hydrogen atoms, $\mathrm{H} 1 n 36$ and $\mathrm{H} 1 n 3 b$, were refined with the distance restraint $\mathrm{N}-\mathrm{H}=0.87$ (1) \AA, and their occupational parameters constrained to fulfill the condition that their sum $=1[$ viz. $0.55(2)(\mathrm{H} 1 n 3 b)$ and $0.45(2)(\mathrm{H} 1 n 3 \mathrm{a})]$.

Nine reflections [5 $10 ;-911 ;-111 ;-821 ; 421 ;-202 ; 00$ 2;-3 12 ; - $2008 ; 2228$] for which $\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|>10 \sigma(F)$ were omitted from the final cycles of refinement.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$
M_{r}	338.29
Crystal system, space group	Monoclinic, $C 2 / c$
Temperature (K)	298
$a, b, c(\AA)$	$27.3226(5), 7.3618(2), 14.6742(4)$
$\beta\left({ }^{\circ}\right)$	$93.905(1)$
$V\left(\mathrm{~A}^{3}\right)$	$2944.77(13)$
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.13
Crystal size (mm)	$0.3 \times 0.15 \times 0.1$
Data collection	Nonius KappaCCD
Diffractometer	$3490,3474,2367$
No. of measured, independent and	
\quad observed $[I>3 \sigma(I)]$ reflections	0.043
$R_{\text {int }}$	0.661
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA{ }^{-1}\right)$	
Refinement	$0.038,0.093,1.85$
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	3474
No. of reflections	246
No. of parameters	2
No. of restraints	H atoms treated by a mixture of
H -atom treatment	restrained and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.20,-0.20$

Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski \& Minor, 1997), SIR2004 (Burla et al., 2005), PLATON (Spek, 2009) and JANA2006 (Petříček et al., 2014). Extinction correction: Becker \& Coppens (1974).

Acknowledgements

The author is grateful for the support of the Ministry of Education of the Czech Republic under Project NPU I-LO1603.

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Benali-Cherif, N., Falek, W. \& Direm, A. (2009). Acta Cryst. E65, o3058-o3059.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.

Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Fábry, J., Dušek, M., Vaněk, P., Rafalovskyi, I., Hlinka, J. \& Urban, J. (2014). Acta Cryst. C70, 1153-1160.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Petríček, V., Dušek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2016). E72, 509-511 [https://doi.org/10.1107/S2056989016003923]

Redetermination of cytosinium hydrogen maleate-cytosine (1/1) from the original data

Jan Fábry

Computing details

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: PLATON (Spek, 2009) and JANA2006 (Petříček et al., 2014); software used to prepare material for publication: JANA2006 (Petríčček et al., 2014).

Cytosinium hydrogen maleate-cytosine (1/1)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=338.29$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=27.3226(5) \AA$
$b=7.3618$ (2) \AA
$c=14.6742(4) \AA$
$\beta=93.905(1)^{\circ}$
$V=2944.77(13) \AA^{3}$
$Z=8$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega-\theta$ scans
3490 measured reflections
3474 independent reflections
$F(000)=1408$
$D_{\mathrm{x}}=1.526 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3490 reflections
$\theta=2.8-28.0^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colourless
$0.3 \times 0.15 \times 0.1 \mathrm{~mm}$

2367 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=0 \rightarrow 35$
$k=0 \rightarrow 9$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
$R[F>3 \sigma(F)]=0.038$
$w R(F)=0.093$
$S=1.85$
3474 reflections
246 parameters
2 restraints
33 constraints

H atoms treated by a mixture of independent and constrained refinement
Weighting scheme based on measured s.u.'s $w=$ $1 /\left(\sigma^{2}(I)+0.0004 I^{2}\right)$
$(\Delta / \sigma)_{\max }=0.022$
$\Delta \rho_{\text {max }}=0.20$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Extinction correction: B-C type 1 Lorentzian isotropic (Becker \& Coppens, 1974)

Extinction coefficient: 21000 (5000)

Special details

Refinement. This part differs from the original article by Benali-Cherif et al. (2009). In the refinement, $\mathrm{F}^{2}>3 \sigma\left(\mathrm{~F}^{2}\right)$ has been used as a criterion for observed diffractions.
The diffractions for which $\| \mathrm{Fo}|-|\mathrm{Fc}||>10 \sigma(\mathrm{~F})$ were discarded from the refinement. This refers to the diffractions $510 ;-91$ 1;-111;-821; 421 ; -2 $02 ; 002$; -3 12 ; -20 08 ; 2228.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O7b	0.33926 (3)	1.06385 (11)	0.29287 (6)	0.0445 (3)	
N1b	0.40065 (3)	0.90018 (14)	0.23744 (7)	0.0400 (3)	
H1b	0.4157 (5)	1.011 (2)	0.2197 (9)	0.048*	
N3b	0.33591 (3)	0.75686 (12)	0.30318 (7)	0.0368 (3)	
N8b	0.33297 (5)	0.44786 (15)	0.31476 (9)	0.0506 (4)	
H8b1	0.3454 (5)	0.338 (2)	0.3026 (9)	0.0607*	
H8b2	0.3002 (6)	0.458 (2)	0.3394 (9)	0.0607*	
C2b	0.35770 (4)	0.91429 (16)	0.27860 (8)	0.0352 (4)	
C4b	0.35664 (4)	0.59317 (16)	0.28928 (8)	0.0386 (4)	
C5b	0.40187 (4)	0.58331 (18)	0.24835 (9)	0.0443 (4)	
H5b	0.416945	0.472174	0.23913	0.0531*	
C6b	0.42233 (5)	0.73892 (18)	0.22326 (9)	0.0443 (4)	
H6b	0.451959	0.735942	0.195619	0.0531*	
O7a	0.23772 (3)	0.47438 (12)	0.38018 (7)	0.0481 (3)	
N1a	0.17576 (3)	0.63613 (15)	0.43512 (7)	0.0413 (3)	
H1a	0.1595 (4)	0.528 (2)	0.4518 (9)	0.0496*	
N3a	0.24303 (3)	0.78185 (13)	0.37815 (7)	0.0375 (3)	
N8a	0.24808 (5)	1.09110 (16)	0.37611 (9)	0.0522 (4)	
H8al	0.2767 (6)	1.0812 (19)	0.3501 (10)	0.0627*	
H8a2	0.2363 (5)	1.200 (2)	0.3886 (10)	0.0627*	
C2a	0.21958 (4)	0.62341 (16)	0.39695 (8)	0.0364 (4)	
C4a	0.22340 (4)	0.94481 (16)	0.39665 (8)	0.0388 (4)	
C5a	0.17788 (4)	0.95478 (18)	0.43679 (9)	0.0439 (4)	
H5a	0.164021	1.066081	0.450387	0.0527*	
C6a	0.15539 (5)	0.79794 (18)	0.45457 (9)	0.0447 (4)	
H6a	0.125322	0.800462	0.480683	0.0536*	
O1	0.00024 (3)	0.51326 (12)	0.62974 (6)	0.0463 (3)	
O2	-0.05067 (3)	0.30108 (13)	0.67262 (7)	0.0560 (3)	
O3	0.07413 (3)	0.53082 (11)	0.54869 (6)	0.0433 (3)	
H3	0.0368 (5)	0.535 (2)	0.5874 (9)	0.0649*	
O4	0.12217 (3)	0.33900 (14)	0.48088 (7)	0.0555 (3)	
C1	0.08603 (4)	0.37076 (18)	0.52453 (8)	0.0394 (4)	
C2	0.05595 (5)	0.21144 (19)	0.54864 (10)	0.0512 (5)	
H1	0.067397	0.100138	0.528962	0.0614*	
C3	0.01546 (5)	0.20204 (19)	0.59362 (10)	0.0523 (5)	
H2	0.003281	0.085236	0.600501	0.0628*	
C4	-0.01355 (4)	0.34770 (18)	0.63476 (8)	0.0415 (4)	

H 1 n 3 b	$0.3079(5)$	$0.763(3)$	$0.3267(14)$	0.0442^{*}	$0.554(16)$
H 1 n 3 a	$0.2718(6)$	$0.783(4)$	$0.3556(18)$	0.045^{*}	$0.446(16)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O7b	$0.0462(5)$	$0.0256(5)$	$0.0628(6)$	$0.0015(3)$	$0.0110(4)$	$-0.0015(4)$
N1b	$0.0413(6)$	$0.0342(6)$	$0.0454(6)$	$-0.0014(4)$	$0.0100(5)$	$-0.0016(5)$
N3b	$0.0375(5)$	$0.0249(6)$	$0.0486(6)$	$0.0009(4)$	$0.0073(4)$	$-0.0018(4)$
N8b	$0.0551(7)$	$0.0278(6)$	$0.0705(8)$	$0.0025(5)$	$0.0171(6)$	$0.0000(5)$
C2b	$0.0374(6)$	$0.0291(7)$	$0.0388(7)$	$0.0009(5)$	$0.0007(5)$	$-0.0022(5)$
C4b	$0.0450(6)$	$0.0285(7)$	$0.0420(7)$	$0.0019(5)$	$0.0002(5)$	$-0.0021(5)$
C5b	$0.0452(7)$	$0.0368(8)$	$0.0516(8)$	$0.0105(5)$	$0.0093(6)$	$-0.0029(6)$
C6b	$0.0425(6)$	$0.0435(8)$	$0.0476(8)$	$0.0062(5)$	$0.0093(6)$	$-0.0040(6)$
O7a	$0.0468(5)$	$0.0246(5)$	$0.0740(6)$	$0.0004(4)$	$0.0134(4)$	$-0.0008(4)$
N1a	$0.0382(5)$	$0.0335(6)$	$0.0532(6)$	$-0.0044(4)$	$0.0100(5)$	$-0.0018(5)$
N3a	$0.0354(5)$	$0.0246(5)$	$0.0531(6)$	$0.0008(4)$	$0.0079(4)$	$-0.0001(4)$
N8a	$0.0515(6)$	$0.0263(6)$	$0.0806(9)$	$0.0013(5)$	$0.0171(6)$	$0.0004(6)$
C2a	$0.0374(6)$	$0.0269(7)$	$0.0448(7)$	$0.0008(5)$	$0.0024(5)$	$0.0000(5)$
C4a	$0.0400(6)$	$0.0296(7)$	$0.0467(7)$	$0.0024(5)$	$0.0009(5)$	$-0.0017(5)$
C5a	$0.0421(7)$	$0.0341(7)$	$0.0560(8)$	$0.0085(5)$	$0.0059(6)$	$-0.0059(6)$
C6a	$0.0375(6)$	$0.0457(8)$	$0.0514(8)$	$0.0032(5)$	$0.0073(6)$	$-0.0065(6)$
O1	$0.0411(5)$	$0.0411(6)$	$0.0582(6)$	$-0.0016(4)$	$0.0155(4)$	$-0.0041(4)$
O2	$0.0471(5)$	$0.0532(6)$	$0.0703(7)$	$-0.0059(4)$	$0.0234(5)$	$0.0033(5)$
O3	$0.0426(5)$	$0.0365(5)$	$0.0521(5)$	$-0.0035(4)$	$0.0137(4)$	$-0.0025(4)$
O4	$0.0547(5)$	$0.0476(6)$	$0.0677(6)$	$-0.0001(4)$	$0.0288(5)$	$-0.0052(5)$
C1	$0.0402(6)$	$0.0388(7)$	$0.0398(7)$	$0.0003(5)$	$0.0070(5)$	$-0.0002(6)$
C2	$0.0545(8)$	$0.0338(8)$	$0.0675(9)$	$0.0020(6)$	$0.0202(7)$	$-0.0028(6)$
C3	$0.0544(8)$	$0.0332(8)$	$0.0714(10)$	$-0.0045(6)$	$0.0185(7)$	$0.0033(7)$
C4	$0.0383(6)$	$0.0417(8)$	$0.0449(7)$	$-0.0028(5)$	$0.0059(5)$	$0.0025(6)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

O7b-C2b	$1.2345(14)$	$\mathrm{N} 3 \mathrm{a}-\mathrm{H} 1 \mathrm{n} 3 \mathrm{a}$	$0.873(18)$
N1b-H1b	$0.956(15)$	$\mathrm{N} 8 \mathrm{a}-\mathrm{H} 8 \mathrm{a} 1$	$0.897(16)$
N1b-C2b	$1.3600(15)$	$\mathrm{N} 8 \mathrm{a}-\mathrm{H} 8 \mathrm{a} 2$	$0.885(17)$
N1b-C6b	$1.3492(17)$	$\mathrm{N} 8 \mathrm{a}-\mathrm{C} 4 \mathrm{a}$	$1.3165(17)$
N3b-C2b	$1.3627(15)$	$\mathrm{H} 8 \mathrm{a} 1-\mathrm{H} 8 \mathrm{a} 2$	$1.54(2)$
N3b-C4b	$1.3528(15)$	$\mathrm{C} 4 \mathrm{a}-\mathrm{C} 5 \mathrm{a}$	$1.4137(17)$
N3b-H1n3b	$0.861(16)$	$\mathrm{C} 5 \mathrm{a}-\mathrm{H} 5 \mathrm{a}$	0.93
N8b-H8b1	$0.900(17)$	$\mathrm{C} 5 \mathrm{a}-\mathrm{C} 6 \mathrm{a}$	$1.3420(19)$
N8b-H8b2	$0.992(15)$	$\mathrm{C} 6 \mathrm{a}-\mathrm{H} 6 \mathrm{a}$	0.93
N8b-C4b	$1.3174(17)$	$\mathrm{O} 1-\mathrm{H} 3$	$1.223(14)$
H8b1-H8b2	$1.64(2)$	$\mathrm{O} 1-\mathrm{C} 4$	$1.2793(16)$
C4b-C5b	$1.4123(17)$	$\mathrm{O} 2-\mathrm{C} 4$	$1.2376(15)$
C5b-H5b	0.93	$\mathrm{O} 3-\mathrm{H} 3$	$1.201(14)$
C5b-C6b	$1.3373(18)$	$\mathrm{O} 3-\mathrm{C} 1$	$1.2789(15)$
C6b-H6b	0.93	$\mathrm{O} 4-\mathrm{C} 1$	$1.2354(15)$

O7a-C2a	1.2356 (14)	$\mathrm{C} 1-\mathrm{C} 2$	1.4886 (19)
N1a-H1a	0.952 (14)	C2-H1	0.93
N1a-C2a	1.3591 (15)	C2-C3	1.328 (2)
N1a-C6a	1.3535 (17)	$\mathrm{C} 3-\mathrm{H} 2$	0.93
N3a-C2a	1.3679 (15)	C3-C4	1.4859 (19)
N3a-C4a	1.3493 (15)	H1n3b-H1n3a	1.11 (2)
H1b-N1b-C2b	117.2 (8)	H8a2-N8a-C4a	119.4 (10)
H1b-N1b-C6b	120.3 (8)	O7a-C2a-N1a	121.32 (11)
$\mathrm{C} 2 \mathrm{~b}-\mathrm{N} 1 \mathrm{~b}-\mathrm{C} 6 \mathrm{~b}$	122.48 (11)	O7a-C2a-N3a	121.14 (10)
$\mathrm{C} 2 \mathrm{~b}-\mathrm{N} 3 \mathrm{~b}-\mathrm{C} 4 \mathrm{~b}$	121.52 (10)	N1a-C2a-N3a	117.53 (10)
$\mathrm{C} 2 \mathrm{~b}-\mathrm{N} 3 \mathrm{~b}-\mathrm{H} 1 \mathrm{n} 3 \mathrm{~b}$	118.7 (15)	N3a-C4a-N8a	117.68 (11)
$\mathrm{C} 4 \mathrm{~b}-\mathrm{N} 3 \mathrm{~b}-\mathrm{H} 1 \mathrm{n} 3 \mathrm{~b}$	119.8 (15)	N3a-C4a-C5a	120.20 (11)
H8b1-N8b-H8b2	120.1 (13)	$\mathrm{N} 8 \mathrm{a}-\mathrm{C} 4 \mathrm{a}-\mathrm{C} 5 \mathrm{a}$	122.12 (12)
H8b1-N8b-C4b	118.2 (9)	C4a-C5a-H5a	121.18
H8b2-N8b-C4b	121.2 (9)	C4a-C5a-C6a	117.64 (12)
O7b-C2b-N1b	121.19 (11)	H5a-C5a-C6a	121.18
$\mathrm{O} 7 \mathrm{~b}-\mathrm{C} 2 \mathrm{~b}-\mathrm{N} 3 \mathrm{~b}$	121.54 (10)	N1a-C6a-C5a	121.06 (12)
N1b-C2b-N3b	117.28 (10)	N1a-C6a-H6a	119.47
N3b-C4b-N8b	117.51 (11)	C5a-C6a-H6a	119.47
$\mathrm{N} 3 \mathrm{~b}-\mathrm{C} 4 \mathrm{~b}-\mathrm{C} 5 \mathrm{~b}$	119.83 (11)	H3-O1-C4	114.1 (8)
N8b-C4b-C5b	122.67 (11)	H3-O3-C1	113.3 (8)
C4b-C5b-H5b	121.07	$\mathrm{O} 1-\mathrm{H} 3-\mathrm{O} 3$	170.6 (15)
$\mathrm{C} 4 \mathrm{~b}-\mathrm{C} 5 \mathrm{~b}-\mathrm{C} 6 \mathrm{~b}$	117.86 (12)	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 4$	123.05 (12)
H5b-C5b-C6b	121.07	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	120.35 (11)
N1b-C6b-C5b	121.00 (12)	$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2$	116.60 (12)
N1b-C6b-H6b	119.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1$	114.68
C5b-C6b-H6b	119.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	130.64 (13)
H1a-N1a-C2a	119.2 (8)	H1-C2-C3	114.68
H1a-N1a-C6a	118.4 (8)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 2$	114.74
C2a-N1a-C6a	122.28 (11)	C2-C3-C4	130.53 (13)
$\mathrm{C} 2 \mathrm{a}-\mathrm{N} 3 \mathrm{a}-\mathrm{C} 4 \mathrm{a}$	121.30 (10)	H2-C3-C4	114.74
$\mathrm{C} 2 \mathrm{a}-\mathrm{N} 3 \mathrm{a}-\mathrm{H} 1 \mathrm{n} 3 \mathrm{a}$	121.9 (18)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	122.93 (12)
$\mathrm{C} 4 \mathrm{a}-\mathrm{N} 3 \mathrm{a}-\mathrm{H} 1 \mathrm{n} 3 \mathrm{a}$	116.8 (18)	O1-C4-C3	119.78 (11)
H8a1-N8a-H8a2	120.2 (14)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	117.28 (12)
H8al-N8a-C4a	120.4 (9)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1 b-\mathrm{H} 1 b \cdots \mathrm{O} 2^{\mathrm{i}}$	0.956 (15)	1.824 (15)	2.7718 (14)	170.8 (13)
$\mathrm{N} 8 b-\mathrm{H} 8 b 1 \cdots \mathrm{O} 7 b^{\mathrm{ii}}$	0.900 (17)	2.030 (18)	2.8517 (14)	151.2 (13)
$\mathrm{N} 8 b-\mathrm{H} 8 b 2 \cdots \mathrm{O} 7 a$	0.992 (15)	1.850 (15)	2.8411 (15)	177.4 (12)
$\mathrm{C} 5 b-\mathrm{H} 5 b \cdots \mathrm{O} 2^{\text {iii }}$	0.93	2.43	3.3347 (16)	164.60
$\mathrm{N} 1 a-\mathrm{H} 1 a \cdots \mathrm{O} 4$	0.952 (14)	1.793 (14)	2.7411 (14)	173.2 (12)
$\mathrm{N} 8 a-\mathrm{H} 8 a 1 \cdots \mathrm{O} 7 b$	0.897 (16)	1.959 (16)	2.8555 (15)	179.0 (13)
$\mathrm{N} 8 a-\mathrm{H} 8 a 2 \cdots \mathrm{O} a^{\text {iv }}$	0.885 (17)	2.028 (18)	2.8368 (15)	151.5 (14)
$\mathrm{C} 5 a-\mathrm{H} 5 a \cdots \mathrm{O} 4{ }^{\text {iv }}$	0.93	2.37	3.2970 (16)	175.15

$\mathrm{O} 1 — \mathrm{H} 3 \cdots \mathrm{O} 3$	$1.223(14)$	$1.201(14)$	$2.4155(12)$	$170.6(15)$
$\mathrm{O} 1 — \mathrm{H} 3 \cdots \mathrm{C} 1$	$1.223(14)$	$2.071(15)$	$3.0775(15)$	$136.7(11)$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1$	$1.201(14)$	$1.223(14)$	$2.4155(12)$	$170.6(15)$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{C} 4$	$1.201(14)$	$2.100(15)$	$3.0927(15)$	$137.4(12)$
$\mathrm{N} 3 b — \mathrm{H} 1 n 3 b \cdots \mathrm{~N} 3 a$	$0.861(16)$	$1.979(16)$	$2.8398(14)$	$178(2)$
$\mathrm{N} 3 a-\mathrm{H} 1 n 3 a \cdots \mathrm{~N} 3 b$	$0.873(18)$	$1.970(18)$	$2.8398(14)$	$174(3)$

Symmetry codes: (i) $x+1 / 2,-y+3 / 2, z-1 / 2$; (ii) $x, y-1, z$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iv) $x, y+1, z$.

