research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of NaMgFe(MoO4)3

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisia
*Correspondence e-mail: mhirimanel@yahoo.fr

Edited by I. D. Brown, McMaster University, Canada (Received 14 May 2016; accepted 20 May 2016; online 27 May 2016)

The iron molybdate NaMgFe(MoO4)3 {sodium magnesium iron(III) tris­[molybdate(VI)]} has been synthesized by the flux method. This compound is isostructural with α-NaFe2(MoO4)3 and crystallizes in the triclinic space group P-1. Its structure is built up from [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octa­hedra which are linked to each other through the common corners of [MoO4] tetra­hedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [101] direction in which the Na+ cations are located.

1. Chemical context

Iron molybdates have been subject to very intensive research as a result of their numerous applications including as catalysts (Tian et al., 2011[Tian, S. H., Tu, Y. T., Chen, D. S., Chen, X. & Xiong, Y. (2011). Chem. Eng. J. 169, 31-37.]), multiferroic properties and more recently as a possible positive electrode in rechargeable batteries (Sinyakov et al., 1978[Sinyakov, E. V., Dudnik, E. F., Stolpakova, T. M. & Orlov, O. L. (1978). Ferroelectrics, 21, 579-581.]; Mączka et al., 2011[Mączka, M., Ptak, M., Luz-Lima, C., Freire, P. T. C., Paraguassu, W., Guerini, S. & Hanuza, J. (2011). J. Solid State Chem. 184, 2812-2817.]; Devi & Varadaraju, 2012[Devi, M. & Varadaraju, U. V. (2012). Electrochem. Commun. 18, 112-115.]). In these materials, the anionic framework is constructed from MoO4 tetra­hedra linked to the iron coordination polyhedra, leading to a large variety of crystal structures with a high capacity for cationic and anionic substitutions.

Until now, a total of six orthomolybdate compounds have been reported in the Na–Fe–Mo–O system: Na9Fe(MoO4)6 (Savina et al., 2013[Savina, A. A., Solodovnikov, S. F., Basovich, O. M., Solodovnikova, Z. A., Belov, D. A., Pokholok, K. V., Gudkova, I. A. Yu., Stefanovich, S., Lazoryak, B. I. & Khaikina, E. G. (2013). J. Solid State Chem. 205, 149-153.]); NaFe(MoO4)2 (Klevtsova, 1975[Klevtsova, R. F. (1975). Dokl. Akad. Nauk SSSR, 221, 1322-1325.]); α-NaFe2(MoO4)3, β-NaFe2(MoO4)3 and Na3Fe2(MoO4)3 (Muessig et al., 2003[Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611-616.]); NaFe4(MoO4)5 (Ehrenberg et al., 2006[Ehrenberg, H., Muessig, E., Bramnik, K. G., Kampe, P. & Hansen, T. (2006). Solid State Sci. 8, 813-820.]). Their structures are described in terms of three-dimensional networks of isolated [MoO4] tetra­hedra and [FeO6] octa­hedra. The sodium and mixed-valence iron molybdate NaFe2(MoO4)3 exhibits two polymorphs, both crystallizing in the triclinic system. The low-temperature α-phase changes irreversibly at high temperature into a β-phase. In addition to these orthomolybdate compounds, another phase with the formula Na3Fe2Mo5O16 and with layers of Mo3O13 units consisting of [MoO6] octa­hedra has been synthesized and characterized (Bramnik et al., 2003[Bramnik, K. G., Muessig, E. & Ehrenberg, H. (2003). J. Solid State Chem. 176, 192-197.]). In addition, Kozhevnikova & Imekhenova (2009[Kozhevnikova, N. M. & Imekhenova, A. V. (2009). Russ. J. Inorg. Chem. 54, 638-643.]) have investigated the Na2MoO4MMoO4–Fe2(MoO4)3 system (M = Mg, Mn, Ni, Co) and have attributed the Nasicon-type structure with space group R[\overline{3}]c (Kotova & Kozhevnikova, 2003[Kotova, I. Yu. & Kozhevnikova, N. M. (2003). Russ. J. Appl. Chem. 76, 1572-1576.]; Kozhevnikova & Imekhenova, 2009[Kozhevnikova, N. M. & Imekhenova, A. V. (2009). Russ. J. Inorg. Chem. 54, 638-643.]) to the phase of variable composition Na(1−x)M(1−x)Fe(1+x)(MoO4)3. More recently, NaNiFe(MoO4)3 and NaZnFe(MoO4)3 (Mhiri et al., 2015[Mhiri, M., Badri, A., Lopez, M. L., Pico, C. & Ben Amara, M. (2015). Ionics, 21, 2511-2522.]) were found to be isostructural to β-NaFe2(MoO4)3 and to have a good ionic conductivity with low activation energy, close to those of Nasicon-type compounds with similar formula such as AZr2(PO4)3 (A = Na, Li). As an extension of the previous work, we report here on the synthesis and characterization by X-ray diffraction of a new compound, NaMgFe(MoO4)3, which is isostructural with α-NaFe2(MoO4)3.

2. Structural commentary

The title NaMgFe(MoO4)3 structure is based on a three-dimensional framework of [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octa­hedra, connected to each other through the common corners of [MoO4] tetra­hedra. All [Mg,Fe]2O10 units are parallel to [1[\overline{1}]0] (Fig. 1[link]). In this structure, two types of layers (A and B), similar to those observed in α-NaFe2(MoO4)3, are aligned parallel to (110) with the sequence –ABB′–ABB′– and stacked along [001]. B′ layers are obtained from B by an inversion centre located on the A planes (Fig. 2[link]). The resulting anionic three-dimensional framework leads to the formation of channels along [101] in which the sodium ions are located (Fig. 3[link]).

[Figure 1]
Figure 1
[Mg,Fe]2O10 units parallel to [1[\overline{1}]0] in NaMgFe(MoO4)3 structure. [Mg,Fe]2O10 dimers are shown in blue and MoO4 tetra­hedra in purple.
[Figure 2]
Figure 2
Projection of the NaMgFe(MoO4)3 structure along the b axis. [Mg,Fe]2O10 dimers are shown in blue; MoO4 tetra­hedra in purple and Na+ cations as green spheres.
[Figure 3]
Figure 3
Channels along [101] in the structure of NaMgFe(MoO4)3. [Mg,Fe]2O10 dimers are shown in blue, MoO4 tetra­hedra in purple and Na+ cations as green spheres.

In the title structure, all atoms are located in general positions. The three crystallographically different molybdenum atoms have a tetra­hedral coordination with Mo—O distances between 1.715 (3) and 1.801 (2) Å. The mean distances (Mo1—O = 1.762, Mo2—O = 1.766 and Mo3—O = 1.760 Å) are in good accordance with those usually observed in molybdates (Abrahams et al., 1967[Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052-2063.]; Harrison & Cheetham, 1989[Harrison, W. T. A. & Cheetham, A. K. (1989). Acta Cryst. C45, 178-180.]; Smit et al., 2006[Smit, J. P., Stair, P. C. & Poeppelmeier, K. R. (2006). Chem. Eur. J. 12, 5944-5953.]). The [Mg,Fe]—O distances and the cis O—[Mg,Fe]—O angles in the [Mg,Fe]2O10 units range from 2.003 (3) to 2.099 (3) Å and from 81.2 (1) to 177.8 (1)°, respectively. This dispersion reflects a slight distortion of the [Mg,Fe]O6 octa­hedra. The average distances [Mg,Fe]1—O = 2.059 and [Mg,Fe]2—O = 2.013 Å lie between the values of 1.990 Å observed for six-coordinated Fe3+ in LiFe(MoO4)2 (van der Lee et al. 2008[Lee, A. van der, Beaurain, M. & Armand, P. (2008). Acta Cryst. C64, i1-i4.]) and 2.072 Å reported for Mg2+ with the same coordination in NaMg3Al(MoO4)5 (Hermanowicz et al., 2006[Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685-695.]). This result is related to the disordered distribution of Fe3+ and Mg2+ in both sites. Assuming sodium–oxygen distances below 3.13 Å (Donnay & Allmann, 1970[Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003-1015.]), the Na site is surrounded by five oxygen atoms (Fig. 4[link]).

[Figure 4]
Figure 4
The environment of the Na+ cation showing displacement ellipsoids drawn at the 50% probability level.

3. Synthesis and crystallization

Crystals of the title compound were grown in a flux of sodium dimolybdate Na2Mo2O7 with an atomic ratio Na:Mg:Fe:Mo = 5:1:1:7. Appropriate amounts of the starting reactants NaNO3, Mg(NO3)2·6H2O, Fe(NO3)3·9H2O and (NH4)6Mo7O24·4H2O were dissolved in nitric acid and the resulting solution was evaporated to dryness. The dry residue was then placed in a platinum crucible and slowly heated in air up to 673 K for 24 h to remove H2O and NH3. The mixture was ground in an agate mortar, melted for 2 h at 1123 K and then cooled to room temperature at a rate of 5 K h−1. Crystals without regular shape were separated from the flux by washing in boiling water.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The application of the direct methods revealed two sites, labeled M(1) and M(2), statistic­ally occupied by the Fe3+ and Mg2+ ions. This distribution was supported by the M1—O and M2—O distances which are between the classical values for pure Mg—O and Fe—O bonds. Succeeding difference Fourier synthesis led to the positions of all the remaining atoms.

Table 1
Experimental details

Crystal data
Chemical formula NaMgFe(MoO4)3
Mr 582.97
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.900 (4), 6.928 (1), 11.055 (1)
α, β, γ (°) 80.24 (1), 83.55 (2), 80.22 (3)
V3) 511.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.15
Crystal size (mm) 0.28 × 0.14 × 0.07
 
Data collection
Diffractometer Enraf–Nonius TurboCAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.478, 0.695
No. of measured, independent and observed [I > 2σ(I)] reflections 3429, 2983, 2850
Rint 0.014
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.19
No. of reflections 2983
No. of parameters 168
No. of restraints 4
Δρmax, Δρmin (e Å−3) 1.47, −1.60
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonuis, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014/7 (Sheldrick, 201[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 201); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(I) top
Crystal data top
FeMgMo3NaO12Z = 2
Mr = 582.97F(000) = 542
Triclinic, P1Dx = 3.786 Mg m3
a = 6.900 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.928 (1) ÅCell parameters from 25 reflections
c = 11.055 (1) Åθ = 9.1–11.4°
α = 80.24 (1)°µ = 5.15 mm1
β = 83.55 (2)°T = 293 K
γ = 80.22 (3)°Prism, brown
V = 511.3 (3) Å30.28 × 0.14 × 0.07 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 3.0°
non–profiled ω/2τ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.478, Tmax = 0.695l = 115
3429 measured reflections2 standard reflections every 120 min
2983 independent reflections intensity decay: 1.1%
2850 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0308P)2 + 2.3858P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.001
S = 1.19Δρmax = 1.47 e Å3
2983 reflectionsΔρmin = 1.60 e Å3
168 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0074 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na0.8586 (4)0.5914 (4)0.8148 (4)0.0757 (12)
Mg10.8152 (1)0.1703 (1)0.50854 (8)0.00851 (16)0.7558 (7)
Fe10.8152 (1)0.1703 (1)0.50854 (8)0.00851 (16)0.2442 (7)
Mg20.77528 (8)0.77491 (8)0.11025 (5)0.00785 (12)0.2442 (7)
Fe20.77528 (8)0.77491 (8)0.11025 (5)0.00785 (12)0.7558 (7)
Mo10.75910 (4)0.10066 (4)0.85110 (2)0.00799 (8)
O110.8166 (4)0.8508 (4)0.9264 (2)0.0125 (5)
O120.9297 (4)0.2547 (4)0.8737 (3)0.0146 (5)
O130.5170 (4)0.2053 (4)0.8938 (3)0.0158 (5)
O140.7784 (5)0.0889 (4)0.6953 (2)0.0185 (5)
Mo20.70522 (4)0.28318 (4)0.18835 (3)0.00950 (8)
O210.4579 (4)0.3458 (5)0.2289 (3)0.0232 (6)
O220.7436 (4)0.0675 (4)0.1148 (3)0.0185 (5)
O230.8372 (4)0.2322 (4)0.3205 (2)0.0173 (5)
O240.8015 (4)0.4878 (4)0.0918 (2)0.0148 (5)
Mo30.27372 (4)0.29658 (4)0.54507 (2)0.00732 (8)
O310.1224 (4)0.1328 (4)0.5056 (2)0.0113 (4)
O320.2458 (5)0.2976 (4)0.7045 (2)0.0194 (5)
O330.5183 (4)0.2083 (4)0.5042 (3)0.0172 (5)
O340.2067 (4)0.5383 (4)0.4690 (3)0.0153 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na0.0293 (12)0.0255 (11)0.186 (4)0.0089 (9)0.0496 (18)0.0429 (17)
Mg10.0079 (4)0.0081 (4)0.0091 (4)0.0007 (3)0.0018 (3)0.0001 (3)
Fe10.0079 (4)0.0081 (4)0.0091 (4)0.0007 (3)0.0018 (3)0.0001 (3)
Mg20.0080 (2)0.0073 (2)0.0079 (2)0.00174 (18)0.00177 (18)0.00103 (18)
Fe20.0080 (2)0.0073 (2)0.0079 (2)0.00174 (18)0.00177 (18)0.00103 (18)
Mo10.00697 (13)0.00870 (13)0.00770 (13)0.00175 (9)0.00095 (9)0.00122 (9)
O110.0163 (12)0.0106 (11)0.0094 (11)0.0013 (9)0.0021 (9)0.0019 (8)
O120.0112 (11)0.0152 (12)0.0182 (12)0.0052 (9)0.0040 (9)0.0003 (10)
O130.0090 (11)0.0178 (12)0.0194 (13)0.0009 (9)0.0016 (9)0.0005 (10)
O140.0258 (14)0.0185 (13)0.0092 (11)0.0021 (11)0.0017 (10)0.0018 (10)
Mo20.01041 (14)0.00802 (13)0.00985 (13)0.00235 (9)0.00173 (9)0.00076 (9)
O210.0133 (12)0.0295 (16)0.0261 (15)0.0028 (11)0.0017 (11)0.0026 (12)
O220.0226 (14)0.0110 (12)0.0229 (14)0.0050 (10)0.0032 (11)0.0017 (10)
O230.0192 (13)0.0188 (13)0.0125 (12)0.0009 (10)0.0033 (10)0.0005 (10)
O240.0203 (13)0.0100 (11)0.0129 (11)0.0016 (9)0.0019 (9)0.0012 (9)
Mo30.00771 (13)0.00787 (13)0.00674 (13)0.00290 (9)0.00105 (9)0.00015 (9)
O310.0093 (10)0.0089 (10)0.0167 (12)0.0027 (8)0.0026 (9)0.0027 (9)
O320.0266 (15)0.0239 (14)0.0088 (11)0.0081 (11)0.0019 (10)0.0010 (10)
O330.0107 (11)0.0198 (13)0.0212 (13)0.0025 (10)0.0018 (10)0.0025 (10)
O340.0189 (13)0.0086 (11)0.0179 (12)0.0027 (9)0.0027 (10)0.0008 (9)
Geometric parameters (Å, º) top
Na—O21i2.244 (4)Mg2—O32i2.019 (3)
Na—O122.296 (4)Mg2—O12ii2.036 (3)
Na—O112.308 (4)Mo1—O141.727 (3)
Na—O24ii2.604 (4)Mo1—O131.751 (3)
Na—O23ii2.772 (5)Mo1—O121.780 (3)
Mg1—O332.025 (3)Mo1—O11vii1.789 (3)
Mg1—O232.044 (3)Mo2—O211.715 (3)
Mg1—O142.045 (3)Mo2—O231.761 (3)
Mg1—O34i2.054 (3)Mo2—O221.787 (3)
Mg1—O31iii2.089 (3)Mo2—O241.799 (3)
Mg1—O31iv2.099 (3)Mo3—O331.731 (3)
Mg2—O13i2.003 (3)Mo3—O321.753 (3)
Mg2—O242.009 (3)Mo3—O341.753 (3)
Mg2—O22v2.010 (3)Mo3—O311.801 (2)
Mg2—O11vi2.012 (3)
O21i—Na—O12106.29 (15)O24—Mg2—O11vi90.58 (11)
O21i—Na—O1192.34 (14)O22v—Mg2—O11vi85.22 (11)
O12—Na—O11131.5 (2)O13i—Mg2—O32i91.56 (12)
O21i—Na—O24ii169.3 (2)O24—Mg2—O32i90.53 (12)
O12—Na—O24ii71.63 (12)O22v—Mg2—O32i93.77 (12)
O11—Na—O24ii81.96 (12)O11vi—Mg2—O32i175.79 (12)
O21i—Na—O23ii125.19 (19)O13i—Mg2—O12ii176.14 (11)
O12—Na—O23ii115.39 (14)O24—Mg2—O12ii90.70 (12)
O11—Na—O23ii85.84 (12)O22v—Mg2—O12ii91.08 (12)
O24ii—Na—O23ii63.66 (10)O11vi—Mg2—O12ii91.24 (11)
O33—Mg1—O2388.07 (12)O32i—Mg2—O12ii84.69 (12)
O33—Mg1—O1488.89 (12)O14—Mo1—O13108.16 (14)
O23—Mg1—O14174.80 (12)O14—Mo1—O12106.87 (14)
O33—Mg1—O34i89.20 (12)O13—Mo1—O12110.69 (13)
O23—Mg1—O34i93.92 (12)O14—Mo1—O11vii106.05 (13)
O14—Mg1—O34i90.26 (12)O13—Mo1—O11vii111.66 (13)
O33—Mg1—O31iii177.80 (12)O12—Mo1—O11vii113.08 (12)
O23—Mg1—O31iii89.73 (11)O21—Mo2—O23110.07 (14)
O14—Mg1—O31iii93.30 (12)O21—Mo2—O22109.36 (15)
O34i—Mg1—O31iii91.09 (11)O23—Mo2—O22109.03 (13)
O33—Mg1—O31iv98.59 (12)O21—Mo2—O24110.70 (14)
O23—Mg1—O31iv88.75 (11)O23—Mo2—O24105.75 (13)
O14—Mg1—O31iv87.53 (11)O22—Mo2—O24111.86 (13)
O34i—Mg1—O31iv171.86 (11)O33—Mo3—O32108.10 (14)
O31iii—Mg1—O31iv81.22 (11)O33—Mo3—O34110.71 (13)
O13i—Mg2—O2488.40 (12)O32—Mo3—O34109.21 (14)
O13i—Mg2—O22v90.10 (12)O33—Mo3—O31108.43 (13)
O24—Mg2—O22v175.47 (12)O32—Mo3—O31109.96 (13)
O13i—Mg2—O11vi92.52 (11)O34—Mo3—O31110.40 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y+1, z; (vi) x, y, z1; (vii) x, y1, z.
 

References

First citationAbrahams, S. C. (1967). J. Chem. Phys. 46, 2052–2063.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBramnik, K. G., Muessig, E. & Ehrenberg, H. (2003). J. Solid State Chem. 176, 192–197.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDevi, M. & Varadaraju, U. V. (2012). Electrochem. Commun. 18, 112–115.  CrossRef CAS Google Scholar
First citationDonnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003–1015.  CAS Google Scholar
First citationEhrenberg, H., Muessig, E., Bramnik, K. G., Kampe, P. & Hansen, T. (2006). Solid State Sci. 8, 813–820.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonuis, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHarrison, W. T. A. & Cheetham, A. K. (1989). Acta Cryst. C45, 178–180.  CrossRef CAS IUCr Journals Google Scholar
First citationHermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685–695.  Web of Science CrossRef CAS Google Scholar
First citationKlevtsova, R. F. (1975). Dokl. Akad. Nauk SSSR, 221, 1322–1325.  Google Scholar
First citationKotova, I. Yu. & Kozhevnikova, N. M. (2003). Russ. J. Appl. Chem. 76, 1572–1576.  Web of Science CrossRef CAS Google Scholar
First citationKozhevnikova, N. M. & Imekhenova, A. V. (2009). Russ. J. Inorg. Chem. 54, 638–643.  CrossRef Google Scholar
First citationLee, A. van der, Beaurain, M. & Armand, P. (2008). Acta Cryst. C64, i1–i4.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMączka, M., Ptak, M., Luz-Lima, C., Freire, P. T. C., Paraguassu, W., Guerini, S. & Hanuza, J. (2011). J. Solid State Chem. 184, 2812–2817.  Google Scholar
First citationMhiri, M., Badri, A., Lopez, M. L., Pico, C. & Ben Amara, M. (2015). Ionics, 21, 2511–2522.  CrossRef CAS Google Scholar
First citationMuessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611–616.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSavina, A. A., Solodovnikov, S. F., Basovich, O. M., Solodovnikova, Z. A., Belov, D. A., Pokholok, K. V., Gudkova, I. A. Yu., Stefanovich, S., Lazoryak, B. I. & Khaikina, E. G. (2013). J. Solid State Chem. 205, 149–153.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinyakov, E. V., Dudnik, E. F., Stolpakova, T. M. & Orlov, O. L. (1978). Ferroelectrics, 21, 579–581.  CrossRef CAS Web of Science Google Scholar
First citationSmit, J. P., Stair, P. C. & Poeppelmeier, K. R. (2006). Chem. Eur. J. 12, 5944–5953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTian, S. H., Tu, Y. T., Chen, D. S., Chen, X. & Xiong, Y. (2011). Chem. Eng. J. 169, 31–37.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds