CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 March 2016
Accepted 28 March 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; rhenium carbonyl complex; valine.

CCDC reference: 1469075

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of fac-aquatricarbonyl[(S)-valin-ato- $\left.\kappa^{2} N, O\right]$ rhenium (I)

Kseniia O. Piletska, ${ }^{\text {a* }}$ Kostiantyn V. Domasevitch ${ }^{\text {b }}$ and Alexander V. Shtemenko ${ }^{\text {a }}$

Abstract

${ }^{\text {a }}$ Department of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine, and ${ }^{\mathbf{b}}$ Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64/13, Kyiv 01601, Ukraine. *Correspondence e-mail: ksenijapiletska@gmail.com

In the molecule of the title compound, $\left[\operatorname{Re}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}\right)(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the Re^{I} atom adopts a distorted octahedral coordination sphere defined by one aqua and three carbonyl ligands as well as one amino N and one carboxylate O atom of the chelating valinate anion. The carbonyl ligands are arranged in a facconfiguration around the Re^{I} ion. In the crystal, an intricate hydrogen-bonding system under participation of two $\mathrm{O}-\mathrm{H}$, two $\mathrm{N}-\mathrm{H}$ and one $\mathrm{C}-\mathrm{H}$ donor groups and the carboxylate and carbonyl O atoms as acceptor groups contribute to the formation of a three-dimensional supramolecular network.

1. Chemical context

The syntheses of metal-organic compounds, which are capable of visualization of biomolecules, is receiving growing interest in biocoordination chemistry (Coogan \& Fernández-Moreira, 2014). For the labeling of biomolecules, octahedral fac-tricarbonyl complexes of Tc and Re are the most promising compounds (Alberto, 2007; Coogan et al., 2014). The compact $M(\mathrm{CO})_{3}$-core $(M=\mathrm{Tc}, \mathrm{Re})$ allows labeling of low molecular weight substrates under retention of activity and specificity. In this context, $\operatorname{Re}(\mathrm{CO})_{3}{ }^{+}$compounds are of interest as the closest non-radioactive analogs of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-based systems, which could be particularly important for visualization and immunotherapy. Studies of the cytotoxicity of rhenium carbonyl complexes also suggest their specific anticancer activity (Leonidova \& Gasser, 2014).

Most of the known $\operatorname{Re}(\mathrm{CO})_{3}{ }^{+}$complexes with biologically essential substrates comprise tridentate co-ligands, e.g. histi-dinato- O, N, N^{\prime} (Alberto et al., 1999), methioninato- $N, O, S(\mathrm{He}$ et al., 2005), 2,3-diaminopropionato- N, N^{\prime}, O (Liu et al., 2006), completing the coordination octahedra of the central ions. At

Figure 1
The molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level.
the same time, coordinatively unsaturated complexes of bidentate aminocarboxylates could be suited for interactions with additional ligands, such as guanine bases (Zobi et al. $2005 a$), thus allowing an attractive scenario for the assembly of mixed-ligand systems.

In this communication, we report the synthesis and crystal structure of a novel $\operatorname{Re}(\mathrm{CO})_{3}{ }^{+}$complex with valine and water as co-ligands. Following the findings of Zobi et al. (2005b), sufficient reactivity of this compound towards DNA may be anticipated.

2. Structural commentary

In the molecule of the title compound (Fig. 1), the Re^{1} ion resides in a slightly distorted octahedral coordination environment, with a facial arrangement of three nearly equidistant carbonyl ligands [Re1-C bond lengths are in the range 1.881 (7)-1.909 (7) \AA]. The compound crystallizes in the chiral space group $P 2_{1} 2_{1} 2_{1}$, with the S-enantiomer of the valinate anion present in the selected crystal. The anion coordinates in a bidentate-chelating fashion through the amino N and one carboxylate O atoms, with $\mathrm{Re} 1-\mathrm{N} 1$ and $\mathrm{Re} 1-\mathrm{O} 4$ bond lengths of 2.195 (5) and 2.122 (4) \AA, respectively. The five-

Figure 2
Primary supramolecular interactions involving rather strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds that produce chains parallel to the a axis. [Symmetry codes: (i) $x-1, y, z$; (ii) $x-0.5,-y+0.5,-z+1$.]

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H1W . . $\mathrm{O} 5^{\text {i }}$	0.85	1.85	2.693 (5)	175
O6-H2W. . O $5^{\text {ii }}$	0.85	1.88	2.723 (5)	175
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3^{\text {iii }}$	0.90	2.15	2.979 (7)	153
$\mathrm{N} 1-\mathrm{H} 2 N \cdots \mathrm{O} 1^{\text {iv }}$	0.90	2.41	3.103 (6)	133
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {v }}$	0.99	2.59	3.527 (7)	158

Symmetry codes: (i) $x-1, y, z$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x, y+1, z ;(\mathrm{v}) x+1, y, z$.
membered chelate ring [bite angle $\mathrm{N} 1-\mathrm{Re} 1-\mathrm{O} 4=$ $\left.74.62(18)^{\circ}\right]$ has the expected envelope conformation, with the atoms of the $\mathrm{Re} 1-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$ fragment being coplanar within 0.035 (3) \AA and the N1 flap atom deviating from the given mean plane by 0.547 (6) \AA. The Re1-O6 bond involving the aqua ligand $[2.175(5) \AA$] is slightly longer than the one with the carboxyl O atom. The CO ligands coordinate in an almost linear fashion, with $\mathrm{O}-\mathrm{C}-\mathrm{Re}$ bond angles spanning a range from 175.5 (7) to 179.9 (8) ${ }^{\circ}$, while the corresponding $\mathrm{C}-\mathrm{Re} 1-\mathrm{C}$ angles are within 87.1 (3)-89.8 (2) ${ }^{\circ}$. All other bond length and angles are comparable to those found for related Re^{I} complexes (Rajendran et al., 2000).

3. Supramolecular features

In the crystal, the packing of the molecules is governed by an intricate system of hydrogen bonds, including classical

Figure 3
The crystal structure of the title complex showing all hydrogen-bonding interactions $(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O})$ as dashed lines. The isopropyl CH-hydrogen atoms were omitted for clarity. [Symmetry codes: (i) $x-1, y, z$; (iv) $x, y+1, z$; (v) $x+1, y, z$.]

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

```
\(\left[\operatorname{Re}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}\right)(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) 404.39
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
213
7.1229 (5), 7.2913 (7), 22.6098 (18)
1174.24 (17)
4
Mo \(K \alpha\)
10.36
\(0.16 \times 0.12 \times 0.12\)
```

Stoe Imaging plate diffraction system
Numerical (X-SHAPE and
X-RED; Stoe, 2001)
0.288, 0.370

10442, 2809, 2546
0.040
0.660
$0.022,0.047,0.99$
2809
147
H -atom parameters constrained
1.68, -0.91

Flack x determined using 990 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013).
-0.018 (10)

Computer programs: IPDS Software (Stoe, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds and weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1). Two rather strong and nearly linear $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds are observed between the aqua ligand and the non-coordinating carboxylate O atoms of two symmetryrelated neighbouring molecules. The amino group forms two weaker $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds to carbonyl O atom acceptor groups of two neighbouring molecules. Each non-coordinating carboxylate O atom accepts two such bonds, yielding hydrogen-bonded chains parallel to the a-axis direction (Fig. 2), whereas the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds expand the hydrogenbonding system into a three-dimensional network. Additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions consolidate this arrangement (Fig. 3). The combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (involving the chiral C5 atom) bonds may be important for the observed enantioselective packing of the chiral moieties (Petkova et al., 2001).

4. Synthesis and crystallization

To a solution of dL-valine $(0.116 \mathrm{~g}, 0.984 \mathrm{mmol})$ in 5 ml of water, a solution of triaquatricarbonylrhenium(I) bromide $(0.100 \mathrm{~g}, 0.246 \mathrm{mmol})$ in 10 ml of methanol was added. The reaction mixture was heated and stirred at 343 K under a steady stream of argon for 4 h . After cooling to room
temperature, the solution was left to evaporate in air for a period of a few days. After removal of the methanol cosolvent, a colourless crystalline product formed. The precipitate was collected by suction filtration, washed with water and then with a 50 ml portion of petroleum ether and dried (yield: $0.068 \mathrm{~g}, 68 \%$). Suitable single crystals were obtained by slow diffusion of hexane vapor into a methanol solution of the complex. IR (KBr, cm ${ }^{-1}$): $v_{\text {as }}(\mathrm{CO}) 2028(s), v_{\mathrm{s}}(\mathrm{CO}) 1905(s)$.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound hydrogen atoms were placed geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl and with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methine groups. N - and O-bound hydrogen atoms were found from difference maps and refined with $\mathrm{N}-\mathrm{H}=0.90 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{O})$.

Acknowledgements

This work was supported by the fund Grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank EU COST Action CM 1105 for supporting this study.

References

Alberto, R. (2007). J. Organomet. Chem. 692, 1179-1186.
Alberto, R., Schibli, R., Waibel, R., Abram, U. \& Schubiger, A. P. (1999). Coord. Chem. Rev. 190-192, 901-919.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Coogan, M. P., Doyle, R. P., Valliant, J. F., Babich, J. W. \& Zubieta, J. (2014). J. Label Compd. Radiopharm. 57, 255-261.

Coogan, M. P. \& Fernández-Moreira, V. (2014). Chem. Commun. 50, 384-399.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
He, H., Lipowska, M., Xu, X., Taylor, A. T., Carlone, M. \& Marzilli, L. G. (2005). Inorg. Chem. 44, 5437-5446.

Leonidova, A. \& Gasser, G. (2014). Chem. Biol. 9, 2180-2193.
Liu, Y., Pak, J. K., Schmutz, P., Bauwens, M., Mertens, J., Knight, H. \& Alberto, R. (2006). J. Am. Chem. Soc. 128, 15996-15997.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Petkova, E. G., Lampeka, R. D., Gorichko, M. V. \& Domasevitch, K. V. (2001). Polyhedron, 20, 747-753.

Rajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. \& Lu, K.-L. (2000). Inorg. Chem. 39, 2016-2017.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stoe (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Stoe (2001). X-SHAPE and X-RED. Stoe \& Cie GmbH, Darmstadt, Germany.
Zobi, F., Spingler, B. \& Alberto, R. (2005a). Dalton Trans. pp. 28592865.

Zobi, F., Spingler, B. \& Alberto, R. (2005b). ChemBioChem, 6, 13971405.

supporting information

Acta Cryst. (2016). E72, 590-592 [https://doi.org/10.1107/S2056989016005235]

Crystal structure of fac-aquatricarbonyl[(S)-valinato- $\left.\kappa^{2} N, O\right]$ rhenium (I)

Kseniia O. Piletska, Kostiantyn V. Domasevitch and Alexander V. Shtemenko

Computing details

Data collection: IPDS Software (Stoe, 2000); cell refinement: IPDS Software (Stoe, 2000); data reduction: IPDS Software (Stoe, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).
fac-Aquatricarbonyl[(S)-valinato- $\left.\kappa^{2} N, O\right]$ rhenium(I)

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}\right)(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=404.39$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.1229$ (5) Å
$b=7.2913$ (7) \AA
$c=22.6098(18) \AA$
$V=1174.24(17) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=2.287 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8000 reflections
$\theta=2.9-28.0^{\circ}$
$\mu=10.36 \mathrm{~mm}^{-1}$
$T=213 \mathrm{~K}$
Prism, colorless
$0.16 \times 0.12 \times 0.12 \mathrm{~mm}$
$F(000)=760$

Data collection

Stoe Imaging plate diffraction system diffractometer
Radiation source: fine-focus sealed tube φ oscillation scans
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe, 2001)
$T_{\text {min }}=0.288, T_{\text {max }}=0.370$
10442 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.047$
$S=0.99$
2809 reflections
147 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0254 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=1.68$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.91$ e \AA^{-3}
Absolute structure: Flack x determined using 990 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al., 2013).

Absolute structure parameter: -0.018 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Re1	$0.27215(3)$	$0.24317(4)$	$0.36414(2)$	$0.01911(8)$
O1	$0.1402(9)$	$-0.1539(7)$	$0.3751(3)$	$0.0475(16)$
O2	$-0.0548(9)$	$0.3311(10)$	$0.2820(3)$	$0.059(2)$
O3	$0.4865(10)$	$0.1103(10)$	$0.2566(3)$	$0.0510(17)$
O4	$0.4953(6)$	$0.2146(6)$	$0.42564(19)$	$0.0201(10)$
O5	$0.7729(7)$	$0.3107(6)$	$0.4559(2)$	$0.0296(11)$
O6	$0.1463(7)$	$0.3556(6)$	$0.4439(2)$	$0.0216(10)$
H1W	0.0276	0.3449	0.4455	0.032^{*}
H2W	0.1929	0.3046	0.4744	0.032^{*}
N1	$0.4095(7)$	$0.5125(7)$	$0.3670(3)$	$0.0202(10)$
H1N	0.4012	0.5560	0.3298	0.030^{*}
H2N	0.3545	0.5944	0.3913	0.030^{*}
C1	$0.1826(10)$	$-0.0024(10)$	$0.3716(4)$	$0.0300(15)$
C2	$0.0674(10)$	$0.2983(10)$	$0.3127(3)$	$0.0309(18)$
C3	$0.4063(11)$	$0.1628(11)$	$0.2973(3)$	$0.0283(16)$
C4	$0.6284(10)$	$0.3294(9)$	$0.4248(3)$	$0.0215(14)$
C5	$0.6095(10)$	$0.4941(9)$	$0.3839(3)$	$0.0216(14)$
H5	0.6814	0.4668	0.3475	0.026^{*}
C6	$0.6917(11)$	$0.6706(9)$	$0.4109(4)$	$0.0319(16)$
H6	0.8235	0.6446	0.4220	0.038^{*}
C7	$0.5880(13)$	$0.7280(13)$	$0.4668(4)$	$0.048(2)$
H7A	0.4638	0.7721	0.4565	0.072^{*}
H7B	0.6574	0.8250	0.4864	0.072^{*}
H7C	0.5768	0.6236	0.4931	0.072^{*}
C8	$0.6942(12)$	$0.8254(9)$	$0.3654(5)$	$0.0424(19)$
H8A	0.5664	0.8610	0.3561	0.064^{*}
H8B	0.7566	0.7837	0.3298	0.064^{*}
H8C	0.7613	0.9298	0.3816	0.064^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re1	$0.01711(11)$	$0.02296(11)$	$0.01726(10)$	$0.00198(16)$	$-0.00083(9)$	$-0.00125(15)$
O1	$0.035(3)$	$0.027(3)$	$0.081(5)$	$-0.005(2)$	$-0.001(3)$	$0.002(3)$
O2	$0.038(4)$	$0.091(5)$	$0.048(4)$	$0.017(3)$	$-0.016(3)$	$-0.006(3)$
O3	$0.060(5)$	$0.061(4)$	$0.032(3)$	$0.016(3)$	$0.012(3)$	$-0.006(3)$
O4	$0.018(2)$	$0.020(3)$	$0.023(2)$	$-0.0010(17)$	$-0.0010(17)$	$0.0027(17)$
O5	$0.015(2)$	$0.043(2)$	$0.030(2)$	$0.0011(19)$	$-0.005(2)$	$0.0118(19)$
O6	$0.019(2)$	$0.024(2)$	$0.022(2)$	$0.0027(18)$	$0.0015(19)$	$0.0026(18)$

N 1	$0.020(3)$	$0.020(2)$	$0.020(3)$	$0.0023(19)$	$-0.002(3)$	$0.003(2)$
C 1	$0.020(4)$	$0.037(4)$	$0.032(4)$	$-0.002(3)$	$-0.004(3)$	$0.000(3)$
C 2	$0.023(4)$	$0.043(5)$	$0.026(4)$	$0.011(3)$	$-0.010(3)$	$-0.010(3)$
C 3	$0.027(4)$	$0.041(4)$	$0.016(3)$	$0.006(3)$	$0.005(3)$	$-0.001(3)$
C4	$0.017(4)$	$0.028(3)$	$0.019(3)$	$0.005(3)$	$0.003(3)$	$0.002(2)$
C5	$0.017(3)$	$0.025(3)$	$0.023(3)$	$0.002(2)$	$0.000(2)$	$0.000(2)$
C6	$0.024(4)$	$0.031(3)$	$0.041(4)$	$0.000(3)$	$-0.005(3)$	$-0.001(3)$
C7	$0.055(5)$	$0.039(5)$	$0.050(5)$	$0.005(5)$	$-0.006(4)$	$-0.022(4)$
C8	$0.033(5)$	$0.027(3)$	$0.066(6)$	$-0.007(3)$	$-0.002(5)$	$0.004(4)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

Re1-C3	1.881 (7)	N1-H1N	0.9004
Re1-C2	1.908 (7)	N1—H2N	0.9004
Re1-C1	1.909 (7)	C4-C5	1.520 (9)
Re1-O4	2.122 (4)	C5-C6	1.539 (9)
Re1-O6	2.175 (5)	C5-H5	0.9900
Re1-N1	2.195 (5)	C6-C7	1.523 (11)
O1-C1	1.148 (9)	C6-C8	1.526 (11)
$\mathrm{O} 2-\mathrm{C} 2$	1.139 (9)	C6-H6	0.9900
O3-C3	1.148 (9)	C7-H7A	0.9700
O4-C4	1.265 (8)	C7-H7B	0.9700
O5-C4	1.255 (8)	C7-H7C	0.9700
O6-H1W	0.8498	C8-H8A	0.9700
O6-H2W	0.8503	C8-H8B	0.9700
N1-C5	1.482 (8)	C8-H8C	0.9700
C3-Re1-C2	88.0 (3)	O5-C4-O4	122.3 (6)
C3-Re1-C1	87.1 (3)	O5-C4-C5	119.9 (6)
C2-Re1-C1	89.8 (3)	O4-C4-C5	117.8 (6)
C3-Re1-O4	96.6 (3)	N1-C5-C4	108.3 (5)
C2-Re1-O4	173.0 (2)	N1-C5-C6	113.1 (5)
C1-Re1-O4	95.8 (3)	C4-C5-C6	112.8 (6)
C3-Re1-O6	173.2 (3)	N1-C5-H5	107.5
C2-Re1-06	96.4 (3)	C4-C5-H5	107.5
C1-Re1-O6	98.2 (3)	C6-C5-H5	107.5
O4-Re1-O6	78.61 (18)	C7-C6-C8	111.2 (7)
C3-Re1-N1	94.4 (3)	C7-C6-C5	111.9 (6)
C2-Re1-N1	99.8 (3)	C8-C6-C5	110.9 (7)
C1-Re1-N1	170.4 (3)	C7-C6-H6	107.5
O4-Re1-N1	74.62 (18)	C8-C6-H6	107.5
O6-Re1-N1	79.7 (2)	C5-C6-H6	107.5
C4-O4-Re1	119.1 (4)	C6-C7-H7A	109.5
Rel-O6-H1W	114.3	C6-C7-H7B	109.5
Re1-O6-H2W	110.2	H7A-C7-H7B	109.5
H1W-O6-H2W	108.2	C6-C7-H7C	109.5
C5-N1-Re1	110.8 (4)	H7A-C7-H7C	109.5
C5-N1-H1N	109.6	H7B-C7-H7C	109.5

Re1-N1-H1N	105.0	C6-C8-H8A	109.5
C5-N1-H2N	108.7	C6-C8-H8B	109.5
Re1-N1-H2N	114.7	H8A-C8-H8B	109.5
$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	107.9	C6-C8-H8C	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Re} 1$	175.5 (7)	H8A-C8-H8C	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Re} 1$	179.9 (8)	H8B-C8-H8C	109.5
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{Re} 1$	178.6 (7)		
$\mathrm{Re} 1-\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 5$	-173.0 (5)	O5-C4-C5-C6	-37.3 (9)
Re1-O4-C4-C5	6.6 (7)	O4-C4-C5-C6	143.1 (6)
Re1-N1-C5-C4	-31.1 (6)	N1-C5-C6-C7	60.3 (8)
Re1-N1-C5-C6	-156.7 (5)	C4-C5-C6-C7	-63.0 (8)
$\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-163.1 (6)	N1-C5-C6-C8	-64.5 (8)
O4-C4-C5-N1	17.2 (8)	C4-C5-C6-C8	172.2 (6)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6- $\mathrm{H} 1 W^{\cdots}{ }^{\text {O }}{ }^{\text {i }}$	0.85	1.85	2.693 (5)	175
$\mathrm{O} 6-\mathrm{H} 2 W \cdots{ }^{5}{ }^{\text {ii }}$	0.85	1.88	2.723 (5)	175
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3^{\text {iii }}$	0.90	2.15	2.979 (7)	153
$\mathrm{N} 1-\mathrm{H} 2 N \cdots \mathrm{O} 1^{\text {iv }}$	0.90	2.41	3.103 (6)	133
$\mathrm{C} 5-\mathrm{H} 5 \cdots{ }^{\text {v }}$	0.99	2.59	3.527 (7)	158

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1 / 2,-y+1 / 2,-z+1$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $x, y+1, z$; (v) $x+1, y, z$.

