

Received 24 February 2016 Accepted 1 March 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; pyridopyrimidine; pyridopyrrolopyrimidine; 4-nitrobenzaldehyde; ylidene derivative; hydrogen bonding.

CCDC reference: 1456732

Supporting information: this article has supporting information at journals.iucr.org/e

whi repo

Crystal structure of (*E*)-9-(4-nitrobenzylidene)-8,9dihydropyrido[2,3-*d*]pyrrolo[1,2-*a*]pyrimidin-5(7*H*)-one

Khamid U. Khodjaniyazov^{a*} and Jamshid M. Ashurov^b

^aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and ^bA. S. Sadikov Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 83, Tashkent 100125, Uzbekistan. *Correspondence e-mail: hamidkhodjaniyazov@yandex.ru

The title compound, $C_{17}H_{12}N_4O_3$, a pyridopyrrolopyrimidine derivative, is almost planar. The nitrobenzene ring is inclined to the mean plane of the 8,9-dihydropyrido[2,3-*d*]pyrrolo[1,2-*a*]pyrimidin-5(7*H*)-one moiety (r.m.s. deviation = 0.023 Å) by 6.8 (1)°. In the crystal, molecules are linked *via* C– H···O and C–H···N hydrogen bonds, forming layers parallel to (101).

1. Chemical context

Pyrido[2,3-d]pyrimidines, and their derivatives, are an important group of heterocyclic compounds that exhibit biological and pharmacological activities. For example, Le Corre et al. (2010) have produced a library of pyrido[2,3-d]pyrimidines designed as inhibitors of FGFR3 tyrosine kinase. Ramana Reddy et al. (2014) have shown that such compounds are potent inhibitors of cyclin-dependent Kinase 4 (CDK4) and AMPK-related Kinase 5 (ARK5). A series of pyrazolo [4,3d pyrimidin-7-ones were synthesized to study their pyrido kinases (CDKs) inhibitory activities (Geffken et al. 2011). The antitumor activity of some new pyrido[2,3-d][1,2,4]triazolo-[4,3-a]pyrimidin-5-one derivatives have also been studied (El-Nassan, 2011), and the antitumor activity of pyrido[2,3*d*]pyrimidine and pyrido[2,3-*d*][1,2,4]triazolo[4,3-*a*]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest have been reported on by Fares et al. (2014). The above observations prompted us to synthesize the title compound, which contains a pyrido [2,3-d] pyrimidin-4-one moiety, and we report herein on its crystal structure.

2. Structural commentary

In the molecular structure of the title compound (Fig. 1), the three fused rings of the 8,9-dihydropyrido[2,3-*d*]pyrrolo-[1,2-a]pyrimidin-5(7*H*)-one moiety (N1–N3/C1–C10), are essentially planar (r.m.s. deviation = 0.023 Å), with the maximum deviation from the mean plane being 0.036 (2) Å

Figure 1

Molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

for atom C8. The nitrobenzene ring (C12–C17) is inclined to this mean plane by 6.8 (1)°, while the nitro group (N4/O2/O3) is inclined to the benzene ring by 15.0 (3)°.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C3–H3···N3 ⁱ	0.93	2.58	3.292 (3)	133
$C4-H4\cdots N1^{i}$	0.93	2.57	3.480 (3)	166
C13−H13···O3 ⁱⁱ	0.93	2.51	3.363 (3)	153
$C16-H16\cdots O1^{iii}$	0.93	2.45	3.259 (3)	145

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, y + 1, z.

3. Supramolecular features

In the crystal, molecules are linked *via* C–H···O and C– H···N hydrogen bonds, forming layers lying parallel to (101); see Fig. 2 and Table 1. Within the layers there are $R_2^2(7)$, $R_3^3(17)$, and $R_3^3(21)$ graph-set motifs present (Fig. 2). The layers are separated by an average interplanar distance of *ca* 3.4 Å, but there are no significant interlayer interactions present (Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom & Allen, 2014) was carried

Figure 2

A view along the *a* axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, H atoms not involved in hydrogen bonding have been omitted.

A view along the *b* axis of the crystal packing of the title compound. The hydrogen bonds and interplanar distances (of *ca* 3.4 Å) are shown as dashed lines (see Table 1). For clarity, H atoms not involved in hydrogen bonding have been omitted.

out for various substructures (**S1** and **S2**; Fig. 4) resembling the title compound. For substructure **S1** (8,9-dihydropyrido[2,3-d]pyrrolo[1,2-a]pyrimidin-5(7H)-one), no hits were obtained. For substructure **S2** (4H-3 λ 2-pyrido[2,3-d]pyrimidin-4-one), seven hits were found. Two of these compounds have substructure **S3** (pyrido[2',3':4,5]pyrimido[1,2-a]indol-5(11H)-one), *viz* 9-fluoropyrido[2',3':4,5]pyrimido[1,2-a]indole-5,11-dione (refcode NIJYIP; CCDC 269950; Hicks *et al.*, 2005), and 9-bromopyrido[2',3':4,5]pyrimido[1,2-a]indole-5,11-dione (refcode NIJYOV; CCDC 218226; DiTusa, 2003). They are classed as tryptanthrins, which have been shown to have strong antibacterial activity, for example, against malaria (Hicks *et al.*, 2005).

Substructures used for the database survey.

5. Synthesis and crystallization

To a mixture of 2,3-trimethylenepyrido[2,3-d]pyrimidin-4-one (0.094 g, 0.5 mmol) and *p*-nitrobenzaldehyde (0.094 g, 0.6 mmol) was added acetic acid (3 ml, 98%). This mixture was

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{17}H_{12}N_4O_3$
$M_{\rm r}$	320.31
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	7.1755 (3), 11.5855 (3), 17.2515 (5)
β (°)	90.360 (3)
$V(Å^3)$	1434.12 (8)
Ζ	4
Radiation type	Cu Κα
$\mu \text{ (mm}^{-1})$	0.88
Crystal size (mm)	$0.20\times0.18\times0.15$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Ruby
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)
Tmin, Tmax	0.928, 1.000
No. of measured, independent and	10375, 2965, 2194
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.045
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.629
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.175, 1.08
No. of reflections	2965
No. of parameters	217
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.31, -0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97, XP and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

refluxed in an oil bath (ca. 423-433 K) for 5 h after which it was left to stand for 24 h. During this time a yellow precipitate formed. It was filtered and washed with distilled water, giving yellow crystals of the title compound (yield: 0.144 g, 0.45 mmol, 90%; m.p. 567–568 K). Yellow block-like crystals suitable for X-ray analysis were grown from a solution of ethanol:water (2:1) by slow evaporation at room temperature. The title product is insoluble in benzene, chloroform, acetic acid, acetone, DMF, and DMSO, but soluble in trifluoroacetic acid. ¹H NMR (400MHz, CDCl₃, δ , p.p.m., *J*/Hz): 3.15 (2H, *td*, *J* = 6.5; 2.9, β -CH₂), 4.16 (2H, *t*, *J* = 6.5, γ -CH₂), 7.44 (2H, *d*, *J* = 8.8, H-2',6'), 7.60 (1H, *dd*, *J* = 7.9; 5.9, H-6), 7.83 (1H, *t*, *J* = 2.9, ==CH), 7.98 (2H, *d*, *J* = 8.8, H-3',5'), 8.63 (1H, *dd*, *J* = 5.9; 1.7, H-5), 9.00 (1H, *dd*, *J* = 7.9; 1.7, H-7). *R*_f = 0.47 (chloroform:methanol, 10:1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and included in the final cycles of refinement using a riding-model approximation: C-H = 0.93-0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

This work was supported by a Fundamental grant (FA-F7-T207: Theoretical aspects of formation of asymmetrical centers in biologically active heterocyclic molecules) from the Academy of Sciences of the Republic of Uzbekistan.

References

- DiTusa, C. A. (2003). Private communication. CCDC, Cambridge, UK.
- El-Nassan, H. B. (2011). Eur. J. Med. Chem. 46, 2031-2036.
- Fares, M., Abou-Seri, S. M., Abdel-Aziz, H. A., Abbas, S. E.-S., Youssef, M. M. & Eladwy, R. A. (2014). *Eur. J. Med. Chem.* 83, 155– 166.
- Geffken, D., Soliman, R., Soliman, F. S. G., Abdel-Khalek, M. M. & Issa, D. A. E. (2011). *Med. Chem. Res.* 20, 408–420.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hicks, R. P., Nichols, D. A., DiTusa, C. A., Sullivan, D. J., Hartell, M. G., Koser, B. W. & Bhattacharjee, A. K. (2005). *Internet Electronic J. Mol. Des.* 4, 751–764.
- Le Corre, L., Girard, A. L., Aubertin, J., Radvanyi, F., Benoist-Lasselin, C., Jonquoy, A., Mugniery, E., Legeai-Mallet, L., Busca, P. & Le Merrer, Y. (2010). *Org. Biomol. Chem.* **8**, 2164–2173.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Reddy, M. V. R., Akula, B., Cosenza, S. C., Athuluridivakar, S., Mallireddigari, M. R., Pallela, V. R., Billa, V. K., Subbaiah, D. R. C. V., Bharathi, E. V., Carpio, R. V.-D., Padgaonkar, A., Baker, S. J. & Reddy, E. P. (2014). J. Med. Chem. 57, 578–599.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

supporting information

Acta Cryst. (2016). E72, 452-455 [https://doi.org/10.1107/S2056989016003583]

Crystal structure of (*E*)-9-(4-nitrobenzylidene)-8,9-dihydropyrido[2,3-*d*]pyrrolo-[1,2-*a*]pyrimidin-5(7*H*)-one

Khamid U. Khodjaniyazov and Jamshid M. Ashurov

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2009); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(E)-9-(4-Nitrobenzylidene)-8,9-dihydropyrido[2,3-d]pyrrolo[1,2-a]pyrimidin-5(7H)-one

Crystal data

 $\begin{array}{l} C_{17}H_{12}N_4O_3\\ M_r = 320.31\\ \text{Monoclinic, } P2_1/c\\ a = 7.1755 \ (3) \ \text{\AA}\\ b = 11.5855 \ (3) \ \text{\AA}\\ c = 17.2515 \ (5) \ \text{\AA}\\ \beta = 90.360 \ (3)^\circ\\ V = 1434.12 \ (8) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Detector resolution: 10.2576 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.928, T_{\max} = 1.000$ 10375 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.175$ S = 1.082965 reflections 217 parameters 0 restraints F(000) = 664 $D_x = 1.483 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2842 reflections $\theta = 4.6-75.6^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.20 \times 0.18 \times 0.15 \text{ mm}$

2965 independent reflections 2194 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 76.0^{\circ}, \ \theta_{min} = 4.6^{\circ}$ $h = -8 \rightarrow 9$ $k = -7 \rightarrow 14$ $l = -21 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0826P)^2 + 0.3825P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7005 (3)	-0.09081 (15)	0.54727 (12)	0.0677 (6)
O2	0.9284 (3)	0.88109 (16)	0.33072 (13)	0.0718 (6)
O3	0.9755 (5)	0.7632 (2)	0.23673 (14)	0.0913 (9)
N1	0.6413 (3)	0.24377 (15)	0.62105 (12)	0.0462 (5)
N2	0.7312 (3)	0.10238 (16)	0.52922 (11)	0.0446 (5)
N3	0.5181 (4)	0.18637 (18)	0.73866 (13)	0.0584 (6)
N4	0.9345 (3)	0.78291 (19)	0.30362 (13)	0.0560 (6)
C1	0.7062 (3)	0.21345 (18)	0.55449 (13)	0.0428 (5)
C2	0.6831 (4)	0.00730 (19)	0.57260 (15)	0.0471 (5)
C3	0.5521 (4)	-0.0476 (2)	0.70117 (16)	0.0527 (6)
H3	0.5655	-0.1253	0.6891	0.063*
C4	0.4772 (4)	-0.0150 (2)	0.76967 (16)	0.0572 (7)
H4	0.4362	-0.0698	0.8051	0.069*
C5	0.4631 (5)	0.1021 (2)	0.78581 (16)	0.0611 (7)
Н5	0.4114	0.1232	0.8330	0.073*
C6	0.5898 (3)	0.15420 (19)	0.66978 (14)	0.0454 (5)
C7	0.6088 (3)	0.03714 (19)	0.64897 (13)	0.0441 (5)
C8	0.7641 (3)	0.29244 (19)	0.49255 (13)	0.0428 (5)
C9	0.8364 (4)	0.2207 (2)	0.42615 (14)	0.0506 (6)
H9A	0.9678	0.2356	0.4178	0.061*
H9B	0.7685	0.2379	0.3787	0.061*
C10	0.8050 (4)	0.0949 (2)	0.45079 (15)	0.0526 (6)
H10A	0.7167	0.0572	0.4164	0.063*
H10B	0.9213	0.0522	0.4503	0.063*
C11	0.7470 (3)	0.4070 (2)	0.50057 (14)	0.0452 (5)
H11	0.6939	0.4308	0.5469	0.054*
C12	0.7990 (3)	0.50060 (19)	0.44770 (13)	0.0422 (5)
C13	0.8910 (4)	0.4833 (2)	0.37725 (15)	0.0502 (6)
H13	0.9231	0.4089	0.3621	0.060*
C14	0.9345 (4)	0.5759 (2)	0.33012 (14)	0.0495 (6)
H14	0.9938	0.5643	0.2830	0.059*
C15	0.8886 (3)	0.6858 (2)	0.35404 (13)	0.0459 (5)
C16	0.8010 (4)	0.7066 (2)	0.42325 (14)	0.0474 (5)
H16	0.7732	0.7816	0.4385	0.057*
C17	0.7552 (3)	0.6140 (2)	0.46970 (14)	0.0465 (5)
H17	0.6944	0.6270	0.5163	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1034 (16)	0.0362 (9)	0.0640 (12)	-0.0012 (9)	0.0249 (11)	-0.0063 (8)
O2	0.1033 (17)	0.0415 (10)	0.0708 (13)	-0.0056 (10)	0.0169 (12)	0.0069 (9)
O3	0.151 (2)	0.0669 (14)	0.0568 (13)	0.0001 (14)	0.0446 (15)	0.0151 (10)
N1	0.0638 (12)	0.0332 (9)	0.0419 (10)	-0.0014 (8)	0.0163 (9)	-0.0002 (7)
N2	0.0558 (11)	0.0365 (9)	0.0416 (10)	0.0003 (8)	0.0106 (8)	-0.0027 (7)
N3	0.0854 (16)	0.0414 (11)	0.0485 (12)	0.0009 (10)	0.0222 (11)	0.0014 (9)
N4	0.0722 (14)	0.0476 (11)	0.0485 (12)	-0.0036 (10)	0.0120 (10)	0.0120 (9)
C1	0.0499 (12)	0.0336 (10)	0.0448 (12)	0.0002 (8)	0.0075 (9)	-0.0014 (8)
C2	0.0582 (13)	0.0356 (11)	0.0476 (13)	-0.0007 (9)	0.0096 (10)	-0.0010 (9)
C3	0.0683 (15)	0.0383 (11)	0.0516 (14)	-0.0024 (11)	0.0052 (12)	0.0048 (10)
C4	0.0755 (17)	0.0467 (13)	0.0496 (14)	-0.0040 (12)	0.0113 (12)	0.0123 (11)
C5	0.087 (2)	0.0504 (14)	0.0460 (14)	0.0001 (13)	0.0224 (13)	0.0072 (11)
C6	0.0562 (13)	0.0387 (11)	0.0414 (11)	0.0005 (9)	0.0095 (10)	0.0026 (9)
C7	0.0517 (12)	0.0374 (11)	0.0433 (12)	-0.0003 (9)	0.0073 (10)	0.0014 (9)
C8	0.0496 (12)	0.0422 (12)	0.0368 (11)	-0.0013 (9)	0.0102 (9)	-0.0022 (9)
C9	0.0649 (14)	0.0481 (12)	0.0389 (12)	-0.0027 (11)	0.0120 (10)	-0.0025 (10)
C10	0.0688 (16)	0.0437 (12)	0.0455 (13)	-0.0001 (11)	0.0116 (12)	-0.0053 (10)
C11	0.0559 (13)	0.0409 (11)	0.0390 (11)	0.0001 (9)	0.0124 (9)	0.0010 (9)
C12	0.0498 (12)	0.0401 (11)	0.0369 (11)	-0.0017 (9)	0.0083 (9)	0.0012 (8)
C13	0.0695 (15)	0.0378 (11)	0.0435 (13)	0.0005 (10)	0.0154 (11)	-0.0026 (9)
C14	0.0687 (15)	0.0463 (12)	0.0335 (11)	-0.0020 (11)	0.0165 (10)	-0.0013 (9)
C15	0.0558 (13)	0.0405 (11)	0.0415 (12)	-0.0039 (9)	0.0040 (10)	0.0074 (9)
C16	0.0604 (14)	0.0377 (11)	0.0440 (12)	0.0016 (9)	0.0095 (10)	-0.0019 (9)
C17	0.0552 (13)	0.0438 (12)	0.0406 (12)	0.0019 (10)	0.0115 (10)	-0.0006 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C2	1.225 (3)	C8—C11	1.340 (3)
O2—N4	1.231 (3)	C8—C9	1.510 (3)
O3—N4	1.214 (3)	C9—C10	1.535 (3)
N1C1	1.291 (3)	С9—Н9А	0.9700
N1—C6	1.387 (3)	С9—Н9В	0.9700
N2—C1	1.371 (3)	C10—H10A	0.9700
N2—C2	1.377 (3)	C10—H10B	0.9700
N2-C10	1.459 (3)	C11—C12	1.467 (3)
N3—C5	1.332 (3)	C11—H11	0.9300
N3—C6	1.350 (3)	C12—C13	1.401 (3)
N4—C15	1.461 (3)	C12—C17	1.404 (3)
C1—C8	1.469 (3)	C13—C14	1.383 (3)
C2—C7	1.466 (3)	C13—H13	0.9300
C3—C4	1.355 (4)	C14—C15	1.379 (3)
С3—С7	1.394 (3)	C14—H14	0.9300
С3—Н3	0.9300	C15—C16	1.374 (3)
C4—C5	1.389 (4)	C16—C17	1.380 (3)
C4—H4	0.9300	C16—H16	0.9300

supporting information

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5	0.9300	C17—H17	0.9300
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C6—C7	1.410 (3)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C6	115.76 (19)	С8—С9—Н9А	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C2	123.0 (2)	С10—С9—Н9А	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C10	113.55 (19)	C8—C9—H9B	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N2—C10	123.40 (19)	C10—C9—H9B	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N3—C6	116.8 (2)	H9A—C9—H9B	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N4—O2	123.0 (2)	N2—C10—C9	104.79 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N4—C15	118.5 (2)	N2—C10—H10A	110.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2—N4—C15	118.5 (2)	C9—C10—H10A	110.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N1—C1—N2	125.9 (2)	N2—C10—H10B	110.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1-C1-C8	125.7(2)	C9-C10-H10B	110.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C1-C8	108.39(19)	H10A—C10—H10B	108.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$01 - C^2 - N^2$	121.5(2)	C8-C11-C12	130.1(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$01 - C^2 - C^7$	121.3(2) 125.3(2)	C8 - C11 - H11	114.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N_2 C_2 C_7$	123.3(2) 113.18(10)	C_{12} C_{11} H_{11}	114.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{4} C_{3} C_{7}	113.18(19) 110.1(2)	C12 - C11 - IIII	114.9 118.4.(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_4 = C_3 = C_7$	119.1 (2)	C13 - C12 - C17	110.4(2) 122.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 - C3 - H3	120.4	C13 - C12 - C11	123.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C^2 = C^4 = C^5$	120.4	C1/-C12-C11	117.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3 = C_4 = C_5$	118.5 (2)	C14 - C13 - C12	120.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C4-H4	120.8	C14—C13—H13	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	120.8	C12—C13—H13	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C5—C4	124.8 (3)	C15—C14—C13	119.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C5—H5	117.6	C15—C14—H14	120.5
N3-C6-N1 115.5 (2) C16-C15-C14 122.3 (2) N3-C6-C7 121.8 (2) C16-C15-N4 119.2 (2) N1-C6-C7 122.6 (2) C14-C15-N4 118.5 (2) C3-C7-C6 118.9 (2) C15-C16-C17 118.7 (2) C3-C7-C2 121.6 (2) C15-C16-H16 120.7 C6-C7-C2 119.5 (2) C16-C17-C12 121.1 (2) C11-C8-C1 121.0 (2) C16-C17-C12 121.1 (2) C11-C8-C9 131.0 (2) C16-C17-H17 119.5 C1-C8-C9 108.02 (19) C12-C17-H17 119.5 C8-C9-C10 105.11 (19) C6-N1-C1-N2 -1.3 (4) N1-C1-C8-C11 -2.2 (4) C6-N1-C1-N2 -1.3 (4) N1-C1-C8-C9 178.3 (2) C10-N2-C1-N1 2.0 (4) N1-C1-C8-C9 178.3 (2) C10-N2-C1-N1 179.3 (2) N2-C1-C8-C9 -2.4 (3) C2-N2-C1-C8 -177.4 (2) C11-C8-C9-C10 -175.8 (3) C10-N2-C2-O1 177.2 (3) C1-N2-C10-C9 2.5 (3) C10-N2-C2-O1 0.2 (4) C2-N2-C10-C9 179.7 (C4—C5—H5	117.6	C13—C14—H14	120.5
N3-C6-C7 121.8 (2) C16-C15-N4 119.2 (2) N1-C6-C7 122.6 (2) C14-C15-N4 118.5 (2) C3-C7-C6 118.9 (2) C15-C16-C17 118.7 (2) C3-C7-C2 121.6 (2) C15-C16-H16 120.7 C6-C7-C2 119.5 (2) C16-C17-C12 121.1 (2) C11-C8-C1 121.0 (2) C16-C17-C12 121.1 (2) C11-C8-C9 131.0 (2) C16-C17-H17 119.5 C1-C8-C9 108.02 (19) C12-C17-H17 119.5 C8-C9-C10 105.11 (19) C6-N1-C1-C8-C11 -2.2 (4) C6-N1-C1-N2 -1.3 (4) N1-C1-C8-C11 177.2 (2) C2-N2-C1-N1 2.0 (4) N1-C1-C8-C9 178.3 (2) C10-N2-C1-N1 179.3 (2) N2-C1-C8-C9 -2.4 (3) C2-N2-C1-C8 -177.4 (2) C11-C8-C9-C10 -175.8 (3) C10-N2-C2-O1 177.2 (3) C1-N2-C10-C9 2.5 (3) C10-N2-C2-O1 0.2 (4) C2-N2-C10-C9 179.7 (2) C1-N2-C2-C7 -1.9 (4) C8-C9-C10-N2 -3.7 (3) C10-N2-C2-C7 -1.9 (4) C8-C9-C10-N2	N3—C6—N1	115.5 (2)	C16—C15—C14	122.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C6—C7	121.8 (2)	C16—C15—N4	119.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—C7	122.6 (2)	C14—C15—N4	118.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C7—C6	118.9 (2)	C15—C16—C17	118.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C7—C2	121.6 (2)	C15—C16—H16	120.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C2	119.5 (2)	C17—C16—H16	120.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C8—C1	121.0 (2)	C16—C17—C12	121.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C8—C9	131.0 (2)	C16—C17—H17	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C8—C9	108.02 (19)	C12—C17—H17	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10	105.11 (19)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—C1—N2	-1.3 (4)	N1-C1-C8-C11	-2.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—C1—C8	178.0(2)	N2-C1-C8-C11	177.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N2—C1—N1	2.0 (4)	N1—C1—C8—C9	178.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N2—C1—N1	179.3 (2)	N2—C1—C8—C9	-2.4(3)
C10-N2-C1-C8 -0.1 (3) $C1-C8-C9-C10$ 3.7 (3) $C1-N2-C2-O1$ 177.2 (3) $C1-N2-C10-C9$ 2.5 (3) $C10-N2-C2-O1$ 0.2 (4) $C2-N2-C10-C9$ 179.7 (2) $C1-N2-C2-C7$ -1.9 (4) $C8-C9-C10-N2$ -3.7 (3) $C10-N2-C2-C7$ -178.9 (2) $C1-C8-C11-C12$ 178.5 (2)	C2—N2—C1—C8	-177.4 (2)	C11—C8—C9—C10	-175.8 (3)
C1-N2-C2-O1 177.2 (3) $C1-N2-C10-C9$ 2.5 (3) $C10-N2-C2-O1$ 0.2 (4) $C2-N2-C10-C9$ 179.7 (2) $C1-N2-C2-C7$ -1.9 (4) $C8-C9-C10-N2$ -3.7 (3) $C10-N2-C2-C7$ -178.9 (2) $C1-C8-C11-C12$ 178.5 (2)	C10—N2—C1—C8	-0.1 (3)	C1—C8—C9—C10	3.7 (3)
C10-N2-C2-O1 $0.2 (4)$ $C2-N2-C10-C9$ $179.7 (2)$ $C1-N2-C2-C7$ $-1.9 (4)$ $C8-C9-C10-N2$ $-3.7 (3)$ $C10-N2-C2-C7$ $-178.9 (2)$ $C1-C8-C11-C12$ $178.5 (2)$	C1—N2—C2—O1	177.2 (3)	C1—N2—C10—C9	2.5 (3)
C1-N2-C2-C7 -1.9 (4) $C8-C9-C10-N2$ -3.7 (3) $C10-N2-C2-C7$ -178.9 (2) $C1-C8-C11-C12$ 178.5 (2)	C10—N2—C2—O1	0.2 (4)	C2—N2—C10—C9	179.7 (2)
C10-N2-C2-C7 -178.9(2) C1-C8-C11-C12 178.5(2)	C1 - N2 - C2 - C7	-1.9(4)	C8-C9-C10-N2	-3.7(3)
	C10-N2-C2-C7	-178.9(2)	C1 - C8 - C11 - C12	178 5 (2)
C7-C3-C4-C5 -1.2 (5) $C9-C8-C11-C12$ -2.1 (5)	C7-C3-C4-C5	-1.2(5)	C9-C8-C11-C12	-2.1(5)

C6—N3—C5—C4	1.1 (5)	C8—C11—C12—C13	-4.0 (4)	
C3—C4—C5—N3	0.0 (5)	C8—C11—C12—C17	176.6 (3)	
C5—N3—C6—N1	178.4 (3)	C17—C12—C13—C14	-1.1 (4)	
C5—N3—C6—C7	-1.0 (4)	C11—C12—C13—C14	179.6 (3)	
C1—N1—C6—N3	-178.6 (2)	C12—C13—C14—C15	1.0 (4)	
C1—N1—C6—C7	0.8 (4)	C13—C14—C15—C16	0.0 (4)	
C4—C3—C7—C6	1.2 (4)	C13—C14—C15—N4	-179.7 (2)	
C4—C3—C7—C2	-177.2 (3)	O3—N4—C15—C16	-165.0 (3)	
N3—C6—C7—C3	-0.1 (4)	O2—N4—C15—C16	14.5 (4)	
N1—C6—C7—C3	-179.4 (2)	O3—N4—C15—C14	14.8 (4)	
N3—C6—C7—C2	178.4 (2)	O2—N4—C15—C14	-165.7 (3)	
N1—C6—C7—C2	-1.0(4)	C14—C15—C16—C17	-1.0 (4)	
O1—C2—C7—C3	0.8 (4)	N4—C15—C16—C17	178.8 (2)	
N2—C2—C7—C3	179.9 (2)	C15—C16—C17—C12	0.9 (4)	
O1—C2—C7—C6	-177.7 (3)	C13—C12—C17—C16	0.1 (4)	
N2-C2-C7-C6	1.4 (3)	C11—C12—C17—C16	179.5 (2)	

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.93	2.58	3.292 (3)	133
0.93	2.57	3.480 (3)	166
0.93	2.51	3.363 (3)	153
0.93	2.45	3.259 (3)	145
	<i>D</i> —H 0.93 0.93 0.93 0.93	D—H H…A 0.93 2.58 0.93 2.57 0.93 2.51 0.93 2.45	D—H H···A D···A 0.93 2.58 3.292 (3) 0.93 2.57 3.480 (3) 0.93 2.51 3.363 (3) 0.93 2.45 3.259 (3)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) -*x*+2, *y*-1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*.