CRYSTALLOGRAPHIC COMMUNICATIONS

Received 7 May 2016
Accepted 18 May 2016

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; magnetic properties; disorder.

CCDC reference: 1480636

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and magnetic properties of $\mathbf{L a C a}_{0.143(4)} \mathrm{O}_{0.857 \text { (4) }} \mathrm{F}_{0.143 \text { (4) }} \mathrm{Bi}_{0.857 \text { (4) }} \mathbf{S}_{\mathbf{2}}$

Rongtie Huang, ${ }^{\text {a,b }}$ Hui Zhang, ${ }^{\mathrm{a} *}$ Dong Wang, ${ }^{\text {b }}$ Chuanbing Cai ${ }^{\text {b }}$ and Fuqiang Huang ${ }^{\text {a* }}$

${ }^{\mathrm{a}}$ State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Physics, Shanghai University, Shanghai 200444, People's Republic of China. *Correspondence e-mail: huizhangmpg@hotmail.com,
huangfq@mail.sic.ac.cn

The synthesis, structure, and magnetic properties of lithium dibarium calcium oxide fluoride disulfide are reported. $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$ crystallizes in the tetragonal space group $P 4 / n m m$. The structure exhibits disorder of the Ca^{2+} and Bi^{3+} cations, and the O^{2-} and F^{-}anions. The structure is composed of a stacking of $\left[(\mathrm{O}, \mathrm{F})_{2} \mathrm{La}_{2}\right]$ layers and double $\left[(\mathrm{Bi}, \mathrm{Ca}) \mathrm{S}_{2}\right]$ layers. Magnetic property measurements indicate a very small magnetization at 300 K and the existence of weak ferromagnetism at 2 K .

1. Chemical context

Layered crystal structures seem to be a common stage on which to explore superconductivity (Vershinin et al., 2004; Kamihara et al., 2008; Chen et al., 2008; Fang et al., 2010). The discovery of $\left[\mathrm{Fe}_{2} A n_{2}\right](A n=\mathrm{P}$, As, S, Se or Te$)$ and $\left[\mathrm{CuO}_{2}\right]$ superconducting layers has opened a new field in physics and chemistry for the exploration of low-dimensional superconductivity. Recently, superconductivity with transition temperatures of 4.5 K was reported in the BiS_{2}-based compound $\mathrm{Bi}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}$ (Singh et al., 2012). Soon after, $\operatorname{Ln} \mathrm{O}_{1-}$ ${ }_{x} \mathrm{~F}_{x} \mathrm{BiS}_{2}(L n=\mathrm{La}, \mathrm{Ce}, \operatorname{Pr}$ and Nd$)$, were reported to be superconducting with transition temperatures T_{c} of $3-10.6 \mathrm{~K}$ (Nagao et al., 2013; Demura et al., 2013). The mother $\mathrm{BiS}_{2^{-}}$ based layered compound $A e \mathrm{FBiS}_{2}(A e=\mathrm{Ca}, \mathrm{Sr}$ or Ba ; Lei et al., 2013; Han et al., 2008) is isostructural to LnOBiS, with the $\left[L_{2} \mathrm{O}_{2}\right]^{2-}$ layer being replaced by an isocharged $\left[\mathrm{Sr}_{2} \mathrm{~F}_{2}\right]^{2-}$ block. The parent phase of SrFBiS_{2} shows semiconducting behavior, but electron-doped $\mathrm{Sr}_{0.5} \mathrm{La}_{0.5} \mathrm{FBiS}_{2}$ has a superconducting transition of 2.8 K (Lin et al., 2013). Herein the synthesis, structure and magnetic properties of $\mathrm{LaCa}_{0.143 \text { (4) }} \mathrm{O}_{0.857 \text { (4) }} \mathrm{F}_{0.143 \text { (4) }} \mathrm{Bi}_{0.857 \text { (4) }} \mathrm{S}_{2}$ are reported.

2. Structural commentary

We attempted to prepare the Ca and F double-doped compound $\mathrm{La}_{1-x} \mathrm{Ca}_{x} \mathrm{O}_{1-2 x} \mathrm{~F}_{2 x} \mathrm{BiS}_{2}$, but the results indicate the single-crystal composition is $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143 \text { (4)- }}$ $\mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$. An SEM image shows thick plate-shaped crystals of $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$ (Fig. 1). $\mathrm{LaO}_{1-x} \mathrm{~F}_{x^{-}}$ BiS_{2} crystals usually show a thin-sheet shape (Fig. 2). From the EDXS analysis, we obtained the elemental components of La, $\mathrm{Ca}, \mathrm{Bi}, \mathrm{S}, \mathrm{F}$ and O . The final composition was obtained by structure refinement (details can be seen in the Refinement section).

Figure 1
SEM image of $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$.

Figure 2
SEM image of $\mathrm{LaO}_{0.6} \mathrm{~F}_{0.4} \mathrm{BiS}_{2}$.

The structure of $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$, shown in Fig. 3, is composed of a stacking of $\left[(\mathrm{O}, \mathrm{F})_{2} \mathrm{La}_{2}\right]$ layers and double $\left[(\mathrm{Bi}, \mathrm{Ca}) \mathrm{S}_{2}\right]$ layers as in $\mathrm{LaO}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}$. The double $\left[(\mathrm{Bi}, \mathrm{Ca}) \mathrm{S}_{2}\right]$ layers show $\mathrm{Bi} 1 / \mathrm{Ca} 1-\mathrm{S} 2$ distances of 2.8672 (6) \AA representing equatorial bonds and $\mathrm{Bi} 1 / \mathrm{Ca} 1-\mathrm{S} 1$ distances of 2.530 (3) A representing axial bonds; these are a little shorter than the $\mathrm{Bi} 1-\mathrm{S} 1$ distance of $2.87476(15)$ and $\mathrm{Bi} 1-\mathrm{S} 2$ distance of $2.530(6) \AA$ in $\mathrm{LaO}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}$. The $\left[(\mathrm{O}, \mathrm{F})_{2} \mathrm{La}_{2}\right]$ layers exhibit O1/F1 - La1 bond lengths of 2.4414 (6) \AA and La1-O1/F1-La1 bond angles of 108.08 (2) and 112.29 (4) ${ }^{\circ}$, which are close to the $\mathrm{La}-\mathrm{O} / \mathrm{F}$ bond length of 2.4402 (8) \AA and $\mathrm{La} 1-\mathrm{O} 1 / \mathrm{F} 1-\mathrm{La} 1$ bond angles of $107.82(3)$ and $112.82(6)^{\circ}$ in $\mathrm{LaO}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}$. The ionic radius of Ca^{2+} is 114 pm which is a little shorter than that of $117.2 / 117 \mathrm{pm}$ for $\mathrm{La}^{3+} / \mathrm{Bi}^{3+}$. The distinct reduced $\mathrm{Bi} 1 / \mathrm{Ca} 1-\mathrm{S} 2$ distances in the title compound reflect the fact that Ca substitutes Bi sites rather than La sites.

3. Magnetic property measurements

The magnetization versus temperature under a 1 T field for the title compound is given in Fig. 4. Magnetization versus magnetic field is given in Fig. 5 for fields ranging from -5 to 5 T at 2 K and 300 K . The magnetic properties indicate weak ferromagnetism at 2 K and a very low magnetization at 300 K . The superconducting transition is not observed in the measured temperature range. This might be related to the Ca substitution of the Bi site in the title compound. For superconducting $\mathrm{LaO}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}$ crystals, the density of states at the Fermi level is mainly directed by the $\mathrm{Bi} p$ orbital. $\left[\mathrm{BiS}_{2}\right]$ layers play a vital role in the transport and superconducting properties. The Ca substitution of the Bi site leads to a hole doping which changed the electronic band structure and density of state of $\mathrm{LaO}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}$. Another reason might be the reduced F content in $\mathrm{LaCa}_{0.143 \text { (4) }} \mathrm{O}_{0.857 \text { (4) }} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857 \text { (4) }} \mathrm{S}_{2}$ compared with $\mathrm{LaO}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}$.

4. Database survey

$L n \mathrm{O}_{1-x} \mathrm{~F}_{x} \mathrm{BiS}_{2}(L n=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}$ and Nd$)$ compounds were reported by Nagao et al. (2013) and Demura et al. (2013).

Figure 3
Crystal structure of $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857}{ }_{(4)} \mathrm{S}_{2}$, showing $\left[(\mathrm{O}, \mathrm{F})_{2} \mathrm{La}_{2}\right]$ layers and double $\left[\mathrm{BiS}_{2}\right]$ layers $(\mathrm{O} / \mathrm{F}$ in red, La in blue, $\mathrm{Bi} /$ Ca in pink and S in yellow; 50% probability ellipsoids).

Figure 4
Magnetic moment versus temperature for $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143 \text { (4)- }}$ $\mathrm{Bi}_{0.857 \text { (4) }} \mathrm{S}_{2}$ under a 1 T field.
$A e \mathrm{FBiS}_{2}(A e=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})($ Lei et al., 2013; Han et al., 2008) are isostructural to $\mathrm{Ln} \mathrm{OBiS}_{2}$. The doped $\mathrm{Sr}_{0.5} \mathrm{La}_{0.5} \mathrm{FBiS}_{2}$ (Lin et al., 2013) is isostructural to AeFBiS_{2}.

5. Synthesis and crystallization

$\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857 \text { (4) }} \mathrm{F}_{0.143 \text { (4) }} \mathrm{Bi}_{0.857 \text { (4) }} \mathrm{S}_{2}$ was prepared using of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{CaF}_{2}, \mathrm{La}_{2} \mathrm{~S}_{3}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$ and Bi raw materials. The mixtures with a nominal composition of $\mathrm{La}_{0.85} \mathrm{Ca}_{0.15} \mathrm{O}_{0.70} \mathrm{~F}_{0.30} \mathrm{BiS}_{2}$ were ground, pressed into pellets, sealed in an evacuated quartz tube, and heated at 1073 K for 3 d . High-quality single crystals were grown by using KI as the flux. Nominal $\mathrm{La}_{0.85} \mathrm{Ca}_{0.15} \mathrm{O}_{0.70} \mathrm{~F}_{0.30} \mathrm{BiS}_{2}$ and KI in the molar ratio of $1: 3$ were

Figure 5
Magnetic moment versus field for $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$ from -5 T to 5 T at 2 K and 300 K .

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent
and observed $[I>2 \sigma(I)]$ reflections
$\left.R_{(\sin } \theta / \lambda\right)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.020,0.052,1.31$
No. of reflections 191
No. of parameters
17
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ 404.26

Tetragonal, $P 4 / \mathrm{nmm}$
300
4.0548 (9), 13.370 (3)
219.82 (11)

2
Mo $K \alpha$
44.78
$0.05 \times 0.05 \times 0.02$

Bruker D8 Quest
0.154, 0.511

3493, 191, 190
0.046
0.648
$\mathrm{LaCa}_{0.143 \text { (4) }} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$

Multi-scan (SADABS; Bruker, 2001)

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick 2015), DIAMOND (Brandenburg, 2004) and publCIF (Westrip, 2010).
mixed and placed in a quartz tube, which was sealed and heated to 1273 K and kept at this temperature for 1 d , then cooled to room temperature in 10 d . The product was washed with distilled water and acetone, then dried at 353 K for 12 h ; finally black plate-shaped crystals were obtained.

The morphology and element compositions were investigated by a scanning electronic microscope equipped with an energy dispersive X-ray spectroscopy (EDXS, Oxford Instruments). The EDXS shows the atom \% ratio for S:Ca:La:Bi to be 48.23: 6.94: 24.36: 20.48. O and F could not be determined precisely. Magnetic properties were measured on a multifunctional physical properties measurement system (PPMS, Quantum Design).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The $\mathrm{La}, \mathrm{Bi}, \mathrm{S}$ and O atoms were located in difference maps and their positions were freely refined. Ca was assumed at La sites at first, but the refinement show no reducing occupancy of La. The partial occupancy of Bi indicates a mixed occupancy with $\mathrm{Ca} . \mathrm{Ca}$ and Bi were refined together later. EDXS measurements could not determine occupancies of O and F precisely. If the occupancies of F and O are refined together, the obtained composition is $\mathrm{La}_{2} \mathrm{Bi}_{1.859 \text { (4) }} \mathrm{Ca}_{0.141(4)} \mathrm{O}_{0.48 \text { (14) }} \mathrm{F}_{0.52(14)} \mathrm{S}_{4}$ with high standard errors for O and F . In order to keep charge neutrality, the occupancy of F was fixed to be the same as Ca so the final composition of $\mathrm{LaCa}_{0.143(4)} \mathrm{O}_{0.857(4)} \mathrm{F}_{0.143(4)} \mathrm{Bi}_{0.857(4)} \mathrm{S}_{2}$ was obtained.

Acknowledgements

This work was supported financially by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant No. XDB04040200).

References

Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X. H., Wu, T., Wu, G., Liu, R. H., Chen, H. \& Fang, D. F. (2008). Nature, 453, 761-762.
Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H. \& Takano, Y. (2013). J. Phys. Soc. Jpn, 82, 033708.

Fang, A. H., Huang, F. Q., Xie, X. M. \& Jiang, M. H. (2010). J. Am. Chem. Soc. 132, 3260-3261.
Han, F., Zhu, X., Mu, G., Cheng, P. \& Wen, H. H. (2008). Phys. Rev. B, 78, 180503(R).
Kamihara, Y., Watanabe, T., Hirano, M. \& Hosono, H. (2008). J. Am. Chem. Soc. 130, 3296-3297.
Lei, H. C., Wang, K. F., Abeykoon, M., Bozin, E. S. \& Petrovic, C. (2013). Inorg. Chem. 52, 10685-10689.

Lin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G. \& Xu, Z. (2013). Phys. Rev. B, 87 020504(R).
Nagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N. \& Tanaka, I. (2013). J. Phys. Soc. Jpn, 82, 113701.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Singh, S. K., Kumar, A., Gahtori, B., Sharma, G., Patnaik, S. \& Awana, V. P. S. (2012). J. Am. Chem. Soc. 134, 16504-16507.

Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y. \& Yazdani, A. (2004). Science, 303, 1995-1998.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 845-848 [https://doi.org/10.1107/S2056989016008082]
Crystal structure and magnetic properties of $\mathrm{LaCa}_{0.143 \text { (4) }} \mathrm{O}_{0.857(4)} \mathbf{F}_{0.143(4)} \mathrm{Bi}_{0.857}$
${ }_{(4)} S_{2}$

Rongtie Huang, Hui Zhang, Dong Wang, Chuanbing Cai and Fuqiang Huang

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick 2015); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Lanthanum calcium bismuth oxide fluoride disulfide

Crystal data

$\mathrm{Bi}_{0.857} \mathrm{Ca}_{0.143} \mathrm{~F}_{0.143} \mathrm{LaO}_{0.857} \mathrm{~S}_{2}$
$M_{r}=404.26$
Tetragonal, $P 4 / \mathrm{nmm}$
$a=4.0548$ (9) Å
$c=13.370$ (3) \AA
$V=219.82(11) \AA^{3}$
$Z=2$
$F(000)=342.3$

Data collection

Bruker D8 Quest
diffractometer
Radiation source: fine-focus sealed tube
Profile fitted 2 θ / ω scans (Clegg, 1981)
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.154, T_{\text {max }}=0.511$
3493 measured reflections
191 independent reflections
$D_{\mathrm{x}}=6.108 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 189 reflections
$\theta=4.6-27.4^{\circ}$
$\mu=44.78 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
Block, blue
$0.05 \times 0.05 \times 0.02 \mathrm{~mm}$

190 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=4.6^{\circ}$
$h=-5 \rightarrow 5$
$k=-5 \rightarrow 4$
$l=-17 \rightarrow 17$
3 standard reflections every 90 reflections
intensity decay: none

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.052$
$S=1.31$
191 reflections
17 parameters
0 restraints
Primary atom site location: difference Fourier map

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0318 P)^{2}+0.5025 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.53 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL2014 } \\
& \quad\left(\mathrm{Sheldrick}^{*} 2015\right), \\
& \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.033(3)
\end{aligned}
$$

supporting information

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
La1	0.7500	0.7500	$0.89827(6)$	$0.0127(3)$	
Ca1	0.2500	0.2500	$0.62178(4)$	$0.0126(3)$	$0.143(4)$
Bi1	0.2500	0.2500	$0.62178(4)$	$0.0126(3)$	$0.857(4)$
F1	0.7500	0.2500	1.0000	$0.0079(14)$	$0.143(4)$
O1	0.7500	0.2500	1.0000	$0.0079(14)$	$0.857(4)$
S1	0.2500	0.2500	$0.8110(2)$	$0.0104(6)$	
S2	0.7500	0.7500	$0.6221(3)$	$0.0236(8)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	$0.0115(4)$	$0.0115(4)$	$0.0151(5)$	0.000	0.000	0.000
Ca1	$0.0146(3)$	$0.0146(3)$	$0.0087(3)$	0.000	0.000	0.000
Bi1	$0.0146(3)$	$0.0146(3)$	$0.0087(3)$	0.000	0.000	0.000
F1	$0.0087(18)$	$0.0087(18)$	$0.006(3)$	0.000	0.000	0.000
O1	$0.0087(18)$	$0.0087(18)$	$0.006(3)$	0.000	0.000	0.000
S1	$0.0101(7)$	$0.0101(7)$	$0.0109(12)$	0.000	0.000	0.000
S2	$0.0200(10)$	$0.0200(10)$	$0.0306(18)$	0.000	0.000	0.000

Geometric parameters $\left({ }^{A},{ }^{o}\right)$

$\mathrm{La} 1-\mathrm{Ol}^{\text {i }}$	2.4414 (6)	$\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {v }}$	4.0548 (9)
Lal-O1i ${ }^{\text {ii }}$	2.4414 (6)	$\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {viii }}$	4.0548 (9)
La1-F1 ${ }^{\text {i }}$	2.4414 (6)	$\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	4.0548 (9)
$\mathrm{La} 1-\mathrm{F} 1^{\text {ii }}$	2.4414 (6)	Ca1-Bi1 ${ }^{\text {viii }}$	4.0548 (9)
La1-F1	2.4414 (6)	F1-Lal ${ }^{\text {i }}$	2.4414 (6)
La1-O1 ${ }^{\text {iii }}$	2.4414 (6)	F1-La1 ${ }^{\text {viii }}$	2.4414 (6)
La1-O1	2.4414 (6)	F1-La $1^{\text {iii }}$	2.4414 (6)
La1-F1 ${ }^{\text {iii }}$	2.4414 (6)	O1-Lal ${ }^{\text {i }}$	2.4414 (6)
La1-S1	3.0954 (13)	O1-La1 ${ }^{\text {viii }}$	2.4414 (6)
$\mathrm{La} 1-\mathrm{S} 1^{\text {iv }}$	3.0954 (13)	O1-La1 ${ }^{\text {iii }}$	2.4414 (6)
La1-S $1^{\text {ii }}$	3.0954 (13)	S1-La1 ${ }^{\text {vi }}$	3.0954 (13)
La1-S1 ${ }^{\text {v }}$	3.0954 (13)	S1—La1 ${ }^{\text {vii }}$	3.0954 (13)
Ca1-S1	2.530 (3)	S1—La1 ${ }^{\text {viii }}$	3.0954 (13)
$\mathrm{Ca1}-\mathrm{S} 2$	2.8672 (6)	S 2 - $\mathrm{Bi}^{\text {iv }}$	2.8672 (6)
$\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {vi }}$	2.8672 (6)	S2-Ca1 ${ }^{\text {iv }}$	2.8672 (6)
$\mathrm{Ca1}-\mathrm{S}^{\text {vii }}$	2.8672 (6)	$\mathrm{S} 2-\mathrm{Ca} 1^{\text {v }}$	2.8672 (6)
$\mathrm{Ca1}-\mathrm{S}^{\text {viii }}$	2.8672 (6)	$\mathrm{S} 2-\mathrm{Ca} 1^{\text {ii }}$	2.8672 (6)
$\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {ix }}$	3.261 (4)	S2-Bi1 ${ }^{\text {ii }}$	2.8672 (6)

$\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ii }}$	4.0548 (9)
$\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$	4.0548 (9)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 1^{\text {ii }}$	71.917 (18)
O1 ${ }^{\text {i }}$ La1- $\mathrm{F}^{\text {i }}$	0.0
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{La} 1-\mathrm{F} 1^{\mathrm{i}}$	71.917 (18)
O1-LLa1-F1 ${ }^{\text {ii }}$	71.917 (18)
O1i- ${ }^{\text {ii }}$ La1-F1 ${ }^{\text {ii }}$	0.0
F1-Lal-F1 ${ }^{\text {ii }}$	71.917 (18)
O1-Lal-F1	71.917 (18)
$\mathrm{O} 1{ }^{\text {iii }} \mathrm{La} 1-\mathrm{F} 1$	112.29 (4)
F1-LLa1-F1	71.917 (18)
F1i--La1-F1	112.29 (4)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 1^{\text {iii }}$	112.29 (4)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{La} 1-\mathrm{O} 1^{\text {iii }}$	71.917 (18)
F1--La1-O1 $1^{\text {iii }}$	112.29 (4)
F1iin ${ }^{\text {iid }}$ - $\mathrm{Ol}^{\text {iii }}$	71.917 (18)
F1-La1-O1 ${ }^{\text {iii }}$	71.917 (18)
O1-Lal-O1	71.917 (18)
$\mathrm{O1}^{\text {iii-Lal-}}$	112.29 (4)
F1-La1-O1	71.917 (18)
F1i--La1-O1	112.29 (4)
F1-La1-O1	0.0
O1 ${ }^{\text {iii-La1-O1 }}$	71.917 (18)
$\mathrm{O} 1^{\text {i }}$-La1-F1 $1^{\text {iii }}$	112.29 (4)
O1i--La1-F1 ${ }^{\text {iii }}$	71.917 (18)
F1-La1-F1ii	112.29 (4)
F1iinLa1-F1 ${ }^{\text {iii }}$	71.917 (18)
F1-La1-F1 ${ }^{\text {iii }}$	71.917 (18)
O1iil-La1-F1 ${ }^{\text {iii }}{ }^{\text {iii }}$	0.0
O1-La1-F1 ${ }^{\text {iii }}$	71.917 (18)
O1--La1-S1	138.93 (2)
O1i-La1-S1	138.93 (3)
F1-Lal-S1	138.93 (2)
F1ii-La1-S1	138.93 (3)
F1-La1-S1	70.49 (4)
O1iii-La1-S1	70.49 (4)
O1-La1-S1	70.49 (4)
F1iii-La1-S1	70.49 (4)
O1-LLal-S1 ${ }^{\text {iv }}$	70.49 (4)
O1il-La1-S1 ${ }^{\text {iv }}$	70.49 (4)
F1 ${ }^{\text {i }}$ Lal- $\mathrm{Sl}^{\text {iv }}$	70.49 (4)
F1 ${ }^{\text {iii }}$ La1-S $1^{\text {iv }}$	70.49 (4)
F1-La1-S1 ${ }^{\text {iv }}$	138.93 (3)
O1 ${ }^{\text {iii }}$-La1-S $1^{\text {iv }}$	138.93 (2)
O1-Lal-S1 ${ }^{\text {iv }}$	138.93 (3)
F1iin-La1-S1 ${ }^{\text {iv }}$	138.93 (2)
S1-La1-S $1^{\text {iv }}$	135.72 (11)

S2-Bi1 ${ }^{\text {v }}$	2.8672 (6)
$\mathrm{S} 2-\mathrm{Ca} 1^{\text {ix }}$	3.261 (4)
S2 ${ }^{\text {viii }}$ - $\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$	135.0
$\mathrm{S} 2{ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$	90.0
$\mathrm{Ca} 1{ }^{\text {ii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$	90.0
$\mathrm{S} 1-\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {v }}$	90.0
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {v }}$	45.0
S2 ${ }^{\text {vi}}-\mathrm{Ca} 1-\mathrm{Ca} 1^{v}$	135.0
S2 ${ }^{\text {vii }}$ - $\mathrm{Ca} 1-\mathrm{Ca} 1^{v}$	135.0
S2 ${ }^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Ca} 1^{v}$	45.0
S2 ${ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{v}$	90.0
$\mathrm{Ca} 1{ }^{\text {iii- }} \mathrm{Ca} 1-\mathrm{Ca} 1^{v}$	90.0
$\mathrm{Ca} 1{ }^{\text {vii }} \mathrm{Ca} 1-\mathrm{Ca} 1^{\text {v }}$	180.0
S1-Ca1-Ca1 ${ }^{\text {viii }}$	90.0
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {viii }}$	135.0
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {viii }}$	45.0
S2 ${ }^{\text {vii }}$ - $\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {viii }}$	135.0
S2 ${ }^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {viii }}$	45.0
$\mathrm{S} 2{ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {viii }}$	90.0
$\mathrm{Ca1}{ }^{\text {iii }} \mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {viii }}$	180.0
$\mathrm{Ca1}{ }^{\text {vii }}$ - $\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {viii }}$	90.0
$\mathrm{Ca1}{ }^{\text {v }}-\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {viii }}$	90.0
$\mathrm{S} 1-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	90.0
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	45.0
S2 ${ }^{\text {vi }}-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	135.0
S2 ${ }^{\text {vii }}-\mathrm{Ca} 1-\mathrm{Bi}^{\text {ii }}$	45.0
S2 ${ }^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Bi} 1{ }^{\text {ii }}$	135.0
$\mathrm{S} 2{ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	90.0
$\mathrm{Ca} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	0.000 (15)
$\mathrm{Ca} 1^{\text {vii }}-\mathrm{Ca1}-\mathrm{Bi} 1^{1 i}$	90.0
$\mathrm{Ca1}{ }^{\mathrm{v}}-\mathrm{Ca} 1-\mathrm{Bi}^{\text {ii }}$	90.0
$\mathrm{Ca} 1{ }^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Bi} 1^{\text {ii }}$	180.0
S1-Ca1-Bi1 ${ }^{\text {viii }}$	90.0
S2-Ca1-Bi1 ${ }^{\text {viii }}$	135.0
S2 ${ }^{\text {vi }}$ - $\mathrm{Ca} 1-\mathrm{Bi}^{\text {viii }}$	45.0
S2 ${ }^{\text {vii }}-\mathrm{Ca} 1-\mathrm{Bi}^{\text {viii }}$	135.0
$\mathrm{S} 2{ }^{\text {viii }}$ - $\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {viii }}$	45.0
S2 ${ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {viii }}$	90.0
$\mathrm{Ca} 1{ }^{\text {ii }}-\mathrm{Ca} 1-\mathrm{Bi} 1^{\text {viii }}$	180.0
$\mathrm{Ca1}{ }^{\text {vii }}$ - $\mathrm{Ca} 1-\mathrm{Bi1}{ }^{\text {viii }}$	90.0
$\mathrm{Ca1}{ }^{v}-\mathrm{Ca} 1-\mathrm{Bi}^{\text {viii }}$	90.0
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Bi}^{\text {viii }}$	0.000 (15)
$\mathrm{Bi} 1{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Bi}^{\text {viii }}$	180.0
La $1^{\text {i }}$-F1-La1 ${ }^{\text {viii }}$	108.082 (18)
La $1^{\text {i }}$-F1-La1 ${ }^{\text {iii }}$	112.29 (4)
La1 ${ }^{\text {viii-F1-La }}{ }^{\text {iii }}$	108.082 (18)
La1 ${ }^{\text {i }}$-F1-La1	108.082 (18)

O1-Lal-S1 ${ }^{\text {ii }}$
O1iin Lal-S1 ${ }^{\text {ii }}$
F1-Lal-S $1^{\text {ii }}$
F1ii-La1-S1 ${ }^{\text {ii }}$
F1-La1-S1i ${ }^{\text {ii }}$
O1iii-Lal-S1 ${ }^{\text {ii }}$
O1-La1-S1 ${ }^{\text {ii }}$
F1iil-La1-S1 ${ }^{\text {iii }}$
S1-La1-S $1^{\text {ii }}$
S1 ${ }^{\text {iv }}$-La1-S $1^{\text {ii }}$
O1 ${ }^{\text {i }}$ La1- $\mathrm{Sl}^{\text {v }}$
O1iin La ${ }^{\text {ii }}$ - $\mathrm{Sl}^{\text {v }}$
F1-La1-S1 ${ }^{\text {v }}$
F1ii-La1-S1 ${ }^{\text {v }}$
F1-La1-S1 ${ }^{\text {v }}$
O1iii-La1-S1 ${ }^{\text {i }}$
O1-La1-S1 ${ }^{\text {v }}$
F1iil-La1-S1 ${ }^{\text {i }}$
S1-La1-S1 ${ }^{\text {v }}$
S1 ${ }^{\text {iv }}$-La1- $\mathrm{Sl}^{\text {v }}$
S1ii-La1-S1 ${ }^{\text {v }}$
S1-Ca1-S2
$\mathrm{S} 1-\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {vi }}$
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {vi }}$
S1-Ca1-S2 ${ }^{\text {vii }}$
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {vii }}$
S2 ${ }^{\text {vi }}$ - $\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {vii }}$
$\mathrm{S} 1-\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {viii }}$
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {viii }}$
S2 ${ }^{\text {vi }}$ - $\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {viii }}$
$\mathrm{S} 2{ }^{\text {vii }}$ - $\mathrm{Ca} 1-\mathrm{S} 2^{\text {viii }}$
S1-Ca1-S2 ${ }^{\text {ix }}$
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{S} 2{ }^{\text {ix }}$
S2 ${ }^{\text {vi }}$ - $\mathrm{Ca} 1-\mathrm{S} 2^{\text {ix }}$
$\mathrm{S} 2{ }^{\text {vii }}-\mathrm{Ca} 1-\mathrm{S} 2^{\text {ix }}$
S2 ${ }^{\text {viii }}$ - $\mathrm{Ca} 1-\mathrm{S} 2^{\text {ix }}$
$\mathrm{S} 1-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ii }}$
$\mathrm{S} 2-\mathrm{Ca} 1-\mathrm{Ca} 1{ }^{\text {ii }}$
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ii }}$
$\mathrm{S} 2{ }^{\text {vii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ii }}$
$\mathrm{S} 2{ }^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {1i }}$
$\mathrm{S} 2{ }^{\mathrm{ix}}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ii }}$
$\mathrm{S} 1-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$
S2-Ca1-Ca1 ${ }^{\text {vii }}$

138.93 (3)
70.49 (4)
138.93 (3)
70.49 (4)
138.93 (3)
70.49 (4)
138.93 (3)
70.49 (4)
81.84 (4)
81.84 (4)
70.49 (4)
138.93 (3)
70.49 (4)
138.93 (3)
70.49 (4)
138.93 (3)
70.49 (4)
138.93 (3)
81.84 (4)
81.84 (4)
135.72 (11)
89.91 (9)
89.91 (9)
179.82 (17)
89.91 (9)
90.000 (1)
90.000 (1)
89.91 (9)
90.000 (1)
90.0
179.82 (17)
180.0
90.09 (9)
90.09 (9)
90.09 (9)
90.09 (9)
90.0
45.0
135.0
45.0
135.0
90.0
90.0
135.0

La1 ${ }^{\text {viii -F1-La1 }}$	112.29 (4)
La1 ${ }^{\text {iii }}$-F1-La1	108.082 (18)
La1 ${ }^{\text {i }}$-O1-La1 ${ }^{\text {viii }}$	108.082 (18)
La1 ${ }^{\text {i }}$-O1-La $1^{\text {iii }}$	112.29 (4)
$\mathrm{La} 1^{\text {viii }} \mathrm{O} 1-\mathrm{La} 1^{\text {iii }}$	108.082 (18)
La1 ${ }^{\text {i }}$-O1-La1	108.082 (18)
La1 ${ }^{\text {viii }}$-O1-La1	112.29 (4)
La1 ${ }^{\text {iii- }}$ - 1 1-La1	108.082 (18)
Ca1-S1-La1	112.14 (5)
$\mathrm{Ca} 1-\mathrm{S} 1-\mathrm{La} 1^{\text {vi }}$	112.14 (5)
La1-S1-La1 ${ }^{\text {vi }}$	135.72 (11)
$\mathrm{Ca} 1-\mathrm{S} 1-\mathrm{La} 1^{\text {vii }}$	112.14 (5)
La1-S1-La1 ${ }^{\text {vii }}$	81.84 (4)
La ${ }^{\text {vi}}-\mathrm{S} 1-\mathrm{La} 1^{\text {vii }}$	81.84 (4)
Ca1-S1-La1 ${ }^{\text {viii }}$	112.14 (5)
La1-S1-La1 ${ }^{\text {viii }}$	81.84 (4)
La ${ }^{\text {vi}}-\mathrm{S} 1-\mathrm{La} 1^{\text {viii }}$	81.84 (4)
La ${ }^{\text {vii }}$-S1—La1 ${ }^{\text {viii }}$	135.72 (11)
Ca1-S2-Bi $1^{\text {iv }}$	179.8
$\mathrm{Ca}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {iv }}$	179.82 (17)
$\mathrm{Bi} 1^{\text {iv }}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {iv }}$	0.0
Ca1-S2-Ca1 ${ }^{\text {v }}$	90.0
Bi1 ${ }^{\text {iv }}$-S2-Ca1 ${ }^{\text {v }}$	90.0
$\mathrm{Ca} 1^{\mathrm{iv}}-\mathrm{S} 2-\mathrm{Ca} 1^{v}$	90.0
$\mathrm{Ca} 1-\mathrm{S} 2-\mathrm{Ca1} 1^{\text {ii }}$	90.0
Bi1 ${ }^{\text {iv }}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {ii }}$	90.0
$\mathrm{Ca} 1^{\mathrm{iv}}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {ii }}$	90.0
$\mathrm{Ca} 1^{v}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {ii }}$	179.82 (17)
$\mathrm{Ca} 1-\mathrm{S} 2-\mathrm{Bi} 1^{\text {ii }}$	90.0
Bil ${ }^{\text {iv }}-\mathrm{S} 2-\mathrm{Bil}{ }^{\text {ii }}$	90.0
$\mathrm{Ca} 1{ }^{\text {iv }}-\mathrm{S} 2-\mathrm{Bi} 1^{\text {ii }}$	90.0
$\mathrm{Ca} 1^{\mathrm{v}}-\mathrm{S} 2-\mathrm{Bi1}{ }^{\text {ii }}$	179.82 (17)
$\mathrm{Ca} 1{ }^{\text {iii }}$-S2- $\mathrm{Bi}^{\text {i }}{ }^{\text {ii }}$	0.00 (2)
$\mathrm{Ca} 1-\mathrm{S} 2-\mathrm{Bi}^{\text {v }}$	90.0
Bil ${ }^{\text {iv }}$-S2- $\mathrm{Bil}^{\text {v }}$	90.0
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{S} 2-\mathrm{Bi}^{\text {v }}$	90.0
$\mathrm{Ca} 1^{v}-\mathrm{S} 2-\mathrm{Bi}^{\text {v }}$	0.00 (2)
$\mathrm{Ca} 1^{\text {ii }}-\mathrm{S} 2-\mathrm{Bi}^{\text {v }}$	179.82 (17)
Bi1 ${ }^{\text {ii }}$-S2- $\mathrm{Bi}^{\text {v }}$	179.82 (17)
$\mathrm{Ca} 1-\mathrm{S} 2-\mathrm{Ca} 1^{\text {ix }}$	89.91 (9)
$\mathrm{Bi1}{ }^{\text {iv }}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {ix }}$	89.9
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{S} 2-\mathrm{Ca} 1^{\text {ix }}$	89.91 (9)
Ca1 ${ }^{\text {v }}$-S2- $\mathrm{Ca}^{\text {1x }}$	89.91 (9)
Ca1i- ${ }^{\text {ii }} 2-\mathrm{Ca} 1^{\text {ix }}$	89.91 (9)

supporting information

$\mathrm{S}^{\text {vi }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$	45.0	$\mathrm{Bi}^{\mathrm{ii}}-\mathrm{S} 2-\mathrm{Ca} 1^{\mathrm{ix}}$	89.9
$\mathrm{~S} 2^{\text {vii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {vii }}$	45.0	$\mathrm{Bi}^{\mathrm{v}}-\mathrm{S} 2-\mathrm{Ca} 1^{1 \mathrm{ix}}$	89.9

Symmetry codes: (i) $-x+2,-y+1,-z+2$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1,-z+2$; (iv) $x+1, y+1, z$; (v) $x+1, y, z$; (vi) $x-1, y-1, z$; (vii) $x-1, y, z$; (viii) $x, y-1, z$; (ix) $-x+1,-y+1,-z+1$.

