research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the two salts 2-methyl-1H-imidazol-3-ium nitrate–2-methyl-1H-imidazole (1/1) and 2-methyl-1H-imidazol-3-ium nitrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 February 2016; accepted 6 March 2016; online 11 March 2016)

The title salts, C4H7N2+·NO3·C4H6N2, (I), and C4H7N2+·NO3, (II), were obtained from solutions containing 2-methyl­imidazole and nitric acid in different concentrations. In the crystal structure of salt (I), one of the –NH H atoms of the imidazole ring shows half-occupancy, hence only every second mol­ecule is in its cationic form. The nitrate anion in this structure lies on a twofold rotation axis. The neutral 2-methyl­imidazole mol­ecule and the 2-methyl-1H-imidazol-3-ium cation inter­act through N—H⋯N hydrogen bonds to form [(C4H6N2)⋯(C4H7N2)+] pairs. These pairs are linked with two nitrate anions on both sides through bifurcated N—H⋯(O,O) hydrogen bonds into chains running parallel to [001]. In the crystal structure of salt (II), the C4H7N2+ cation and the NO3 anion are both located on a mirror plane, leading to a statistical disorder of the methyl H atoms. The cations and anions again inter­act through bifurcated N—H⋯(O,O) hydrogen bonds, giving rise to the formation of chains consisting of alternating anions and cations parallel to [100].

1. Chemical context

While targeting the synthesis of new SnIV complexes, crystals of the salt C4H7N2+·NO3, (II)[link], were obtained serendipitously by mixing tri­methyl­tin acetate with 2-methyl­imidazole in the presence of nitric acid. In the dynamic of seeking new ammonium salts soluble in organic solvents that can be used for further metallorganic syntheses, we have initiated the targeted preparation of this salt. However, by variation of the ratio between nitric acid and 2-methyl­imidazole we also obtained crystals of compound (I)[link], C4H6N2·C4H7N2+·NO3, and report the two structures in this communication.

[Scheme 1]

2. Structural commentary

The asymmetric unit of salt (I)[link] consists of a 2-methyl­imidazole moiety in a general position and part of a nitrate anion. The anion is completed by application of twofold rotation symmetry. The hydrogen atom H1 attached to N1 of the imidazole ring has a statistical occupancy of 0.5, thus leading to a 1:1 mixture of a 2-methyl-1H-imidazol-3-ium cation and a neutral 2-methyl­imidazole mol­ecule in the crystal applying symmetry operation (i) 1 − x, y, [{1\over 2}] − z (Fig. 1[link]). In the nitrate anion, the N—O bond lengths [1.2433 (11)–1.2774 (19) Å], are in a typical range (see, for example, Diop et al., 2013[Diop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.]) and indicate some π delocalization over the two oxygen atoms O1 and O1i. The longer N—O distance is observed for atom O2 involved in the stronger of the two observed N—H⋯O hydrogen bonds (Table 1[link]). The imidazole ring is planar with a maximum deviation of 0.005 (1) Å. The asymmetric unit of salt (II)[link] consists of an ordered 2-methyl-1H-imidazol-3-ium cation and a nitrate anion (Fig. 2[link]), both lying on a mirror plane.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.845 (19) 2.594 (19) 3.1837 (14) 127.9 (15)
N2—H2⋯O2 0.845 (19) 2.06 (2) 2.9031 (10) 172.5 (18)
N1—H1⋯N1ii 0.83 (3) 1.86 (3) 2.678 (2) 173 (4)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular components of salt (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) 1 − x, y, [{1\over 2}] − z, (ii): 1 − x, y, [{3\over 2}] − z.]
[Figure 2]
Figure 2
The mol­ecular components of salt (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines.

In the two structures, the O—N—O angles have normal values close to 120° and their sum (360°) reflect a perfect trigonal–planar geometry for each of the nitrate anions. For the 2-methyl-1H-imidazol-3-ium cations and for the neutral 2-methyl­imidazole mol­ecule, the N—C distances involving C2, the C atom that carries the methyl group, are equal within 0.01 Å, and their values are consistent with double-bond character, as previously observed (Diop et al., 2015[Diop, M. B., Diop, L. & Maris, T. (2015). Acta Cryst. E71, 1064-1066.]).

3. Supra­molecular features

In the crystal structure of salt (I)[link], the neutral 2-methyl­imidazole mol­ecule is connected to the 2-methyl-1H-imidazol-3-ium cation through N—H⋯N hydrogen bonds, forming a [(C4H6N2)⋯(C4H7N2)+] pair (Fig. 1[link]). Such pairs are then linked to two nitrate anions through bifurcated N—H⋯(O,O) hydrogen bonds (Table 1[link]), leading to chains extending along [001] (Fig. 3[link]).

[Figure 3]
Figure 3
Partial view of the packing in the crystal structure of (I)[link], showing a chain of hydrogen-bonded mol­ecules. Only one of the statistically disordered H-atom positions between the imidazole rings is shown.

In the crystal structure of (II)[link], the 2-methyl-1H-imidazol-3-ium cations and the nitrate anions are alternately linked by bifurcated N—H⋯(O,O) hydrogen bonds (Table 2[link]), leading to the formation of hydrogen-bonded chains parallel to [100] (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.82 (4) 2.12 (4) 2.894 (2) 157 (4)
N1—H1⋯O3i 0.82 (4) 2.41 (4) 3.125 (3) 147 (4)
N2—H2⋯O1 0.94 (3) 1.83 (3) 2.760 (2) 167 (3)
N2—H2⋯O2 0.94 (3) 2.50 (3) 3.231 (2) 135 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Partial view of the packing in the crystal structure of (II)[link], showing a chain made up of hydrogen-bonded nitrate anions and 2-methyl-1H-imidazol-3-ium cations.

In the two structures, the stability between the chains is dominated by electrostatic inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with one update, Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for structures containing imidazole or imidazolium rings with nitrate anions returned 21 hits. Mol­ecular chains with bifurcated hydrogen bonds between imidazol-3-ium cations and nitrate anions as found in (II)[link] have been reported for 2-(1-naphthyl­diazen­yl)-1H-imidazol-3-ium nitrate (Pramanik et al., 2010[Pramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250-259.]), 2-azido­imidazolium nitrate (Tang et al., 2012[Tang, Z., Yang, L., Qiao, X., Zhang, T., Zhang, J. & Liang, Y. (2012). Acta Chim. Sinica, 70, 471-478.]) and 2-phenyl­imidazolium nitrate hemihydrate (Zhang et al., 2007[Zhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438-o2439.]). Mol­ecular chains similar to those observed in (I)[link] with pairs of imidazole and imidazolium rings linked through bifurcated hydrogen bonds to nitrate anions are also found in the structure of 2-(1H-imidazol-2-yl)-1H-imidazol-3-ium nitrate (Jin et al., 2011[Jin, Q.-H., Yang, W., Zhou, L.-L., Wang, R. & Xu, L.-J. (2011). J. Chem. Crystallogr. 41, 1768-1773.]).

5. Synthesis and crystallization

All chemicals were purchased from Aldrich (Germany) and were used as received. Single crystals suitable for X-ray studies of (II)[link] were first obtained by serendipity when a mixture of 2-methyl­imidazole and concentrated nitric acid was added to tri­methyl­tin acetate in methanol. Colourless single crystals of (I)[link] were obtained after slow evaporation at room temperature of an aqueous solution consisting of 2-methyl­imidazole and concentrated nitric acid in a 2:1 ratio. Compound (II)[link] can also be prepared in a similar way by changing the ratio between 2-methyl­imidazole and nitric acid to 1:1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For (I)[link], all H atoms were clearly discernible from difference Fourier maps and were freely refined. Half-occupancy of H1 is required for structural reasons and was indicated by the values of the residual density peaks found in the difference Fourier map (0.83 vs 0.47 e Å−3 for an occupancy factor of 1 and 0.5, respectively). For (II)[link], the H atoms bound to C were placed in calculated positions and then refined using a riding model with C—H = 0.95 Å (aromatic) and 0.98 Å (meth­yl) and Uiso(H) = 1.2 and 1.5Ueq(C), respectively. As a result of the mirror symmetry of the 2-methyl-1H-imidazol-3-ium cation, the methyl H atoms are statistically disordered over two positions. H atoms bound to N atoms were located from a difference Fourier map and were freely refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C4H6N2+·NO3·C4H7N2 C4H7N2+·NO3
Mr 227.23 145.13
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pnma
Temperature (K) 100 110
a, b, c (Å) 10.1879 (4), 10.0912 (4), 11.9055 (5) 14.1402 (11), 6.2297 (5), 7.4571 (6)
α, β, γ (°) 90, 115.188 (2), 90 90, 90, 90
V3) 1107.60 (8) 656.89 (9)
Z 4 4
Radiation type Ga Kα, λ = 1.34139 Å Ga Kα, λ = 1.34139 Å
μ (mm−1) 0.58 0.70
Crystal size (mm) 0.25 × 0.19 × 0.19 0.09 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker Venture Metaljet Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.682, 0.752 0.471, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 8771, 1286, 1210 13253, 817, 761
Rint 0.033 0.060
(sin θ/λ)max−1) 0.650 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.04 0.049, 0.146, 1.04
No. of reflections 1286 817
No. of parameters 102 68
H-atom treatment All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.20 0.22, −0.28
Computer programs: APEX2 and, SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

(I) 2-Methyl-1H-imidazol-3-ium nitrate–2-methyl-1H-imidazole (1/1) top
Crystal data top
C4H6N2+·NO3·C4H7N2F(000) = 480
Mr = 227.23Dx = 1.363 Mg m3
Monoclinic, C2/cGa Kα radiation, λ = 1.34139 Å
a = 10.1879 (4) ÅCell parameters from 6125 reflections
b = 10.0912 (4) Åθ = 5.7–60.7°
c = 11.9055 (5) ŵ = 0.58 mm1
β = 115.188 (2)°T = 100 K
V = 1107.60 (8) Å3Block, clear light colourless
Z = 40.25 × 0.19 × 0.19 mm
Data collection top
Bruker Venture Metaljet
diffractometer
1286 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source1210 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.033
Detector resolution: 10.24 pixels mm-1θmax = 60.7°, θmin = 5.7°
ω and φ scansh = 1213
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.682, Tmax = 0.752l = 1513
8771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.053P)2 + 0.953P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1286 reflectionsΔρmax = 0.25 e Å3
102 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.56964 (11)0.62468 (10)0.37404 (10)0.0219 (3)
H10.533 (4)0.626 (3)0.297 (3)0.034 (9)*0.5
N20.59828 (11)0.65353 (10)0.56421 (9)0.0198 (2)
C10.37127 (14)0.74799 (14)0.39888 (12)0.0265 (3)
H1A0.386 (2)0.837 (2)0.3796 (19)0.053 (6)*
H1B0.303 (2)0.713 (2)0.3230 (19)0.049 (5)*
H1C0.333 (2)0.741 (2)0.454 (2)0.058 (6)*
C20.51030 (12)0.67449 (11)0.44456 (10)0.0189 (3)
H20.578 (2)0.6791 (19)0.6223 (17)0.036 (4)*
C30.70215 (14)0.57154 (12)0.45264 (12)0.0251 (3)
H30.766 (2)0.5300 (18)0.4208 (15)0.037 (4)*
C40.72067 (13)0.58907 (12)0.57091 (12)0.0238 (3)
H40.802 (2)0.5656 (17)0.6485 (16)0.034 (4)*
O10.45994 (10)0.92001 (9)0.82112 (8)0.0274 (2)
O20.50000.73329 (12)0.75000.0229 (3)
N30.50000.85988 (14)0.75000.0194 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0253 (5)0.0217 (5)0.0215 (5)0.0005 (4)0.0127 (4)0.0000 (4)
N20.0216 (5)0.0213 (5)0.0177 (5)0.0016 (4)0.0094 (4)0.0007 (4)
C10.0218 (6)0.0317 (7)0.0260 (6)0.0055 (5)0.0100 (5)0.0035 (5)
C20.0198 (5)0.0183 (5)0.0196 (5)0.0012 (4)0.0094 (4)0.0005 (4)
C30.0253 (6)0.0228 (6)0.0315 (6)0.0045 (5)0.0164 (5)0.0010 (5)
C40.0216 (6)0.0215 (6)0.0269 (6)0.0036 (4)0.0089 (5)0.0029 (4)
O10.0335 (5)0.0278 (5)0.0261 (5)0.0028 (4)0.0176 (4)0.0026 (3)
O20.0258 (6)0.0211 (6)0.0238 (6)0.0000.0123 (5)0.000
N30.0164 (6)0.0234 (7)0.0170 (6)0.0000.0056 (5)0.000
Geometric parameters (Å, º) top
N1—H10.83 (3)C1—H1C0.90 (2)
N1—C21.3247 (15)C1—C21.4821 (16)
N1—C31.3822 (17)C3—H30.974 (19)
N2—C21.3381 (15)C3—C41.3504 (18)
N2—H20.845 (19)C4—H40.971 (18)
N2—C41.3783 (16)O1—N31.2433 (11)
C1—H1A0.95 (2)O2—N31.2774 (19)
C1—H1B0.94 (2)N3—O1i1.2433 (11)
C2—N1—H1125 (3)N1—C2—N2109.58 (10)
C2—N1—C3107.21 (10)N1—C2—C1125.45 (11)
C3—N1—H1128 (3)N2—C2—C1124.91 (11)
C2—N2—H2122.4 (13)N1—C3—H3121.6 (10)
C2—N2—C4108.41 (10)C4—C3—N1108.53 (11)
C4—N2—H2129.1 (13)C4—C3—H3129.9 (10)
H1A—C1—H1B104.5 (17)N2—C4—H4123.6 (10)
H1A—C1—H1C114.3 (18)C3—C4—N2106.26 (11)
H1B—C1—H1C107.4 (19)C3—C4—H4130.1 (10)
C2—C1—H1A109.7 (13)O1—N3—O1i121.58 (14)
C2—C1—H1B111.1 (12)O1i—N3—O2119.21 (7)
C2—C1—H1C109.7 (14)O1—N3—O2119.21 (7)
N1—C3—C4—N20.02 (14)C3—N1—C2—C1176.33 (12)
C2—N1—C3—C40.57 (14)C4—N2—C2—N10.92 (13)
C2—N2—C4—C30.53 (14)C4—N2—C2—C1176.35 (11)
C3—N1—C2—N20.91 (13)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.845 (19)2.594 (19)3.1837 (14)127.9 (15)
N2—H2···O20.845 (19)2.06 (2)2.9031 (10)172.5 (18)
N1—H1···N1ii0.83 (3)1.86 (3)2.678 (2)173 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1/2.
(II) 2-Methyl-1H-imidazol-3-ium nitrate top
Crystal data top
C4H7N2+·NO3Dx = 1.467 Mg m3
Mr = 145.13Ga Kα radiation, λ = 1.34139 Å
Orthorhombic, PnmaCell parameters from 9976 reflections
a = 14.1402 (11) Åθ = 5.2–60.7°
b = 6.2297 (5) ŵ = 0.70 mm1
c = 7.4571 (6) ÅT = 110 K
V = 656.89 (9) Å3Block, clear light colorless
Z = 40.09 × 0.04 × 0.03 mm
F(000) = 304
Data collection top
Bruker Venture Metaljet
diffractometer
817 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source761 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.060
Detector resolution: 10.24 pixels mm-1θmax = 60.8°, θmin = 8.1°
ω and φ scansh = 1618
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.471, Tmax = 0.752l = 99
13253 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0855P)2 + 0.2528P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
817 reflectionsΔρmax = 0.22 e Å3
68 parametersΔρmin = 0.28 e Å3
Special details top

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.75103 (14)0.25000.7473 (3)0.0489 (5)
H10.791 (3)0.25000.828 (5)0.104 (14)*
N20.62239 (12)0.25000.5968 (2)0.0383 (5)
H20.558 (2)0.25000.566 (4)0.065 (9)*
C10.6012 (2)0.25000.9290 (3)0.0581 (7)
H1A0.64150.29431.02950.087*0.5
H1B0.57680.10530.95150.087*0.5
H1C0.54830.35040.91700.087*0.5
C20.65719 (16)0.25000.7623 (3)0.0409 (5)
C30.77534 (16)0.25000.5686 (3)0.0493 (6)
H30.83760.25000.52080.059*
C40.69503 (16)0.25000.4755 (3)0.0448 (6)
H40.68920.25000.34860.054*
O10.42825 (10)0.25000.55858 (18)0.0449 (5)
O20.46812 (12)0.25000.2772 (2)0.0498 (5)
O30.32003 (10)0.25000.3546 (2)0.0482 (5)
N30.40563 (11)0.25000.3932 (2)0.0384 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0421 (10)0.0503 (11)0.0542 (11)0.0000.0184 (8)0.000
N20.0319 (8)0.0507 (10)0.0324 (8)0.0000.0023 (6)0.000
C10.0775 (18)0.0625 (15)0.0342 (11)0.0000.0076 (10)0.000
C20.0430 (11)0.0460 (11)0.0337 (10)0.0000.0045 (8)0.000
C30.0357 (11)0.0509 (13)0.0612 (14)0.0000.0057 (9)0.000
C40.0448 (12)0.0522 (12)0.0374 (10)0.0000.0064 (8)0.000
O10.0360 (8)0.0681 (10)0.0308 (7)0.0000.0011 (5)0.000
O20.0449 (9)0.0686 (11)0.0359 (8)0.0000.0092 (6)0.000
O30.0348 (7)0.0592 (10)0.0507 (9)0.0000.0103 (6)0.000
N30.0344 (8)0.0485 (10)0.0323 (8)0.0000.0005 (6)0.000
Geometric parameters (Å, º) top
N1—H10.82 (4)C1—H1C0.9800
N1—C21.332 (3)C1—C21.474 (3)
N1—C31.376 (3)C3—H30.9500
N2—H20.94 (3)C3—C41.331 (3)
N2—C21.329 (2)C4—H40.9500
N2—C41.369 (3)O1—N31.274 (2)
C1—H1A0.9800O2—N31.237 (2)
C1—H1B0.9800O3—N31.244 (2)
C2—N1—H1128 (3)N1—C2—C1127.3 (2)
C2—N1—C3109.29 (19)N2—C2—N1106.91 (18)
C3—N1—H1122 (3)N2—C2—C1125.8 (2)
C2—N2—H2126.1 (18)N1—C3—H3126.5
C2—N2—C4109.63 (18)C4—C3—N1106.98 (19)
C4—N2—H2124.3 (18)C4—C3—H3126.5
H1A—C1—H1B109.5N2—C4—H4126.4
H1A—C1—H1C109.5C3—C4—N2107.19 (19)
H1B—C1—H1C109.5C3—C4—H4126.4
C2—C1—H1A109.5O2—N3—O1119.85 (17)
C2—C1—H1B109.5O2—N3—O3122.22 (18)
C2—C1—H1C109.5O3—N3—O1117.93 (16)
N1—C3—C4—N20.000 (1)C3—N1—C2—C1180.000 (1)
C2—N1—C3—C40.000 (1)C4—N2—C2—N10.000 (1)
C2—N2—C4—C30.000 (1)C4—N2—C2—C1180.000 (1)
C3—N1—C2—N20.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (4)2.12 (4)2.894 (2)157 (4)
N1—H1···O3i0.82 (4)2.41 (4)3.125 (3)147 (4)
N2—H2···O10.94 (3)1.83 (3)2.760 (2)167 (3)
N2—H2···O20.94 (3)2.50 (3)3.231 (2)135 (2)
Symmetry code: (i) x+1/2, y, z+3/2.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and Université de Montréal for financial support.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiop, T., Diop, L., Kučeráková, M. & Dušek, M. (2013). Acta Cryst. E69, o303.  CSD CrossRef IUCr Journals Google Scholar
First citationDiop, M. B., Diop, L. & Maris, T. (2015). Acta Cryst. E71, 1064–1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q.-H., Yang, W., Zhou, L.-L., Wang, R. & Xu, L.-J. (2011). J. Chem. Crystallogr. 41, 1768–1773.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250–259.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, Z., Yang, L., Qiao, X., Zhang, T., Zhang, J. & Liang, Y. (2012). Acta Chim. Sinica, 70, 471–478.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438–o2439.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds