

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 14 May 2016
Accepted 20 May 2016

Edited by I. D. Brown, McMaster University, Canada

Keywords: crystal structure; iron molybdate; anionic framework; $\mathrm{Na}-\mathrm{Fe}-\mathrm{Mo}-\mathrm{O}$ system.

CCDC reference: 1481125

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$

Manel Mhiri,* Abdessalem Badri and Mongi Ben Amara

Unité de Recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisia.
*Correspondence e-mail: mhirimanel@yahoo.fr

The iron molybdate $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$ \{sodium magnesium iron(III) tris[molybdate(VI$)]$ \} has been synthesized by the flux method. This compound is isostructural with $\alpha-\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ and crystallizes in the triclinic space group $P \overline{1}$. Its structure is built up from $[\mathrm{Mg}, \mathrm{Fe}]_{2} \mathrm{O}_{10}$ units of edge-sharing $[\mathrm{Mg}, \mathrm{Fe}] \mathrm{O}_{6}$ octahedra which are linked to each other through the common corners of $\left[\mathrm{MoO}_{4}\right]$ tetrahedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [101] direction in which the Na^{+}cations are located.

1. Chemical context

Iron molybdates have been subject to very intensive research as a result of their numerous applications including as catalysts (Tian et al., 2011), multiferroic properties and more recently as a possible positive electrode in rechargeable batteries (Sinyakov et al., 1978; Mączka et al., 2011; Devi \& Varadaraju, 2012). In these materials, the anionic framework is constructed from MoO_{4} tetrahedra linked to the iron coordination polyhedra, leading to a large variety of crystal structures with a high capacity for cationic and anionic substitutions.

Until now, a total of six orthomolybdate compounds have been reported in the $\mathrm{Na}-\mathrm{Fe}-\mathrm{Mo}-\mathrm{O}$ system: $\mathrm{Na} 9 \mathrm{Fe}\left(\mathrm{MoO}_{4}\right)_{6}$ (Savina et al., 2013); $\mathrm{NaFe}\left(\mathrm{MoO}_{4}\right)_{2}$ (Klevtsova, 1975); $\alpha-\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}, \quad \beta-\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3} \quad$ and $\mathrm{Na}_{3} \mathrm{Fe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ (Muessig et al., 2003); $\mathrm{NaFe}_{4}\left(\mathrm{MoO}_{4}\right)_{5}$ (Ehrenberg et al., 2006). Their structures are described in terms of three-dimensional networks of isolated $\left[\mathrm{MoO}_{4}\right]$ tetrahedra and $\left[\mathrm{FeO}_{6}\right]$ octahedra. The sodium and mixed-valence iron molybdate $\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ exhibits two polymorphs, both crystallizing in the triclinic system. The low-temperature α-phase changes irreversibly at high temperature into a β-phase. In addition to these orthomolybdate compounds, another phase with the formula $\mathrm{Na}_{3} \mathrm{Fe}_{2} \mathrm{Mo}_{5} \mathrm{O}_{16}$ and with layers of $\mathrm{Mo}_{3} \mathrm{O}_{13}$ units consisting of $\left[\mathrm{MoO}_{6}\right]$ octahedra has been synthesized and characterized (Bramnik et al., 2003). In addition, Kozhevnikova \& Imekhenova (2009) have investigated the $\mathrm{Na}_{2} \mathrm{MoO}_{4}{ }^{-}$ $M \mathrm{MoO}_{4}-\mathrm{Fe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ system $(M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Co})$ and have attributed the Nasicon-type structure with space group $R \overline{3} c$ (Kotova \& Kozhevnikova, 2003; Kozhevnikova \& Imekhenova, 2009) to the phase of variable composition $\mathrm{Na}_{(1-x)} M_{(1-x)} \mathrm{Fe}_{(1+x)}\left(\mathrm{MoO}_{4}\right)_{3}$. More recently, $\mathrm{NaNiFe}\left(\mathrm{MoO}_{4}\right)_{3}$ and $\mathrm{NaZnFe}\left(\mathrm{MoO}_{4}\right)_{3}$ (Mhiri et al., 2015) were found to be isostructural to $\beta-\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ and to have a good ionic conductivity with low activation energy, close to those of Nasicon-type compounds with similar formula such as $A \mathrm{Zr}_{2}\left(\mathrm{PO}_{4}\right)_{3}(A=\mathrm{Na}, \mathrm{Li})$. As an extension of the previous work, we report here on the synthesis and characterization by

Figure 1
$[\mathrm{Mg}, \mathrm{Fe}]_{2} \mathrm{O}_{10}$ units parallel to [110] in $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$ structure. $[\mathrm{Mg}, \mathrm{Fe}]_{2} \mathrm{O}_{10}$ dimers are shown in blue and MoO_{4} tetrahedra in purple.

X-ray diffraction of a new compound, $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$, which is isostructural with $\alpha-\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$.

B

B'

Figure 2
Projection of the $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$ structure along the b axis. $[\mathrm{Mg}, \mathrm{Fe}]_{2} \mathrm{O}_{10}$ dimers are shown in blue; MoO_{4} tetrahedra in purple and Na^{+}cations as green spheres.

Figure 3
Channels along [101] in the structure of $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3} .[\mathrm{Mg}, \mathrm{Fe}]_{2} \mathrm{O}_{10}$ dimers are shown in blue, MoO_{4} tetrahedra in purple and Na^{+}cations as green spheres.

2. Structural commentary

The title $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$ structure is based on a threedimensional framework of $[\mathrm{Mg}, \mathrm{Fe}]_{2} \mathrm{O}_{10}$ units of edge-sharing $[\mathrm{Mg}, \mathrm{Fe}] \mathrm{O}_{6}$ octahedra, connected to each other through the common corners of $\left[\mathrm{MoO}_{4}\right]$ tetrahedra. All $\left[\mathrm{Mg}, \mathrm{Fe}_{2} \mathrm{O}_{10}\right.$ units are parallel to [1 $\overline{1} 0]$ (Fig. 1). In this structure, two types of layers $(A$ and $B)$, similar to those observed in $\alpha-\mathrm{NaFe}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$, are aligned parallel to (110) with the sequence $-A-B-B^{\prime}-A-B-B^{\prime}-$ and stacked along [001]. B^{\prime} layers are obtained from B by an inversion centre located on the A planes (Fig. 2). The resulting anionic three-dimensional framework leads to the formation of channels along [101] in which the sodium ions are located (Fig. 3).

Figure 4
The environment of the Na^{+}cation showing displacement ellipsoids drawn at the 50% probability level.

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$
582.97

Triclinic, $P \overline{1}$
293
6.900 (4), 6.928 (1), 11.055 (1)
80.24 (1), 83.55 (2), 80.22 (3)
511.3 (3)

2
Mo $K \alpha$
5.15
$0.28 \times 0.14 \times 0.07$

Enraf-Nonius TurboCAD-4
ψ scan (North et al., 1968)
0.478, 0.695

3429, 2983, 2850
0.014
0.703
0.025, 0.068, 1.19

2983
168
4
1.47, -1.60

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms \& Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL2014/7 (Sheldrick, 201), DIAMOND (Brandenburg \& Putz, 1999) and WinGX publication routines (Farrugia, 2012).

In the title structure, all atoms are located in general positions. The three crystallographically different molybdenum atoms have a tetrahedral coordination with $\mathrm{Mo}-\mathrm{O}$ distances between 1.715 (3) and $1.801(2) \AA$. The mean distances $(\mathrm{Mo} 1-\mathrm{O}=1.762, \mathrm{Mo} 2-\mathrm{O}=1.766$ and $\mathrm{Mo} 3-\mathrm{O}=1.760 \AA$) are in good accordance with those usually observed in molybdates (Abrahams et al., 1967; Harrison \& Cheetham, 1989; Smit et al., 2006). The [Mg,Fe]-O distances and the cis $\mathrm{O}-[\mathrm{Mg}, \mathrm{Fe}]-\mathrm{O}$ angles in the $\left[\mathrm{Mg}, \mathrm{Fe}_{2} \mathrm{O}_{10}\right.$ units range from 2.003 (3) to 2.099 (3) \AA and from 81.2 (1) to $177.8(1)^{\circ}$, respectively. This dispersion reflects a slight distortion of the $[\mathrm{Mg}, \mathrm{Fe}] \mathrm{O}_{6}$ octahedra. The average distances $[\mathrm{Mg}, \mathrm{Fe}] 1-\mathrm{O}=$ 2.059 and $[\mathrm{Mg}, \mathrm{Fe}] 2-\mathrm{O}=2.013 \AA$ lie between the values of $1.990 \AA$ observed for six-coordinated Fe^{3+} in $\mathrm{LiFe}\left(\mathrm{MoO}_{4}\right)_{2}$ (van der Lee et al. 2008) and $2.072 \AA$ reported for Mg^{2+} with the same coordination in $\mathrm{NaMg}_{3} \mathrm{Al}\left(\mathrm{MoO}_{4}\right)_{5}$ (Hermanowicz et al., 2006). This result is related to the disordered distribution of Fe^{3+} and Mg^{2+} in both sites. Assuming sodium-oxygen distances below $3.13 \AA$ (Donnay \& Allmann, 1970), the Na site is surrounded by five oxygen atoms (Fig. 4).

3. Synthesis and crystallization

Crystals of the title compound were grown in a flux of sodium dimolybdate $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ with an atomic ratio $\mathrm{Na}: \mathrm{Mg}: \mathrm{Fe}: \mathrm{Mo}=$ 5:1:1:7. Appropriate amounts of the starting reactants NaNO_{3}, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ were dissolved in nitric acid and the resulting solution was
evaporated to dryness. The dry residue was then placed in a platinum crucible and slowly heated in air up to 673 K for 24 h to remove $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}. The mixture was ground in an agate mortar, melted for 2 h at 1123 K and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. Crystals without regular shape were separated from the flux by washing in boiling water.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The application of the direct methods revealed two sites, labeled $M(1)$ and $M(2)$, statistically occupied by the Fe^{3+} and Mg^{2+} ions. This distribution was supported by the $M 1-\mathrm{O}$ and $M 2-\mathrm{O}$ distances which are between the classical values for pure $\mathrm{Mg}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{O}$ bonds. Succeeding difference Fourier synthesis led to the positions of all the remaining atoms.

References

Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052-2063.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Bramnik, K. G., Muessig, E. \& Ehrenberg, H. (2003). J. Solid State Chem. 176, 192-197.
Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Devi, M. \& Varadaraju, U. V. (2012). Electrochem. Commun. 18, 112115.

Donnay, G. \& Allmann, R. (1970). Am. Mineral. 55, 1003-1015.
Ehrenberg, H., Muessig, E., Bramnik, K. G., Kampe, P. \& Hansen, T. (2006). Solid State Sci. 8, 813-820.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonuis, Delft, The Netherlands.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Harrison, W. T. A. \& Cheetham, A. K. (1989). Acta Cryst. C45, 178180.

Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. \& Hanuza, J. (2006). J. Solid State Chem. 179, 685-695.
Klevtsova, R. F. (1975). Dokl. Akad. Nauk SSSR, 221, 1322-1325.
Kotova, I. Yu. \& Kozhevnikova, N. M. (2003). Russ. J. Appl. Chem. 76, 1572-1576.
Kozhevnikova, N. M. \& Imekhenova, A. V. (2009). Russ. J. Inorg. Chem. 54, 638-643.
Lee, A. van der, Beaurain, M. \& Armand, P. (2008). Acta Cryst. C64, i1-i4.
Mączka, M., Ptak, M., Luz-Lima, C., Freire, P. T. C., Paraguassu, W., Guerini, S. \& Hanuza, J. (2011). J. Solid State Chem. 184, 28122817.

Mhiri, M., Badri, A., Lopez, M. L., Pico, C. \& Ben Amara, M. (2015). Ionics, 21, 2511-2522.
Muessig, E., Bramnik, K. G. \& Ehrenberg, H. (2003). Acta Cryst. B59, 611-616.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Savina, A. A., Solodovnikov, S. F., Basovich, O. M., Solodovnikova, Z. A., Belov, D. A., Pokholok, K. V., Gudkova, I. A. Yu., Stefanovich, S., Lazoryak, B. I. \& Khaikina, E. G. (2013). J. Solid State Chem. 205, 149-153.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

research communications

Sinyakov, E. V., Dudnik, E. F., Stolpakova, T. M. \& Orlov, O. L. (1978). Ferroelectrics, 21, 579-581.

Smit, J. P., Stair, P. C. \& Poeppelmeier, K. R. (2006). Chem. Eur. J. 12, 5944-5953.

Tian, S. H., Tu, Y. T., Chen, D. S., Chen, X. \& Xiong, Y. (2011). Chem. Eng. J. 169, 31-37.

supporting information

Acta Cryst. (2016). E72, 864-867 [https://doi.org/10.1107/S205698901600829X]
Synthesis and crystal structure of $\mathrm{NaMgFe}\left(\mathrm{MoO}_{4}\right)_{3}$

Manel Mhiri, Abdessalem Badri and Mongi Ben Amara

Computing details

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 201); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).
(I)

Crystal data

$\mathrm{FeMgMo}_{3} \mathrm{NaO}_{12}$
$M_{r}=582.97$
Triclinic, $P \overline{1}$
$a=6.900(4) \AA$
$b=6.928$ (1) \AA
$c=11.055(1) \AA$
$\alpha=80.24(1)^{\circ}$
$\beta=83.55(2)^{\circ}$
$\gamma=80.22(3)^{\circ}$
$V=511.3(3) \AA^{3}$

Data collection

Enraf-Nonius TurboCAD-4
diffractometer
Radiation source: fine-focus sealed tube non-profiled $\omega / 2 \tau$ scans Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.478, T_{\text {max }}=0.695$
3429 measured reflections
2983 independent reflections

Refinement

Refinement on $F^{2} \quad$ Primary atom site location: structure-invariant
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.068$
$S=1.19$
2983 reflections
168 parameters
4 restraints
$Z=2$
$F(000)=542$
$D_{\mathrm{x}}=3.786 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9.1-11.4^{\circ}$
$\mu=5.15 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, brown
$0.28 \times 0.14 \times 0.07 \mathrm{~mm}$

2850 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-1 \rightarrow 15$
2 standard reflections every 120 min
intensity decay: 1.1% direct methods
Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0308 P)^{2}+2.3858 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.47 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.60 \mathrm{e}^{-3}$

Extinction correction: SHELXL-2014/7
(Sheldrick 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0074 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Na	$0.8586(4)$	$0.5914(4)$	$0.8148(4)$	$0.0757(12)$	
Mg 1	$0.8152(1)$	$0.1703(1)$	$0.50854(8)$	$0.00851(16)$	$0.7558(7)$
Fe 1	$0.8152(1)$	$0.1703(1)$	$0.50854(8)$	$0.00851(16)$	$0.2442(7)$
Mg 2	$0.77528(8)$	$0.77491(8)$	$0.11025(5)$	$0.00785(12)$	$0.2442(7)$
Fe 2	$0.77528(8)$	$0.77491(8)$	$0.11025(5)$	$0.00785(12)$	$0.7558(7)$
$\mathrm{Mo1}$	$0.75910(4)$	$0.10066(4)$	$0.85110(2)$	$0.00799(8)$	
O 11	$0.8166(4)$	$0.8508(4)$	$0.9264(2)$	$0.0125(5)$	
O 12	$0.9297(4)$	$0.2547(4)$	$0.8737(3)$	$0.0146(5)$	
O13	$0.5170(4)$	$0.2053(4)$	$0.8938(3)$	$0.0158(5)$	
O14	$0.7784(5)$	$0.0889(4)$	$0.6953(2)$	$0.0185(5)$	
$\mathrm{Mo2}$	$0.70522(4)$	$0.28318(4)$	$0.18835(3)$	$0.00950(8)$	
O21	$0.4579(4)$	$0.3458(5)$	$0.2289(3)$	$0.0232(6)$	
O22	$0.7436(4)$	$0.0675(4)$	$0.1148(3)$	$0.0185(5)$	
O23	$0.8372(4)$	$0.2322(4)$	$0.3205(2)$	$0.0173(5)$	
O24	$0.8015(4)$	$0.4878(4)$	$0.0918(2)$	$0.0148(5)$	
Mo3	$0.27372(4)$	$0.29658(4)$	$0.54507(2)$	$0.00732(8)$	
O31	$0.1224(4)$	$0.1328(4)$	$0.5056(2)$	$0.0113(4)$	
O32	$0.2458(5)$	$0.2976(4)$	$0.7045(2)$	$0.0194(5)$	
O33	$0.5183(4)$	$0.2083(4)$	$0.5042(3)$	$0.0172(5)$	
O34	$0.2067(4)$	$0.5383(4)$	$0.4690(3)$	$0.0153(5)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na	$0.0293(12)$	$0.0255(11)$	$0.186(4)$	$0.0089(9)$	$-0.0496(18)$	$-0.0429(17)$
Mg 1	$0.0079(4)$	$0.0081(4)$	$0.0091(4)$	$-0.0007(3)$	$-0.0018(3)$	$0.0001(3)$
Fe 1	$0.0079(4)$	$0.0081(4)$	$0.0091(4)$	$-0.0007(3)$	$-0.0018(3)$	$0.0001(3)$
Mg 2	$0.0080(2)$	$0.0073(2)$	$0.0079(2)$	$-0.00174(18)$	$-0.00177(18)$	$0.00103(18)$
Fe 2	$0.0080(2)$	$0.0073(2)$	$0.0079(2)$	$-0.00174(18)$	$-0.00177(18)$	$0.00103(18)$
Mo 1	$0.00697(13)$	$0.00870(13)$	$0.00770(13)$	$-0.00175(9)$	$-0.00095(9)$	$0.00122(9)$
O 11	$0.0163(12)$	$0.0106(11)$	$0.0094(11)$	$-0.0013(9)$	$-0.0021(9)$	$0.0019(8)$

O12	$0.0112(11)$	$0.0152(12)$	$0.0182(12)$	$-0.0052(9)$	$-0.0040(9)$	$0.0003(10)$
O13	$0.0090(11)$	$0.0178(12)$	$0.0194(13)$	$-0.0009(9)$	$-0.0016(9)$	$-0.0005(10)$
O14	$0.0258(14)$	$0.0185(13)$	$0.0092(11)$	$-0.0021(11)$	$-0.0017(10)$	$0.0018(10)$
Mo2	$0.01041(14)$	$0.00802(13)$	$0.00985(13)$	$-0.00235(9)$	$-0.00173(9)$	$0.00076(9)$
O21	$0.0133(12)$	$0.0295(16)$	$0.0261(15)$	$-0.0028(11)$	$-0.0017(11)$	$-0.0026(12)$
O22	$0.0226(14)$	$0.0110(12)$	$0.0229(14)$	$-0.0050(10)$	$-0.0032(11)$	$-0.0017(10)$
O23	$0.0192(13)$	$0.0188(13)$	$0.0125(12)$	$-0.0009(10)$	$-0.0033(10)$	$0.0005(10)$
O24	$0.0203(13)$	$0.0100(11)$	$0.0129(11)$	$-0.0016(9)$	$0.0019(9)$	$-0.0012(9)$
Mo3	$0.00771(13)$	$0.00787(13)$	$0.00674(13)$	$-0.00290(9)$	$-0.00105(9)$	$-0.00015(9)$
O31	$0.0093(10)$	$0.0089(10)$	$0.0167(12)$	$-0.0027(8)$	$-0.0026(9)$	$-0.0027(9)$
O32	$0.0266(15)$	$0.0239(14)$	$0.0088(11)$	$-0.0081(11)$	$-0.0019(10)$	$-0.0010(10)$
O33	$0.0107(11)$	$0.0198(13)$	$0.0212(13)$	$-0.0025(10)$	$-0.0018(10)$	$-0.0025(10)$
O34	$0.0189(13)$	$0.0086(11)$	$0.0179(12)$	$-0.0027(9)$	$-0.0027(10)$	$0.0008(9)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Na}-\mathrm{O} 21{ }^{\text {i }}$	2.244 (4)	Mg2-O32 ${ }^{\text {i }}$	2.019 (3)
$\mathrm{Na}-\mathrm{O} 12$	2.296 (4)	Mg2-O12 ${ }^{\text {ii }}$	2.036 (3)
$\mathrm{Na}-\mathrm{O} 11$	2.308 (4)	Mo1-O14	1.727 (3)
$\mathrm{Na}-\mathrm{O} 24{ }^{\text {ii }}$	2.604 (4)	Mo1-O13	1.751 (3)
$\mathrm{Na}-\mathrm{O}^{3} 3^{\text {ii }}$	2.772 (5)	Mo1-O12	1.780 (3)
$\mathrm{Mg} 1-\mathrm{O} 33$	2.025 (3)	Mol-O11 ${ }^{\text {vii }}$	1.789 (3)
$\mathrm{Mg} 1-\mathrm{O} 23$	2.044 (3)	Mo2-O21	1.715 (3)
Mg1-O14	2.045 (3)	Mo2-O23	1.761 (3)
$\mathrm{Mg}-\mathrm{O} 44^{\text {i }}$	2.054 (3)	Mo2-O22	1.787 (3)
Mg 1 - $331{ }^{\text {iii }}$	2.089 (3)	Mo2-O24	1.799 (3)
$\mathrm{Mg} 1-\mathrm{O} 31^{\text {iv }}$	2.099 (3)	Mo3-O33	1.731 (3)
Mg2-O13 ${ }^{\text {i }}$	2.003 (3)	Mo3-O32	1.753 (3)
Mg2-O24	2.009 (3)	Mo3-O34	1.753 (3)
Mg2- $\mathrm{O} 22{ }^{\text {- }}$	2.010 (3)	Mo3-O31	1.801 (2)
$\mathrm{Mg} 2-\mathrm{O} 11^{\text {vi }}$	2.012 (3)		
$\mathrm{O} 21^{\text {i }}-\mathrm{Na}-\mathrm{O} 12$	106.29 (15)	$\mathrm{O} 24-\mathrm{Mg} 2-\mathrm{O} 11^{\text {vi }}$	90.58 (11)
$\mathrm{O} 21-\mathrm{Na}-\mathrm{O} 11$	92.34 (14)	$\mathrm{O} 22^{v}-\mathrm{Mg} 2-\mathrm{O} 11^{\text {vi }}$	85.22 (11)
$\mathrm{O} 12-\mathrm{Na}-\mathrm{O} 11$	131.5 (2)	O13 ${ }^{\text {i }}$-Mg2- $\mathrm{O} 22^{\text {i }}$	91.56 (12)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 24^{\text {ii }}$	169.3 (2)	$\mathrm{O} 24-\mathrm{Mg} 2-\mathrm{O} 32^{\text {i }}$	90.53 (12)
$\mathrm{O} 12-\mathrm{Na}-\mathrm{O} 24^{\text {ii }}$	71.63 (12)	$\mathrm{O} 22^{\text {v }}-\mathrm{Mg} 2-\mathrm{O} 32^{\text {i }}$	93.77 (12)
$\mathrm{O} 11-\mathrm{Na}-\mathrm{O} 24^{\mathrm{ii}}$	81.96 (12)	$\mathrm{O} 11^{\text {vi}}-\mathrm{Mg} 2-\mathrm{O} 32^{\text {i }}$	175.79 (12)
$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 23^{\text {ii }}$	125.19 (19)	$\mathrm{O} 13^{\text {i }}-\mathrm{Mg} 2-\mathrm{O} 12^{\text {ii }}$	176.14 (11)
$\mathrm{O} 12-\mathrm{Na}-\mathrm{O} 233^{\text {ii }}$	115.39 (14)	$\mathrm{O} 24-\mathrm{Mg} 2-\mathrm{O} 12^{\text {ii }}$	90.70 (12)
$\mathrm{O} 11-\mathrm{Na}-\mathrm{O} 23^{\text {ii }}$	85.84 (12)	$\mathrm{O} 22^{\text {v }}-\mathrm{Mg} 2-\mathrm{O} 12^{\text {ii }}$	91.08 (12)
$\mathrm{O} 24^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O} 23{ }^{\text {ii }}$	63.66 (10)	$\mathrm{O} 11^{\text {vi}}-\mathrm{Mg} 2-\mathrm{O} 12^{\text {ii }}$	91.24 (11)
$\mathrm{O} 33-\mathrm{Mg} 1-\mathrm{O} 23$	88.07 (12)	$\mathrm{O} 32-\mathrm{Mg} 2-\mathrm{O} 12^{\text {ii }}$	84.69 (12)
$\mathrm{O} 33-\mathrm{Mg1-O14}$	88.89 (12)	O14-Mo1-O13	108.16 (14)
$\mathrm{O} 23-\mathrm{Mg1}$ - O 14	174.80 (12)	O14-Mo1-O12	106.87 (14)
$\mathrm{O} 33-\mathrm{Mg1}$ - $\mathrm{O} 34^{\text {i }}$	89.20 (12)	O13-Mo1-O12	110.69 (13)
$\mathrm{O} 23-\mathrm{Mg} 1-\mathrm{O} 34^{\text {i }}$	93.92 (12)	O14-Mo1-O11 ${ }^{\text {vii }}$	106.05 (13)
$\mathrm{O} 14-\mathrm{Mg} 1-\mathrm{O} 34^{\text {i }}$	90.26 (12)	$\mathrm{O} 13-\mathrm{Mo1-O11}{ }^{\text {vii }}$	111.66 (13)

$\mathrm{O} 33-\mathrm{Mg} 1-\mathrm{O} 3{ }^{\text {iii }}$	177.80 (12)	O12-Mo1-O11 ${ }^{\text {vii }}$	113.08 (12)
$\mathrm{O} 23-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iii }}$	89.73 (11)	$\mathrm{O} 21-\mathrm{Mo} 2-\mathrm{O} 23$	110.07 (14)
$\mathrm{O} 14-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iii }}$	93.30 (12)	$\mathrm{O} 21-\mathrm{Mo} 2-\mathrm{O} 22$	109.36 (15)
$\mathrm{O} 34-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iii }}$	91.09 (11)	$\mathrm{O} 23-\mathrm{Mo} 2-\mathrm{O} 22$	109.03 (13)
$\mathrm{O} 33-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iv }}$	98.59 (12)	$\mathrm{O} 21-\mathrm{Mo} 2-\mathrm{O} 24$	110.70 (14)
$\mathrm{O} 23-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iv }}$	88.75 (11)	$\mathrm{O} 23-\mathrm{Mo} 2-\mathrm{O} 24$	105.75 (13)
$\mathrm{O} 14-\mathrm{Mg} 1-\mathrm{O} 3{ }^{\text {iv }}$	87.53 (11)	$\mathrm{O} 22-\mathrm{Mo} 2-\mathrm{O} 24$	111.86 (13)
$\mathrm{O} 34-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iv }}$	171.86 (11)	$\mathrm{O} 33-\mathrm{Mo} 3-\mathrm{O} 32$	108.10 (14)
$\mathrm{O} 31{ }^{\text {iii }}-\mathrm{Mg} 1-\mathrm{O} 31^{\text {iv }}$	81.22 (11)	O33-Mo3-O34	110.71 (13)
$\mathrm{O} 13-\mathrm{Mg} 2-\mathrm{O} 24$	88.40 (12)	O32-Mo3-O34	109.21 (14)
$\mathrm{O} 13{ }^{\text {i }}$ - $\mathrm{Mg} 2-\mathrm{O} 22^{\text {v }}$	90.10 (12)	O33-Mo3-O31	108.43 (13)
$\mathrm{O} 24-\mathrm{Mg} 2-\mathrm{O} 22^{\text {v }}$	175.47 (12)	O32-Mo3-O31	109.96 (13)
$\mathrm{O} 13{ }^{\text {i }}-\mathrm{Mg} 2-\mathrm{O} 11^{\text {vi }}$	92.52 (11)	O34-Mo3-O31	110.40 (12)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$; (iii) $x+1, y, z$; (iv) $-x+1,-y,-z+1$; (v) $x, y+1, z$; (vi) $x, y, z-1$; (vii) $x, y-1, z$.

