

Received 11 April 2016 Accepted 19 May 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; organic salt; pyrazole; picric acid; hydrogen bonding.

CCDC reference: 1480969

Supporting information: this article has supporting information at journals.iucr.org/e

Hydrogen bonding in the crystal structure of the molecular salt of pyrazole-pyrazolium picrate

Ping Su, Xue-gang Song, Ren-qiang Sun and Xing-man Xu*

College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China. *Correspondence e-mail: xingman_xu@126.com

The asymmetric unit of the title organic salt [systematic name: 1*H*-pyrazol-2-ium 2,4,6-trinitrophenolate–1*H*-pyrazole (1/1)], $H(C_3H_4N_2)_2^+C_6H_2N_3O_7^-$, consists of one picrate anion and one hydrogen-bonded dimer of a pyrazolium monocation. The H atom involved in the dimer $N-H\cdots N$ hydrogen bond is disordered over both symmetry-unique pyrazole molecules with occupancies of 0.52 (5) and 0.48 (5). In the crystal, the component ions are linked into chains along [100] by two different bifurcated $N-H\cdots (O,O)$ hydrogen bonds. In addition, weak $C-H\cdots O$ hydrogen bonds link inversion-related chains, forming columns along [100].

1. Chemical context

Research interest on co-crystals or organic complex salts in recent years has been prompted by their potential utilization in the pharmaceutical industry (Blagden *et al.*, 2014; Duggirala *et al.*, 2016). Imidazole and pyrazole derivatives are often used as co-crystallized pharmaceutical ingredients (Shimpi *et al.*, 2014). Our investigations involve studies of weak intermolecular interactions in co-crystallized compounds. As part of our continuing study on organic salts formed by imidazole derivatives and picric acid (Song *et al.*, 2016; Su *et al.*, 2008), we report herein the crystal structure of the title compound (I).

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1. It consists of one picrate anion and two pyrazole molecules, which are connected by an $N-H \cdots N$ hydrogen bond (Table 1), forming a dimeric pyrazolium monocation. The H atom of the hydrogen bond is disordered over both pyrazole molecules. In the dimeric monocation, the two pyrazole rings form a dihedral angle of 74.6 (1)°. In the anion, the C $-O_{phenol}$ bond [1.257 (3)Å] is shorter by *ca* 0.05Å than an average C-O single bond in a neutral picric acid molecule [1.308 (2)Å] calculated statistically by analysis of a CSD search (Groom *et al.*, 2016; Allen, 2002). The C1-C2 [1.438 (4)Å] and C1-C6 [1.449 (4)Å] bonds are significantly longer than the other four benzene C-C bonds [1.367 (4)–1.380 (4)Å]. The C2-C1-C6

research communications

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Only one orientation of the disordered $N-H\cdots N$ hydrogen bond is shown.

 $[111.9 (2)^{\circ}]$ angle is smaller than the ideal value of 120° for a regular hexagon and the other five benzene inner angles of 119.0 (3)-124.4 (3). All variations of bond lengths and angles demonstrate that the negative charge on the phenol oxygen atom is delocalized over the aromatic ring, giving double-bond character for the C1-O1 bond due to the electron-withdrawing effect of the three nitro groups. This is similar to what is observed in some picrate-containing analogs (Zakharov et al., 2015; Gomathi & Kalaivani, 2015). The mean planes of the nitro groups in the anion, are twisted from the benzene ring by dihedral angles of 30.8 (2), 4.8 (3) $^{\circ}$ and 27.2 (4) $^{\circ}$ for N1/O2/ O3, N2/O4/O5 and N3/O6/O7, respectively. The two orthonitro groups are twisted out of the benzene ring to a greater extent than the para-nitro group. This is most likely due to the steric hindrance between the ortho-nitro groups and the phenolic oxygen atom.

Figure 2

Part of the crystal structure of (I), showing the formation of hydrogenbonded columns along [100]. For clarity, H atoms not involved in the motif have been omitted. Green and red dashed lines indicate the N- $H \cdots O$ hydrogen bonds and weak $C-H \cdots O$ hydrogen bonds, respectively.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

, , ,				
$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N4–H4A···N6	0.86(1)	1.81 (1)	2.663 (3)	173 (7)
$N5-H5A\cdotsO1^{i}$	0.87(1)	1.95(1)	2.789 (3)	163 (3)
$N5-H5A\cdots O6^{i}$	0.87(1)	2.42 (3)	2.961 (4)	121 (3)
$N6-H6A\cdots N4$	0.86(1)	1.81 (1)	2.663 (3)	174 (7)
$N7-H7A\cdots O1$	0.86(1)	2.04 (2)	2.864 (3)	160 (3)
$N7-H7A\cdots O2$	0.86(1)	2.29 (3)	2.841 (3)	122 (3)
$C12{-}H12{\cdots}O4^{ii}$	0.93	2.61	3.512 (5)	165

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 2, -z + 1.

3. Supramolecular features

In the crystal of (I), the component ions are linked into a chain along [100] by N-H···O hydrogen bonds (Table 1, Fig. 2). In addition, inversion-related chains are connected by a weak C12-H12···O4 (-x, -y + 2, -z + 1) hydrogen bond, forming columns along [100]. A short O3_(nitro)···O3_(nitro) (-1 - x, 2 - y,1 - z) distance of 2.913 (2) Å is also observed (Spek, 2009). Although the benzene and pyrazolium rings are stacked in a parallel fashion, no significant π - π interactions exist between them (Janiak, 2000). This could be attributed to the deficient π -electron nature resulting from the electron-withdrawing effects of the nitro groups.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.37 plus one update; Groom *et al.*, 2016) indicates there are some analogs prepared from picric acid and pyrazole derivatives, *viz.* SASKII, SASLAB, SASKUU, SASLUB (Singh *et al.*, 2012) and SASKII01 (Dhanabal *et al.*, 2013). A similar solvated organic adduct, $C_5H_9N_2^+$ · $C_6H_2N_3O_7^-$ (SASKII; Singh *et al.*, 2012) indicates that the solvent used for the crystallization process can affect the final product in which the ratio of component ions are different.

5. Synthesis and crystallization

Pyrazole (20.0 mmol, 136.0 mg) and picric acid (10. 0 mmol, 230.0mg) were dissolved in a 2:1 molar ratio in 95% methanol (50.0 ml). The mixture was stirred for an hour at 323 K and then cooled to room temperature and filtered. The resulting yellow solution was kept in air for two weeks. Needle-like yellow crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution. The crystals were separated by filtration (yield, 60%, *ca* 0.22 g).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were positioned geometrically with C-H = 0.93 Å (aromatic) and refined in a riding-model approximation with $U_{iso}(H) =$ $1.2U_{eq}(C)$. H atoms bonded to N atoms were refined with a Table 2Experimental details.

Crystal data	
Chemical formula	$C_{3}H_{5}N_{2}^{+}\cdot C_{6}H_{2}N_{3}O_{7}^{-}\cdot C_{3}H_{4}N_{2}$
$M_{\rm r}$	365.28
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
a, b, c (Å)	4.2447 (14), 16.950 (5), 21.839 (7)
β (°)	92.029 (6)
$V(Å^3)$	1570.3 (9)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.13
Crystal size (mm)	$0.45 \times 0.06 \times 0.04$
Data collection	
Diffractometer	Bruker SMART CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.736, 0.875
No. of measured, independent and	12038, 3086, 1787
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.050
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.157, 0.98
No. of reflections	3086
No. of parameters	248
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.18, -0.16

Computer programs: *SMART* and *SAINT* (Bruker, 2001), *SHELXS* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *DIAMOND* (Brandenburg, 2006).

constraint of $d_{N-H} = 0.86$ (1) Å and $U_{iso}(H) = 1.2U_{eq}(N)$. Atoms H4A and H6A were found in difference Fourier maps and refined as disordered using the PART command (Sheldrick, 2015). The final site occupancies of the two hydrogenatom components were 0.52(1):0.48(1) for H6A and H4A, respectively.

Acknowledgements

We thank Dr Xiang-gao Meng for his helpful discussions about this crystal structure.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Blagden, N., Coles, S. J. & Berry, D. J. (2014). CrystEngComm, 16, 5753–5761.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dhanabal, T., Amirthaganesan, G., Dhandapani, M. & Das, S. K. (2013). J. Mol. Struct. 1035, 483–492.
- Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. (2016). Chem. Commun. 52, 640–655.
- Gomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 1196-1198.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shimpi, M. R., Childs, S. L., Boström, D. & Velaga, S. P. (2014). *CrystEngComm*, 16, 8984–8993.
- Singh, U. P., Goel, N., Singh, G. & Srivastava, P. (2012). Supramol. Chem. 24, 285–297.
- Song, X., Su, P. & Xu, X. (2016). Acta Cryst. E72, 772-775.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Su, P., Huang, X.-Y. & Meng, X. (2008). Acta Cryst. E64, o2217o2218.
- Zakharov, B. A., Ghazaryan, V. V., Boldyreva, E. V. & Petrosyan, A. M. (2015). J. Mol. Struct. 1100, 255–263.

Acta Cryst. (2016). E72, 861-863 [https://doi.org/10.1107/S2056989016008215]

Hydrogen bonding in the crystal structure of the molecular salt of pyrazolepyrazolium picrate

Ping Su, Xue-gang Song, Ren-qiang Sun and Xing-man Xu

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

1H-Pyrazol-2-ium 2,4,6-trinitrophenolate 1H-pyrazole

Crystal data	
$C_{3}H_{5}N_{2}^{+} \cdot C_{6}H_{2}N_{3}O_{7}^{-} \cdot C_{3}H_{4}N_{2}$	F(000) = 752
$M_r = 365.28$	$D_{\rm x} = 1.545 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo K a radiation. $\lambda = 0.71073$ Å
a = 4.2447 (14) Å	Cell parameters from 1735 reflections
b = 16.950(5)Å	$\theta = 2.4 - 20.5^{\circ}$
c = 21.839(7) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 92.029~(6)^{\circ}$	T = 298 K
$V = 1570.3(9) \text{ Å}^3$	Needle, vellow
Z = 4	$0.45 \times 0.06 \times 0.04 \text{ mm}$
Data collection	
Bruker SMART CCD	3086 independent reflections
diffractometer	1787 reflections with $I > 2\sigma(I)$
ϕ and ϕ scans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
(SADABS: Sheldrick 1996)	$h = -5 \rightarrow 5$
$T_{\rm min} = 0.736, T_{\rm max} = 0.875$	$k = -20 \rightarrow 20$
12038 measured reflections	$l = -26 \rightarrow 24$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.057$	$w = 1/[\sigma^2(F_c^2) + (0.0698P)^2 + 0.3803P]$
$wR(F^2) = 0.157$	where $P = (F_c^2 + 2F_c^2)/3$

S = 0.983086 reflections 248 parameters 4 restraints

Acta Cryst. (2016). E72, 861-863

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

sup-1

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2577 (7)	0.78567 (15)	0.50270 (13)	0.0502 (7)	
C2	0.0904 (7)	0.85715 (15)	0.51570 (12)	0.0478 (7)	
C3	0.0496 (7)	0.88621 (16)	0.57336 (13)	0.0565 (8)	
Н3	-0.0667	0.9320	0.5789	0.068*	
C4	0.1825 (8)	0.84691 (17)	0.62309 (13)	0.0577 (8)	
C5	0.3503 (7)	0.77808 (17)	0.61557 (13)	0.0573 (8)	
H5	0.4423	0.7525	0.6494	0.069*	
C6	0.3802 (7)	0.74780 (15)	0.55807 (13)	0.0506 (7)	
C7	0.7321 (8)	0.56590 (19)	0.33757 (15)	0.0683 (9)	
H7	0.5902	0.5601	0.3045	0.082*	
C8	0.8600 (8)	0.50504 (18)	0.37140 (16)	0.0689 (9)	
H8	0.8229	0.4514	0.3660	0.083*	
C9	1.0517 (8)	0.53966 (19)	0.41426 (15)	0.0679 (9)	
H9	1.1731	0.5137	0.4443	0.082*	
C10	0.8031 (8)	0.80992 (19)	0.26399 (14)	0.0675 (9)	
H10	0.9374	0.7862	0.2367	0.081*	
C11	0.6789 (9)	0.88402 (19)	0.25746 (15)	0.0698 (9)	
H11	0.7114	0.9197	0.2260	0.084*	
C12	0.4981 (8)	0.89415 (18)	0.30687 (15)	0.0648 (9)	
H12	0.3809	0.9388	0.3157	0.078*	
N1	-0.0457 (6)	0.90430 (13)	0.46540 (12)	0.0532 (6)	
N2	0.1422 (9)	0.87879 (19)	0.68408 (13)	0.0815 (9)	
N3	0.5497 (7)	0.67352 (16)	0.55396 (14)	0.0645 (7)	
N4	0.8395 (7)	0.63381 (15)	0.35881 (12)	0.0613 (7)	
H4A	0.808 (16)	0.6815 (15)	0.346 (3)	0.074*	0.48 (5)
N5	1.0360 (7)	0.61758 (14)	0.40591 (12)	0.0617 (7)	
H5A	1.133 (7)	0.6554 (14)	0.4254 (13)	0.074*	
N6	0.7043 (7)	0.77681 (14)	0.31469 (12)	0.0600(7)	
H6A	0.761 (15)	0.7321 (19)	0.330 (3)	0.072*	0.52 (5)
N7	0.5183 (6)	0.82915 (14)	0.34019 (11)	0.0553 (6)	
H7A	0.434 (7)	0.8196 (18)	0.3747 (8)	0.066*	
01	0.2919 (6)	0.75921 (11)	0.44959 (9)	0.0668 (6)	
O2	0.0820 (5)	0.90477 (13)	0.41655 (9)	0.0709 (7)	
03	-0.2780 (5)	0.94352 (13)	0.47569 (11)	0.0756 (7)	
O4	-0.0220 (9)	0.93651 (17)	0.68985 (11)	0.1281 (13)	
O5	0.2766 (8)	0.84518 (17)	0.72727 (12)	0.1047 (10)	
O6	0.4897 (7)	0.62868 (15)	0.51168 (12)	0.0976 (9)	
O7	0.7405 (7)	0.65737 (15)	0.59511 (13)	0.0968 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0571 (19)	0.0411 (15)	0.0529 (18)	-0.0044 (13)	0.0093 (14)	0.0021 (13)
C2	0.0536 (18)	0.0405 (14)	0.0496 (17)	-0.0054 (13)	0.0070 (14)	0.0018 (12)
C3	0.069 (2)	0.0407 (15)	0.0609 (19)	-0.0060 (14)	0.0160 (16)	0.0012 (14)
C4	0.083 (2)	0.0481 (17)	0.0431 (17)	-0.0152 (16)	0.0113 (16)	-0.0028 (13)
C5	0.067 (2)	0.0531 (17)	0.0517 (18)	-0.0163 (15)	0.0001 (15)	0.0063 (14)
C6	0.0516 (18)	0.0417 (15)	0.0586 (19)	-0.0056 (13)	0.0047 (14)	0.0059 (13)
C7	0.081 (2)	0.0542 (19)	0.070 (2)	0.0002 (17)	0.0032 (18)	0.0008 (16)
C8	0.082 (2)	0.0443 (17)	0.081 (2)	0.0001 (17)	0.011 (2)	0.0028 (17)
С9	0.079 (2)	0.0543 (19)	0.072 (2)	0.0136 (17)	0.0130 (19)	0.0148 (16)
C10	0.082 (2)	0.064 (2)	0.057 (2)	0.0059 (18)	0.0108 (17)	-0.0026 (16)
C11	0.084 (2)	0.062 (2)	0.064 (2)	0.0043 (18)	0.0063 (18)	0.0165 (16)
C12	0.071 (2)	0.0494 (17)	0.074 (2)	0.0102 (15)	0.0029 (18)	0.0093 (16)
N1	0.0543 (16)	0.0428 (13)	0.0625 (17)	-0.0019 (12)	0.0015 (13)	-0.0003 (12)
N2	0.136 (3)	0.0584 (18)	0.0513 (18)	-0.0198 (18)	0.0169 (18)	-0.0022 (15)
N3	0.0695 (19)	0.0586 (16)	0.0659 (18)	0.0079 (14)	0.0087 (15)	0.0137 (15)
N4	0.080 (2)	0.0445 (15)	0.0593 (17)	0.0116 (14)	0.0079 (15)	0.0077 (13)
N5	0.075 (2)	0.0482 (16)	0.0624 (18)	0.0046 (13)	0.0103 (15)	-0.0023 (13)
N6	0.0765 (19)	0.0439 (14)	0.0593 (17)	0.0071 (13)	-0.0008 (14)	0.0020 (13)
N7	0.0655 (17)	0.0490 (14)	0.0513 (15)	0.0082 (12)	0.0033 (12)	0.0009 (12)
01	0.1065 (18)	0.0453 (11)	0.0493 (13)	0.0069 (11)	0.0120 (12)	0.0007 (9)
O2	0.0857 (17)	0.0755 (15)	0.0519 (14)	0.0201 (12)	0.0063 (12)	0.0082 (11)
03	0.0627 (15)	0.0675 (14)	0.0969 (18)	0.0187 (12)	0.0090 (13)	0.0079 (12)
O4	0.244 (4)	0.0713 (18)	0.0722 (18)	0.027 (2)	0.046 (2)	-0.0084 (14)
05	0.153 (3)	0.106 (2)	0.0549 (16)	-0.0167 (19)	-0.0024 (17)	-0.0058 (14)
O6	0.148 (3)	0.0690 (15)	0.0753 (17)	0.0389 (16)	0.0009 (16)	-0.0061 (14)
O7	0.095 (2)	0.0828 (18)	0.111 (2)	0.0201 (15)	-0.0245 (17)	0.0184 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1-01	1.257 (3)	C10—N6	1.323 (4)
C1—C2	1.438 (4)	C10—C11	1.368 (4)
C1—C6	1.449 (4)	C10—H10	0.9300
C2—C3	1.369 (4)	C11—C12	1.357 (4)
C2—N1	1.461 (4)	C11—H11	0.9300
C3—C4	1.378 (4)	C12—N7	1.321 (4)
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.380 (4)	N1—O2	1.214 (3)
C4—N2	1.453 (4)	N1—O3	1.216 (3)
C5—C6	1.367 (4)	N2—O4	1.210 (4)
С5—Н5	0.9300	N2—O5	1.225 (4)
C6—N3	1.454 (4)	N3—O6	1.216 (3)
C7—N4	1.316 (4)	N3—O7	1.219 (3)
C7—C8	1.370 (4)	N4—N5	1.330 (4)
С7—Н7	0.9300	N4—H4A	0.862 (10)
С8—С9	1.352 (5)	N5—H5A	0.865 (10)

C8—H8	0.9300	N6—N7	1.323 (3)
C9—N5	1.335 (4)	N6—H6A	0.861 (10)
С9—Н9	0.9300	N7—H7A	0.861 (10)
			~ /
O1—C1—C2	123.9 (3)	C11—C10—H10	124.9
01	124.2 (3)	C12-C11-C10	105.1 (3)
C_{2} C_{1} C_{6}	1119(2)	C12—C11—H11	127.5
C_{3} C_{2} C_{1}	1244(3)	C10-C11-H11	127.5
C_{3} C_{2} N_{1}	115.8(2)	N7—C12—C11	107.7(3)
C1 - C2 - N1	119.8(2)	N7_C12_H12	126.1
$C_1 C_2 C_3 C_4$	119.0(2) 110.3(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126.1
C2_C3_H3	119.3 (5)	02 - N1 - 03	123.3 (3)
$C_{2} = C_{3} = H_{3}$	120.3	02 - N1 - 03	123.3(3)
$C_4 = C_5 = H_5$	120.3 120.0(2)	$O_2 = N_1 = C_2$	117.2(2)
$C_3 = C_4 = C_3$	120.9(3)	03-11-02	117.3(3)
C_{3} C_{4} N_{2}	119.0(3)	04 N2 C4	123.3(3)
C_{3} C_{4} N_{2}	120.1 (3)	04 $N2$ $C4$	118.9 (3)
C6-C5-C4	119.5 (3)	05—N2—C4	117.8(3)
С6—С5—Н5	120.3	06-N3-07	122.3 (3)
С4—С5—Н5	120.3	06—N3—C6	119.8 (3)
C5—C6—C1	123.9 (3)	07—N3—C6	117.8 (3)
C5—C6—N3	116.4 (3)	C7—N4—N5	106.9 (3)
C1—C6—N3	119.7 (3)	C7—N4—H4A	131 (5)
N4—C7—C8	110.1 (3)	N5—N4—H4A	122 (5)
N4—C7—H7	125.0	N4—N5—C9	109.7 (3)
С8—С7—Н7	125.0	N4—N5—H5A	120 (2)
C9—C8—C7	105.3 (3)	C9—N5—H5A	130 (2)
С9—С8—Н8	127.3	C10—N6—N7	106.2 (2)
С7—С8—Н8	127.3	C10—N6—H6A	127 (4)
N5—C9—C8	108.0 (3)	N7—N6—H6A	126 (4)
N5—C9—H9	126.0	C12—N7—N6	110.8 (3)
С8—С9—Н9	126.0	C12—N7—H7A	128 (2)
N6-C10-C11	110.2 (3)	N6—N7—H7A	121 (2)
N6—C10—H10	124.9		
O1—C1—C2—C3	179.5 (3)	C10-C11-C12-N7	0.2 (4)
C6-C1-C2-C3	-0.3 (4)	C3 - C2 - N1 - O2	148.3 (3)
01 - C1 - C2 - N1	-1.3(4)	C1 - C2 - N1 - O2	-31.0(4)
C6-C1-C2-N1	179.0(2)	$C_3 = C_2 = N_1 = O_3$	-29.2(4)
C1 - C2 - C3 - C4	2.0(4)	C1 - C2 - N1 - O3	1515(3)
$N1 - C^2 - C^3 - C^4$	-1773(2)	C_{3} C_{4} N_{2} O_{4}	41(5)
$C_2 C_3 C_4 C_5$	-1.3(4)	$C_5 C_4 N_2 O_4$	-1755(3)
$C_2 = C_3 = C_4 = N_2^2$	179 1 (3)	C_{3} C_{4} N_{2} O_{4}	-1762(3)
$C_{2} = C_{3} = C_{4} = C_{5} = C_{6}$	-11(4)	$C_{5} = C_{4} = N_{2} = 0_{5}$	42(5)
$N_{2}C_{4}C_{5}C_{6}$	1.1(7) 178 5 (3)	$C_{5} - C_{4} - N_{2} - O_{5}$	7.2(3)
$C_{4} = C_{5} = C_{5} = C_{0}$	$\frac{1}{0.3} (3)$	$C_{1} = C_{0} = N_{3} = 00$	-285(3)
$C_{4} = C_{5} = C_{6} = N_{2}^{2}$	-1777(3)	$C_1 - C_0 - N_3 - O_0$	20.3(4) -24.0(4)
C_{-} C_{-	1/1.1(3) 1780(2)	$C_{1} = C_{0} = N_{3} = O/$	24.7 (4) 154 4 (2)
$C_1 = C_1 = C_2 = C_3$	1/0.0(3)	$C_1 - C_0 - N_3 - U/$	134.4(3)
12 - 1 - 10 - 13	-2.3 (4)	0-0/	0.1(4)

01—C1—C6—N3	-1.3 (4)	C7—N4—N5—C9	-0.1 (3)
C2-C1-C6-N3	178.5 (2)	C8—C9—N5—N4	0.0 (4)
N4—C7—C8—C9	-0.2 (4)	C11—C10—N6—N7	0.2 (4)
C7—C8—C9—N5	0.1 (4)	C11—C12—N7—N6	-0.1 (4)
N6-C10-C11-C12	-0.2 (4)	C10—N6—N7—C12	-0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N4—H4 <i>A</i> ···N6	0.86(1)	1.81(1)	2.663 (3)	173 (7)
N5—H5 <i>A</i> ···O1 ⁱ	0.87(1)	1.95 (1)	2.789 (3)	163 (3)
N5—H5 <i>A</i> ···O6 ⁱ	0.87(1)	2.42 (3)	2.961 (4)	121 (3)
N6—H6 <i>A</i> …N4	0.86(1)	1.81 (1)	2.663 (3)	174 (7)
N7—H7A…O1	0.86(1)	2.04 (2)	2.864 (3)	160 (3)
N7—H7 <i>A</i> ···O2	0.86(1)	2.29 (3)	2.841 (3)	122 (3)
C12—H12…O4 ⁱⁱ	0.93	2.61	3.512 (5)	165

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*, –*y*+2, –*z*+1.