CRYSTALLOGRAPHIC COMMUNICATIONS

Received 26 February 2016
Accepted 5 March 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; bromo hydroxy benzoic acids; $\mathrm{C}-\mathrm{H} \cdots \pi_{\text {aryl }}$ interactions; $\pi-\pi$ interactions; hydrogen bonding.

CCDC references: 1457944; 1457943

Supporting information: this article has supporting information at journals.iucr.org/e

Comparison of the crystal structures of methyl 4-bromo-2-(methoxymethoxy)benzoate and 4-bromo-3-(methoxymethoxy)benzoic acid

P. A. Suchetan, ${ }^{\text {a }}$ V. Suneetha, ${ }^{\text {b }}$ S. Naveen, ${ }^{\text {c }}$ N. K. Lokanath ${ }^{\text {d }}$ and P. Krishna Murthy ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, ${ }^{\text {b }}$ Department of Chemistry, Bapatla Engineering College (Autonomous), Bapatla A. P., India, ${ }^{\text {c Institution of Excellence, University of }}$ Mysore, Manasagangotri, Mysuru-6, India, and ${ }^{\text {d}}$ Department of Physics, University of Mysore, Manasagangotri, Mysuru6, India. *Correspondence e-mail: krishnamurthypotla@gmail.com

The title compounds, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$, (I), and $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$, (II), are derivatives of bromo-hydroxy-benzoic acids. Compound (II) crystallizes with two independent molecules (A and B) in the asymmetric unit. In both (I) and (II), the $\mathrm{O}-$ $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ side chain is not in its fully extended conformation; the $\mathrm{O}-\mathrm{C}-$ $\mathrm{O}-\mathrm{C}$ torsion angle is 67.3 (3) ${ }^{\circ}$ in (I), and -65.8 (3) and -74.1 (3) ${ }^{\circ}$ in molecules A and B, respectively, in compound (II). In the crystal of (I), molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming $C(5)$ chains along [010]. The chains are linked by short $\mathrm{Br} \cdots \mathrm{O}$ contacts [3.047 (2) A] , forming sheets parallel to the $b c$ plane. The sheets are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a three-dimensional architecture. In the crystal of (II), molecules A and B are linked to form $R_{2}^{2}(8)$ dimers via two strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These dimers are linked into $\cdots A-B \cdots A-B \cdots A-B \cdots\left[C_{2}^{2}(15)\right]$ chains along [011] by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The chains are linked by slipped parallel $\pi-\pi$ interactions [inter-centroid distances $=3.6787$ (18) and 3.8431 (17) Å], leading to the formation of slabs parallel to the $b c$ plane.

1. Chemical context

Ester derivatives of many compounds exhibit a variety of pharmacological properties, such as anticancer, antitumor and antimicrobial activities (Anadu et al., 2006; Bartzatt et al., 2004; Bi et al., 2012). Salicylic acid and derivatives of salicylic acid are of great biological importance. For example, they are known for their analgesic and anti-inflammatory activities in the treatment of rheumatoid arthritis (Anderson et al., 2014; Hardie, 2013). They are also known for their use as antibacterial and antimycobacterial agents (Silva et al., 2008). In view of the above, compounds (I) and (II) were synthesized and we report herein on their crystal structures.

(I)

(II)

Figure 1
A view of the molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The molecular structure of compound (I), is illustrated in Fig. 1. The $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ side chain is not in its fully extended conformation, with torsion angle $\mathrm{O} 3-\mathrm{C} 9-\mathrm{O} 4-$ C10 being 67.3 (3) ${ }^{\circ}$. The dihedral angle between the benzene ring and the ester segment ($\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{O} 2 / \mathrm{C} 8$) is $14.5(2)^{\circ}$, while the plane through atoms C10/O4/C9 of the methoxymethoxy side chain is inclined to the benzene ring by 82.5 (3) ${ }^{\circ}$.

The molecular structure of compound (II), is illustrated in Fig. 2. It crystallizes with two independent molecules (A and $B)$ in the asymmetric unit. The conformations of the two molecules differ in the torsion angles of the $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$

Figure 3
A view of the molecular fit of molecules A (black) and B (red) of compound (II).
side chains and the orientation of the -COO- group with respect to the benzene ring, as shown in the AutoMolFit diagram (Fig. 3; Spek, 2009). The $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ side chains in molecules A and B are not in their fully extended conformation; torsion angle $\mathrm{O} 3 A-\mathrm{C} 8 A-\mathrm{O} 4 A-\mathrm{C} 9 A$ in molecule A is $-65.8(3)^{\circ}$, and torsion angle $\mathrm{O} 3 B-\mathrm{C} 8 B-\mathrm{O} 4 B-\mathrm{C} 9 B$ in molecule B is $-74.1(3)^{\circ}$. The dihedral angle between the benzene ring and the plane through atoms $\mathrm{C} 8 A / \mathrm{O} 4 A / \mathrm{C} 9 A$ of the methoxymethoxy side chain in molecule A is 79.2 (3) ${ }^{\circ}$, while the corresponding dihedral angle in molecule B, between the benzene ring and plane $\mathrm{C} 9 B / \mathrm{O} 4 B / \mathrm{O} 8 B$ is 67.1 (3) ${ }^{\circ}$. This is less than in compound (I) and further, the dihedral angle between the benzene ring and the -COOgroup is 6.6 (4) ${ }^{\circ}$ in A and 9.1 (4) ${ }^{\circ}$ in B; also less than observed in compound (I), viz. 14.5 (2).

Figure 2
A view of the molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. O$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (see Table 2).

Figure 4
A view along the a axis of the crystal packing of compound (I). $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{Br} \cdots \mathrm{O}$ interactions are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.

3. Supramolecular features

In the crystal of (I), molecules are linked by structuredirecting $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1$ hydrogen bonds (Table 1 and Fig. 4), forming $C(5)$ chains along the b axis. Adjacent chains are linked by short $\mathrm{Br} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$ contacts $\left[d_{\mathrm{Br} \cdots \mathrm{O}}=3.047\right.$ (2) \AA; symmetry code (i): $-x,-y,-z+1$] leading to the formation of sheets parallel to plane (100). The sheets are linked by C5$\mathrm{H} 5 \cdots \pi$ interactions (centroid of the benzene ring $\mathrm{C} 1-\mathrm{C} 6$) along the a-axis direction, forming a three-dimensional structure (Table 1 and Fig. 5).

In the crystal of (II), molecules A and B are linked via two strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, namely, $\mathrm{O} 2 A-$ $\mathrm{H} 2 A \cdots \mathrm{O} 1 B$ and $\mathrm{O} 2 B--\mathrm{H} 2 B \cdots \mathrm{O} 1 A$, forming dimers with an $R_{2}^{2}(8)$ ring motif (Table 2 and Fig. 6). Adjacent dimers are linked by $\mathrm{C} 8 B-\mathrm{H} 8 B 2 \cdots \mathrm{O} 3 A$ hydrogen bonds (Table 2), forming chains along [011]. The chains are linked via slipped parallel $\pi-\pi$ interactions between B molecules $\left[\mathrm{Cg} 2 \cdots \mathrm{Cg} 2^{\mathrm{ii}}\right.$ distance $=3.6792$ (18) $\AA ; C g 2$ is the centroid of ring C1B-C6B;

Table 1
Hydrogen-bond geometry ($\left(\AA,{ }^{\circ}\right.$) for (I).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.58	$3.439(5)$	147
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.95	2.95	$3.765(4)$	129

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 1 B$	$0.84(5)$	$1.80(5)$	$2.635(4)$	$178(5)$
O2B-H2B $\cdots 1 A$	$0.82(5)$	$1.81(5)$	$2.621(4)$	$167(5)$
$\mathrm{C} 8 B-\mathrm{H} 8 B 2 \cdots \mathrm{O} 3 A^{\mathrm{i}}$	0.99	2.52	$3.420(4)$	150

inter-planar distance $=3.3691(12) \AA$; slippage $=1.477 \AA$; symmetry code (ii): $-x,-y+2,-z+1$], and between A and B molecules $\left[C g 1 \cdots C g 2^{\text {iii }}=3.8431\right.$ (17) $\AA ; C g 1$ is the centroid of the ring C1 $A-\mathrm{C} 6 A$; inter-planar distance $=3.5538(12) \AA$; slippage $1.98 \AA$; symmetry code (iii): $-x+1,-y+1,-z+1]$, thus forming slabs lying parallel to the $b c$ plane (Fig. 7).

4. Synthesis and crystallization

Synthesis of methyl 4-bromo-2-(methoxymethoxy) benzoate (I)

To a stirred solution of methyl 4-bromo-2-hydroxybenzoate $(1.0 \mathrm{~g}, 4.32 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{ml})$ (DCM) was added N, N-diisopropylethylamine $(1.5 \mathrm{ml}$, 8.65 mmol) (DIPEA), followed by chloromethyl methyl ether $(0.49 \mathrm{ml}, 6.49 \mathrm{mmol})(\mathrm{MOM}-\mathrm{Cl})$, at 273 K and the reaction mixture was stirred at room temperature overnight. The reaction mixture was then diluted with water $(50 \mathrm{ml})$ and the organic layer was extracted with ethyl acetate $(2 \times 50 \mathrm{ml})$. The combined organic layers were washed successively with water, brine, dried over anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate:hexane (1:9) as eluent to afford (I) as an off-white coloured solid (yield: $0.851 \mathrm{~g}, 71.4 \%$; m.p.: $353 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.) : $\delta=3.39(3 \mathrm{H}$,

Figure 5
A view along the b axis of the crystal packing of compound (I). $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{Br} \cdots \mathrm{O}$ interactions are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.

Figure 6
A partial view along the a axis of the crystal packing of compound (II). $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}--\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (see Table 2). H atoms not involved in these interactions have been omitted for clarity.
$s), 3.79(3 \mathrm{H}, s), 5.29(2 \mathrm{H}, s) 7.29(1 \mathrm{H}, d d, J=1.20 \mathrm{~Hz}, 1.20 \mathrm{~Hz})$, $7.44(1 \mathrm{H}, s), 7.60(1 \mathrm{H}, d, J=8.00 \mathrm{~Hz})$.

Synthesis of 4-bromo-3-(methoxymethoxy)benzoic acid (II) A mixture of methyl 4-bromo-3-(methoxymethoxy) benzoate ($1 \mathrm{~g}, 3.63 \mathrm{mmol}$), 10% aqueous potassium hydroxide $(0.61 \mathrm{~g}, 3.0 \mathrm{mmol})$, tetrahydrofuran $(5 \mathrm{ml})$ and methanol $(20 \mathrm{ml})$ was stirred at room temperature for 2 h . The mixture was then concentrated to remove organic solvents and the aqueous layer was acidified with 6 N hydrochloric acid. The precipitated solid was filtered, dried under vacuum to afford (II) as a white solid (yield: $0.86 \mathrm{~g}, 91 \%$; m.p.: 433 K). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.): $\delta=3.39(3 \mathrm{H}, s), 5.28(2 \mathrm{H}, s)$,

Figure 7
A view of the $\pi-\pi$ stacking observed in the crystal of (II); molecule A green, molecule B blue.
$7.26(1 \mathrm{H}, d d, J=1.20 \mathrm{~Hz}, 1.20 \mathrm{~Hz}), 7.40(1 \mathrm{H}, s), 7.59(1 \mathrm{H}, d, J=$ $8.00 \mathrm{~Hz}), 12.90(1 \mathrm{H}, s)$.

Single crystals of compounds (I) and (II), suitable for X-ray diffraction studies, were obtained by solvent evaporation using methanol:chloroform (2:1) as the solvent mixture.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of the OH groups in

Table 3
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$
$M_{\text {r }}$	275.10	261.07
Crystal system, space group	Orthorhombic, Pbca	Triclinic, $P \overline{1}$
Temperature (K)	173	173
$a, b, c($ ($)$	8.8487 (13), 8.1514 (11), 29.284 (4)	7.7211 (3), 9.6881 (4), 14.2627 (6)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	73.635 (1), 77.664 (1), 69.577 (1)
$V\left(\AA^{3}\right)$	2112.2 (5)	951.40 (7)
Z	8	4
Radiation type	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	5.27	5.82
Crystal size (mm)	$0.29 \times 0.22 \times 0.19$	$0.28 \times 0.25 \times 0.22$
Data collection		
Diffractometer	Bruker APEXII	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}, T_{\text {max }}$	$0.286,0.367$	0.245, 0.278
No. of measured, independent and observed [$I>$ $2 \sigma(I)$] reflections	8999, 1751, 1720	11112, 3031, 2930
$R_{\text {int }}$	0.052	0.040
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.590	0.585
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.052, 0.139, 1.14	$0.039,0.120,1.09$
No. of reflections	1751	3031
No. of parameters	138	261
No. of restraints	0	2
H -atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.87, -0.97	$0.67,-1.08$

[^0](II) were located in a difference Fourier map and refined with a distance restraint: $\mathrm{O}-\mathrm{H}=0.84$ (5) \AA. The C-bound H atoms in (I) and (II) were positioned with idealized geometry and refined using a riding model: $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}-$ methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms. In the final cycles of refinement reflection (002) in (I) and reflections $(410),(6-46),(5-57),(420)$ and $(0-16)$ in (II) were omitted due to large differences in F^{2} obs and $F_{\text {calc }}^{2}$, considerably improving the values of $R 1, w R 2$, and GOF.

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

Anadu, N. O., Davisson, V. J. \& Cushman, M. (2006). J. Med. Chem. 49, 3897-3905.
Anderson, K., Wherle, L., Park, M., Nelson, K. \& Nguyen, L. (2014). Am. Heal. Drug. Benefits, 7, 231-235.
Bartzatt, R., Cirillo, S. L. \& Cirillo, J. D. (2004). Physiol. Chem. Phys. Med. NMR, 36, 85-94.
Bi, Y., Xu, J., Sun, F., Wu, X., Ye, W., Sun, Y. \& Huang, W. (2012). Molecules, 17, 8832-8841.
Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Hardie, D. G. (2013). Diabetes, 62, 2164-2172.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silva, M. da, Menezes, C. M., Ferreira, E. I., Leite, C. Q., Sato, D. N., Correia, C. C., Pimenta, C. P. \& Botelho, K. C. (2008). Chem. Biol. Drug Des. 71, 167-172.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2016). E72, 477-481 [https://doi.org/10.1107/S2056989016003777]

Comparison of the crystal structures of methyl 4-bromo-2-(methoxymethoxy)benzoate and 4-bromo-3-(methoxymethoxy)benzoic acid

P. A. Suchetan, V. Suneetha, S. Naveen, N. K. Lokanath and P. Krishna Murthy

Computing details

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SHELXS97 (Sheldrick, 20008) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009) for (I); Mercury (Macrae et al., 2008) for (II). Software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009) for (I); SHELXL97 (Sheldrick, 2008) for (II).
(I) Methyl 4-bromo-2-(methoxymethoxy)benzoate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}$
$M_{r}=275.10$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=8.8487$ (13) \AA
$b=8.1514$ (11) \AA
$c=29.284$ (4) \AA
$V=2112.2(5) \AA^{3}$
$Z=8$
$F(000)=1104$

Data collection

Bruker APEXII

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.286, T_{\text {max }}=0.367$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.139$
$S=1.14$
1751 reflections
$D_{\mathrm{x}}=1.730 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 353 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 108 reflections
$\theta=5.8-65.5^{\circ}$
$\mu=5.27 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, colourless
$0.29 \times 0.22 \times 0.19 \mathrm{~mm}$

8999 measured reflections
1751 independent reflections
1720 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=65.5^{\circ}, \theta_{\text {min }}=5.8^{\circ}$
$h=-10 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-33 \rightarrow 26$

138 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0922 P)^{2}+2.3421 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.87 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} /_{\mathrm{eq}}$
C1	$0.0849(4)$	$0.2964(5)$	$0.54070(13)$	$0.0228(8)$
C2	$-0.0101(4)$	$0.2114(4)$	$0.56954(11)$	$0.0224(7)$
H2	-0.0720	0.1256	0.5581	0.027^{*}
C3	$-0.0142(4)$	$0.2529(4)$	$0.61565(12)$	$0.0206(8)$
C4	$0.0827(3)$	$0.3778(4)$	$0.63243(12)$	$0.0215(7)$
C5	$0.1783(4)$	$0.4566(4)$	$0.60112(11)$	$0.0250(7)$
H5	0.2437	0.5404	0.6120	0.030^{*}
C6	$0.1816(4)$	$0.4177(4)$	$0.55544(11)$	$0.0256(7)$
H6	0.2478	0.4723	0.5349	0.031^{*}
C7	$0.0819(3)$	$0.4299(4)$	$0.68120(12)$	$0.0218(8)$
C8	$0.2085(4)$	$0.5894(5)$	$0.73653(12)$	$0.0315(8)$
H8A	0.1242	0.6655	0.7414	0.047^{*}
H8B	0.3043	0.6476	0.7408	0.047^{*}
H8C	0.2016	0.4992	0.7585	0.047^{*}
C9	$-0.1952(4)$	$0.0417(4)$	$0.63083(11)$	$0.0232(7)$
H9A	-0.2664	0.0089	0.6553	0.028^{*}
H9B	-0.2556	0.0779	0.6042	0.028^{*}
C10	$-0.0340(4)$	$-0.1675(4)$	$0.65656(13)$	$0.0326(8)$
H10A	0.0292	-0.0858	0.6720	0.049^{*}
H10B	0.0293	-0.2584	0.6459	0.049^{*}
H10C	-0.1099	-0.2093	0.6780	0.049^{*}
O1	$-0.0134(3)$	$0.3974(3)$	$0.70900(8)$	$0.0347(6)$
O2	$0.2014(3)$	$0.5246(3)$	$0.69070(8)$	$0.0269(6)$
O3	$-0.1048(2)$	$0.1763(3)$	$0.64664(8)$	$0.0224(5)$
O4	$-0.1082(3)$	$-0.0932(3)$	$0.61840(8)$	$0.0260(6)$
Br1	$0.08685(4)$	$0.23443(5)$	$0.477705(13)$	$0.0262(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.031(2)$	$0.0162(18)$	$0.021(2)$	$0.0058(12)$	$0.0015(12)$	$-0.0016(15)$

C2	$0.0291(18)$	$0.0165(16)$	$0.0216(18)$	$0.0018(13)$	$0.0001(14)$	$-0.0006(13)$
C3	$0.0233(18)$	$0.0155(16)$	$0.0229(19)$	$0.0029(11)$	$-0.0006(15)$	$0.0031(11)$
C4	$0.0242(16)$	$0.0158(17)$	$0.0244(18)$	$0.0042(12)$	$-0.0004(12)$	$0.0002(14)$
C5	$0.0301(17)$	$0.0200(17)$	$0.0249(17)$	$-0.0020(13)$	$0.0003(13)$	$0.0004(13)$
C6	$0.0327(17)$	$0.0194(17)$	$0.0248(17)$	$-0.0029(13)$	$0.0060(14)$	$0.0022(13)$
C7	$0.0255(17)$	$0.0155(17)$	$0.0245(18)$	$0.0027(12)$	$0.0020(12)$	$0.0013(14)$
C8	$0.0391(19)$	$0.031(2)$	$0.0242(17)$	$-0.0048(16)$	$-0.0024(16)$	$-0.0059(14)$
C9	$0.0244(16)$	$0.0196(17)$	$0.0255(17)$	$-0.0025(13)$	$-0.0020(13)$	$-0.0008(13)$
C10	$0.0369(19)$	$0.0235(19)$	$0.038(2)$	$0.0020(17)$	$-0.0027(16)$	$0.0071(15)$
O1	$0.0416(15)$	$0.0373(15)$	$0.0253(13)$	$-0.0121(12)$	$0.0078(11)$	$-0.0078(11)$
O2	$0.0282(12)$	$0.0298(13)$	$0.0228(12)$	$-0.0046(10)$	$-0.0002(10)$	$-0.0039(10)$
O3	$0.0267(11)$	$0.0189(12)$	$0.0216(12)$	$-0.0042(9)$	$0.0033(9)$	$-0.0019(10)$
O4	$0.0364(13)$	$0.0200(13)$	$0.0217(13)$	$0.0003(10)$	$0.0016(9)$	$-0.0009(9)$
Br1	$0.0372(4)$	$0.0236(3)$	$0.0177(4)$	$-0.00163(13)$	$0.00120(12)$	$0.00077(12)$

Geometric parameters (A, ${ }^{\circ}$)

C1-C6	$1.377(5)$	C7-O2	$1.339(4)$
C1-C2	$1.378(5)$	$\mathrm{C} 8-\mathrm{O} 2$	$1.444(4)$
C1-Br1	$1.913(4)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9800
C2-C3	$1.392(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9800
C2-H2	0.9500	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9800
C3-O3	$1.363(4)$	$\mathrm{C} 9-\mathrm{O} 4$	$1.391(4)$
C3-C4	$1.418(5)$	$\mathrm{C} 9-\mathrm{O} 3$	$1.435(4)$
C4-C5	$1.403(5)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9900
C4-C7	$1.490(5)$	C9-H9B	0.9900
C5-C6	$1.375(5)$	C10-O4	$1.431(4)$
C5-H5	0.9500	C10-H10A	0.9800
C6-H6	0.9500	C10-H10B	0.9800
C7-O1	$1.202(4)$	C10-H10C	0.9800
C6-C1-C2	$123.2(3)$	O2-C8-H8A	109.5
C6-C1-Br1	$119.1(3)$	O2-C8-H8B	109.5
C2-C1-Br1	$117.6(3)$	H8A-C8-H8B	109.5
C1-C2-C3	$119.2(3)$	O2-C8-H8C	109.5
C1-C2-H2	120.4	H8A-C8-H8C	109.5
C3-C2-H2	120.4	H8B-C8-H8C	109.5
O3-C3-C2	$123.3(3)$	O4-C9-O3	$112.3(3)$
O3-C3-C4	$117.0(3)$	O4-C9-H9A	109.1
C2-C3-C4	$119.6(3)$	O3-C9-H9A	109.1
C5-C4-C3	$117.8(3)$	O4-C9-H9B	109.1
C5-C4-C7	$119.9(3)$	O3-C9-H9B	109.1
C3-C4-C7	$122.2(3)$	H9A-C9-H9B	107.9
C6-C5-C4	$122.9(3)$	O4-C10-H10A	109.5
C6-C5-H5	118.6	O4-C10-H10B	109.5
C4-C5-H5	118.6	H10A-C10-H10B	109.5
C5-C6-C1	$117.2(3)$	O4-C10-H10C	109.5
C5-C6-H6	121.4	H10A-C10-H10C	109.5

$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	121.4
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$122.7(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4$	$126.2(3)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 4$	$111.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.5(5)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$179.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-2.0(5)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.1(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(5)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$-2.8(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$178.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.0(5)$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.1(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.4(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-1.7(5)$

$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8$	$116.0(3)$
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 9$	$117.6(3)$
$\mathrm{C} 9-\mathrm{O} 4-\mathrm{C} 10$	$112.6(3)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.9(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 1$	$164.0(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 1$	$-14.1(5)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 2$	$-14.2(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 2$	$167.8(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8$	$-1.3(5)$
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8$	$176.9(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 9$	$2.7(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 9$	$-175.6(3)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 3-\mathrm{C} 3$	$67.5(3)$
$\mathrm{O} 3-\mathrm{C} 9-\mathrm{O} 4-\mathrm{C} 10$	$67.3(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.58	$3.439(5)$	147
$\mathrm{C} 5 — \mathrm{H} 5 \cdots C g 1^{\mathrm{ii}}$	0.95	2.95	$3.765(4)$	129

Symmetry codes: (i) $-x, y+1 / 2,-z+3 / 2$; (ii) $-x+1 / 2, y-1 / 2, z$.
(II) 4-Bromo-3-(methoxymethoxy)benzoic acid

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{4}$
$M_{r}=261.07$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.7211$ (3) \AA
$b=9.6881$ (4) \AA
$c=14.2627$ (6) \AA
$\alpha=73.635(1)^{\circ}$
$\beta=77.664(1)^{\circ}$
$\gamma=69.577(1)^{\circ}$
$V=951.40(7) \AA^{3}$

Data collection

Bruker APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.245, T_{\max }=0.278$
$Z=4$
$F(000)=520$
$D_{\mathrm{x}}=1.823 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 433 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 123 reflections
$\theta=3.3-64.4^{\circ}$
$\mu=5.82 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Prism, colourless
$0.28 \times 0.25 \times 0.22 \mathrm{~mm}$

11112 measured reflections
3031 independent reflections
2930 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=64.4^{\circ}, \theta_{\min }=3.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.120$
$S=1.09$
3031 reflections
261 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0844 P)^{2}+0.9411 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.67 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-1.08 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1B	$-0.40349(5)$	$1.06722(4)$	$0.30367(2)$	$0.01682(17)$
Br1A	$1.35506(5)$	$0.17904(4)$	$0.90000(2)$	$0.01972(17)$
O3B	$-0.0105(3)$	$1.0670(3)$	$0.23290(16)$	$0.0159(5)$
O3A	$0.9612(3)$	$0.1908(2)$	$0.96819(15)$	$0.0164(5)$
O4B	$0.2558(3)$	$1.1441(2)$	$0.20751(16)$	$0.0204(5)$
O4A	$0.6543(3)$	$0.3227(3)$	$1.02268(16)$	$0.0223(5)$
O1A	$0.5360(3)$	$0.4837(3)$	$0.70491(16)$	$0.0210(5)$
O2A	$0.7281(3)$	$0.5390(3)$	$0.56876(16)$	$0.0184(5)$
O1B	$0.4376(3)$	$0.7142(3)$	$0.47778(18)$	$0.0219(5)$
O2B	$0.2466(4)$	$0.6594(3)$	$0.61509(17)$	$0.0220(5)$
C4A	$0.8598(4)$	$0.3942(3)$	$0.7147(2)$	$0.0113(6)$
C7B	$0.2753(5)$	$0.7246(3)$	$0.5251(2)$	$0.0141(6)$
C4B	$0.1108(5)$	$0.8140(3)$	$0.4734(2)$	$0.0138(7)$
C2A	$0.9761(5)$	$0.2599(3)$	$0.8698(2)$	$0.0135(6)$
C7A	$0.6971(5)$	$0.4759(3)$	$0.6597(2)$	$0.0125(6)$
C5A	$1.0392(5)$	$0.3920(3)$	$0.6689(2)$	$0.0150(7)$
H5A	1.0601	0.4358	0.6006	0.018^{*}
C3A	$0.8282(5)$	$0.3270(3)$	$0.8147(2)$	$0.0134(6)$
H3A	0.7058	0.3274	$0.8447(2)$	0.016^{*}
C3B	$0.1349(5)$	$0.9014(3)$	$0.3777(2)$	$0.0127(6)$
H3B	0.2555	0.9065	0.3476	$0.0133(7)$
C2B	$-0.0179(5)$	$0.9803(3)$	$0.3272(2)$	$0.0153(7)$
C5B	$-0.0660(5)$	$0.8083(3)$	$0.5191(2)$	0.018^{*}

C6B	$-0.2167(5)$	$0.8863(3)$	$0.4684(2)$	$0.0153(7)$
H6B	-0.3375	0.8823	0.4987	0.018^{*}
C1B	$-0.1937(5)$	$0.9706(3)$	$0.3735(2)$	$0.0148(7)$
C6A	$1.1867(5)$	$0.3251(3)$	$0.7243(2)$	$0.0155(7)$
H6A	1.3099	0.3221	0.6942	0.019^{*}
C9A	$0.7006(6)$	$0.3967(4)$	$1.0828(3)$	$0.0285(8)$
H9A1	0.7188	0.3296	1.1481	0.043^{*}
H9A2	0.5993	0.4899	1.0894	0.043^{*}
H9A3	0.8157	0.4213	1.0522	0.043^{*}
C8A	$0.7818(5)$	$0.1825(4)$	$1.0171(2)$	$0.0174(7)$
H8A1	0.7332	0.1324	0.9816	0.021^{*}
H8A2	0.7952	0.1192	1.0847	0.021^{*}
C8B	$0.1691(5)$	$1.0616(4)$	$0.1787(2)$	$0.0154(7)$
H8B1	0.2491	0.9549	0.1876	0.018^{*}
H8B2	0.1561	1.1016	0.1077	0.018^{*}
C1A	$1.1533(5)$	$0.2628(3)$	$0.8237(2)$	$0.0155(7)$
C9B	$0.1791(6)$	$1.3037(4)$	$0.1746(3)$	$0.0292(8)$
H9B1	0.1718	1.3290	0.1037	0.044^{*}
H9B2	0.2588	1.3541	0.1875	0.044^{*}
H9B3	0.0539	1.3378	0.2100	0.044^{*}
H2A	$0.634(6)$	$0.593(5)$	$0.541(3)$	0.035^{*}
H2B	$0.330(6)$	$0.612(5)$	$0.650(3)$	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1B	$0.0115(3)$	$0.0212(2)$	$0.0153(2)$	$-0.00265(17)$	$-0.00350(16)$	$-0.00218(16)$
Br1A	$0.0121(3)$	$0.0260(2)$	$0.0181(2)$	$-0.00483(17)$	$-0.00408(16)$	$-0.00011(16)$
O3B	$0.0121(12)$	$0.0222(11)$	$0.0109(11)$	$-0.0052(10)$	$-0.0023(9)$	$0.0005(9)$
O3A	$0.0138(12)$	$0.0219(12)$	$0.0085(10)$	$-0.0029(10)$	$-0.0007(9)$	$0.0005(9)$
O4B	$0.0222(13)$	$0.0189(11)$	$0.0203(12)$	$-0.0083(10)$	$-0.0063(9)$	$0.0003(9)$
O4A	$0.0164(13)$	$0.0267(12)$	$0.0164(11)$	$0.0021(10)$	$-0.0016(9)$	$-0.0052(9)$
O1A	$0.0144(14)$	$0.0289(12)$	$0.0159(11)$	$-0.0062(11)$	$-0.0022(9)$	$0.0004(9)$
O2A	$0.0200(13)$	$0.0212(11)$	$0.0105(11)$	$-0.0058(10)$	$-0.0034(9)$	$0.0023(9)$
O1B	$0.0158(13)$	$0.0243(12)$	$0.0233(12)$	$-0.0044(10)$	$-0.0052(10)$	$-0.0018(10)$
O2B	$0.0237(14)$	$0.0244(12)$	$0.0149(12)$	$-0.0091(11)$	$-0.0088(10)$	$0.0067(9)$
C4A	$0.0135(17)$	$0.0104(13)$	$0.0110(14)$	$-0.0045(12)$	$-0.0002(12)$	$-0.0042(11)$
C7B	$0.0193(18)$	$0.0122(14)$	$0.0120(15)$	$-0.0055(13)$	$-0.0022(12)$	$-0.0036(11)$
C4B	$0.0182(18)$	$0.0120(14)$	$0.0125(15)$	$-0.0053(13)$	$-0.0016(12)$	$-0.0042(11)$
C2A	$0.0177(18)$	$0.0124(14)$	$0.0092(15)$	$-0.0037(13)$	$-0.0008(12)$	$-0.0022(12)$
C7A	$0.0156(17)$	$0.0110(14)$	$0.0125(15)$	$-0.0046(12)$	$-0.0007(12)$	$-0.0053(11)$
C5A	$0.0194(18)$	$0.0115(14)$	$0.0113(14)$	$-0.0028(13)$	$0.0009(12)$	$-0.0027(11)$
C3A	$0.0137(17)$	$0.0145(14)$	$0.0130(15)$	$-0.0063(13)$	$-0.0002(12)$	$-0.0032(12)$
C3B	$0.0108(16)$	$0.0137(14)$	$0.0137(15)$	$-0.0039(12)$	$-0.0006(12)$	$-0.0038(12)$
C2B	$0.0173(18)$	$0.0143(14)$	$0.0096(15)$	$-0.0066(13)$	$-0.0016(12)$	$-0.0025(11)$
C5B	$0.0214(18)$	$0.0152(14)$	$0.0102(14)$	$-0.0073(13)$	$-0.0012(12)$	$-0.0025(11)$
C6B	$0.0153(18)$	$0.0180(15)$	$0.0151(15)$	$-0.0067(13)$	$0.0005(12)$	$-0.0073(12)$
C1B	$0.0169(18)$	$0.0116(14)$	$0.0166(16)$	$-0.0022(13)$	$-0.0034(13)$	$-0.0061(12)$

C6A	$0.0147(18)$	$0.0166(15)$	$0.0161(15)$	$-0.0076(13)$	$0.0015(13)$	$-0.0044(12)$
C9A	$0.033(2)$	$0.0260(18)$	$0.0227(18)$	$-0.0002(16)$	$-0.0086(15)$	$-0.0083(14)$
C8A	$0.0133(18)$	$0.0233(16)$	$0.0134(15)$	$-0.0059(14)$	$-0.0005(12)$	$-0.0013(12)$
C8B	$0.0127(17)$	$0.0217(16)$	$0.0125(15)$	$-0.0066(13)$	$-0.0011(12)$	$-0.0038(12)$
C1A	$0.0160(18)$	$0.0133(14)$	$0.0158(16)$	$-0.0020(13)$	$-0.0020(13)$	$-0.0041(12)$
C9B	$0.037(2)$	$0.0185(16)$	$0.033(2)$	$-0.0084(16)$	$-0.0077(16)$	$-0.0052(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	1.897 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	1.391 (5)
$\mathrm{Br} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	1.901 (3)	C5A-C6A	1.387 (5)
O3B-C2B	1.371 (4)	C5A-H5A	0.9500
O3B-C8B	1.428 (4)	C3A-H3A	0.9500
$\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	1.374 (4)	C3B-C2B	1.385 (5)
O3A-C8A	1.430 (4)	C3B-H3B	0.9500
O4B-C8B	1.390 (4)	C2B-C1B	1.400 (5)
O4B-C9B	1.426 (4)	C5B-C6B	1.373 (5)
O4A-C8A	1.383 (4)	C5B-H5B	0.9500
O4A-C9A	1.426 (4)	C6B-C1B	1.380 (5)
O1A-C7A	1.260 (4)	C6B-H6B	0.9500
O2A-C7A	1.279 (4)	C6A-C1A	1.383 (5)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.83 (3)	C6A-H6A	0.9500
O1B-C7B	1.275 (4)	C9A-H9A1	0.9800
O2B-C7B	1.271 (4)	C9A-H9A2	0.9800
O2B-H2B	0.82 (3)	C9A-H9A3	0.9800
C4A-C5A	1.395 (5)	C8A-H8A1	0.9900
C4A-C3A	1.398 (4)	C8A-H8A2	0.9900
C4A-C7A	1.482 (5)	C8B-H8B1	0.9900
C7B-C4B	1.476 (5)	C8B-H8B2	0.9900
C4B-C5B	1.394 (5)	C9B-H9B1	0.9800
C4B-C3B	1.402 (4)	C9B-H9B2	0.9800
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.386 (5)	C9B-H9B3	0.9800
C2B-O3B-C8B	117.7 (2)	C5B-C6B-C1B	120.4 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	118.1 (2)	C5B-C6B-H6B	119.8
C8B-O4B-C9B	113.7 (3)	C1B-C6B-H6B	119.8
C8A-04A-C9A	113.3 (3)	C6B-C1B-C2B	121.2 (3)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	116 (3)	$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{Br} 1 \mathrm{~B}$	118.9 (3)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	124 (4)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{Br} 1 \mathrm{~B}$	119.9 (2)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	120.9 (3)	C1A-C6A-C5A	119.5 (3)
C5A-C4A-C7A	120.5 (3)	C1A-C6A-H6A	120.2
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	118.5 (3)	C5A-C6A-H6A	120.2
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}$	123.3 (3)	O4A-C9A-H9A1	109.5
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	117.5 (3)	O4A-C9A-H9A2	109.5
O1B-C7B-C4B	119.1 (3)	H9A1-C9A-H9A2	109.5
C5B-C4B-C3B	120.6 (3)	O4A-C9A-H9A3	109.5
C5B-C4B-C7B	119.9 (3)	H9A1-C9A-H9A3	109.5
C3B-C4B-C7B	119.4 (3)	H9A2-C9A-H9A3	109.5

$\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	124.7 (3)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	116.6 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	118.6 (3)
O1A-C7A-O2A	123.3 (3)
O1A-C7A-C4A	118.9 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	117.8 (3)
C6A-C5A-C4A	119.2 (3)
C6A-C5A-H5A	120.4
C4A-C5A-H5A	120.4
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	119.8 (3)
C2A-C3A-H3A	120.1
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	120.1
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	119.7 (3)
C2B-C3B-H3B	120.1
C4B-C3B-H3B	120.1
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	124.8 (3)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	116.4 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	118.8 (3)
C6B-C5B-C4B	119.3 (3)
C6B-C5B-H5B	120.4
C4B-C5B-H5B	120.4
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	-8.5 (4)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	170.4 (3)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	172.9 (3)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-8.3 (4)
C8A-O3A-C2A-C3A	2.2 (4)
$\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-178.5 (3)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	-175.6 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	0.8 (4)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	2.4 (4)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	178.9 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	-1.5 (4)
C7A-C4A-C5A-C6A	174.8 (3)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-180.0 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	0.7 (4)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	1.3 (4)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	-175.1 (3)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-1.4 (4)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	177.2 (3)
$\mathrm{C} 8 \mathrm{~B}-\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	7.7 (4)
$\mathrm{C} 8 \mathrm{~B}-\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-171.1 (3)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{O} 3 \mathrm{~B}$	-178.8 (3)

O4A-C8A-O3A	113.1 (3)
O4A-C8A-H8A1	109.0
O3A-C8A-H8A1	109.0
O4A-C8A-H8A2	109.0
O3A-C8A-H8A2	109.0
H8A1-C8A-H8A2	107.8
O4B-C8B-O3B	113.0 (3)
O4B-C8B-H8B1	109.0
O3B-C8B-H8B1	109.0
O4B-C8B-H8B2	109.0
O3B-C8B-H8B2	109.0
H8B1-C8B-H8B2	107.8
C6A-C1A-C2A	122.0 (3)
C6A-C1A-Br1A	119.1 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{Br} 1 \mathrm{~A}$	119.0 (2)
O4B-C9B-H9B1	109.5
O4B-C9B-H9B2	109.5
H9B1-C9B-H9B2	109.5
O4B-C9B-H9B3	109.5
H9B1-C9B-H9B3	109.5
H9B2-C9B-H9B3	109.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	0.0 (4)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	1.7 (4)
C7B-C4B-C5B-C6B	-176.9 (3)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-0.6 (4)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	-0.8 (4)
C5B-C6B-C1B-Br1B	176.5 (2)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	180.0 (3)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	1.1 (4)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{Br} 1 \mathrm{~B}$	2.7 (4)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{Br} 1 \mathrm{~B}$	-176.2 (2)
C4A-C5A-C6A-C1A	-0.4 (4)
C9A-O4A-C8A-O3A	-65.8 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 4 \mathrm{~A}$	-65.6 (3)
C9B-O4B-C8B-O3B	-74.1 (3)
C2B-O3B-C8B-O4B	-76.2 (3)
C5A-C6A-C1A-C2A	2.5 (4)
C5A-C6A-C1A-Br1A	-177.4 (2)
O3A-C2A-C1A-C6A	178.0 (3)
C3A-C2A-C1A-C6A	-2.6 (4)
$\mathrm{O} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{Br} 1 \mathrm{~A}$	-2.2 (4)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{Br} 1 \mathrm{~A}$	177.2 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 1 B$	$0.84(5)$	$1.80(5)$	$2.635(4)$	$178(5)$

supporting information

$\mathrm{O} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 1 A$	$0.82(5)$	$1.81(5)$	$2.621(4)$	$167(5)$
$\mathrm{C} 8 B-\mathrm{H} 8 B 2 \cdots \mathrm{O} 3 A^{\mathrm{i}}$	0.99	2.52	$3.420(4)$	150

Symmetry code: (i) $x-1, y+1, z-1$.

[^0]: Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

