

Received 7 May 2016 Accepted 18 May 2016

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; magnetic properties; disorder.

CCDC reference: 1480636

Supporting information: this article has supporting information at journals.iucr.org/e

Rongtie Huang,^{a,b} Hui Zhang,^a* Dong Wang,^b Chuanbing Cai^b and Fuqiang Huang^a*

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and ^bDepartment of Physics, Shanghai University, Shanghai 200444, People's Republic of China. *Correspondence e-mail: huizhangmpg@hotmail.com, huangfq@mail.sic.ac.cn

The synthesis, structure, and magnetic properties of lithium dibarium calcium oxide fluoride disulfide are reported. LaCa_{0.143 (4})O_{0.857 (4})F_{0.143 (4})Bi_{0.857 (4})S₂ crystallizes in the tetragonal space group *P*4/*nmm*. The structure exhibits disorder of the Ca²⁺ and Bi³⁺ cations, and the O²⁻ and F⁻ anions. The structure is composed of a stacking of [(O,F)₂La₂] layers and double [(Bi,Ca)S₂] layers. Magnetic property measurements indicate a very small magnetization at 300 K and the existence of weak ferromagnetism at 2 K.

1. Chemical context

Layered crystal structures seem to be a common stage on which to explore superconductivity (Vershinin et al., 2004; Kamihara et al., 2008; Chen et al., 2008; Fang et al., 2010). The discovery of $[Fe_2An_2]$ (An = P, As, S, Se or Te) and $[CuO_2]$ superconducting layers has opened a new field in physics and chemistry for the exploration of low-dimensional superconductivity. Recently, superconductivity with transition temperatures of 4.5 K was reported in the BiS₂-based compound Bi₄O₄S₃ (Singh et al., 2012). Soon after, LnO₁- $_{r}F_{r}BiS_{2}$ (*Ln* = La, Ce, Pr and Nd), were reported to be superconducting with transition temperatures T_c of 3–10.6 K (Nagao et al., 2013; Demura et al., 2013). The mother BiS₂based layered compound $AeFBiS_2$ (Ae = Ca, Sr or Ba; Lei et al., 2013; Han et al., 2008) is isostructural to LnOBiS₂, with the $[Ln_2O_2]^{2-}$ layer being replaced by an isocharged [Sr₂F₂]²⁻ block. The parent phase of SrFBiS₂ shows semiconducting behavior, but electron-doped Sr_{0.5}La_{0.5}FBiS₂ has a superconducting transition of 2.8 K (Lin et al., 2013). Herein the synthesis, structure and magnetic properties of LaCa_{0.143 (4)}O_{0.857 (4)}F_{0.143 (4)}Bi_{0.857 (4)}S₂ are reported.

2. Structural commentary

We attempted to prepare the Ca and F double-doped compound $La_{1-x}Ca_xO_{1-2x}F_{2x}BiS_2$, but the results indicate the single-crystal composition is $LaCa_{0.143} {}_{(4)}O_{0.857} {}_{(4)}F_{0.143} {}_{(4)}Bi_{0.857} {}_{(4)}S_2$. An SEM image shows thick plate-shaped crystals of $LaCa_{0.143} {}_{(4)}O_{0.857} {}_{(4)}F_{0.143} {}_{(4)}Bi_{0.857} {}_{(4)}S_2$ (Fig. 1). $LaO_{1-x}F_{x}$ -BiS₂ crystals usually show a thin-sheet shape (Fig. 2). From the EDXS analysis, we obtained the elemental components of La, Ca, Bi, S, F and O. The final composition was obtained by structure refinement (details can be seen in the *Refinement* section).

research communications

Figure 1 SEM image of LaCa_{0.143} (4)O_{0.857} (4)F_{0.143} (4)Bi_{0.857} (4)S₂.

The structure of LaCa_{0.143 (4)}O_{0.857 (4)}F_{0.143 (4)}Bi_{0.857 (4)}S₂, shown in Fig. 3, is composed of a stacking of [(O,F)₂La₂] layers and double $[(Bi,Ca)S_2]$ layers as in LaO_{1-x}F_xBiS₂. The double $[(Bi,Ca)S_2]$ layers show Bi1/Ca1-S2 distances of 2.8672 (6) Å representing equatorial bonds and Bi1/Ca1-S1 distances of 2.530 (3) Å representing axial bonds; these are a little shorter than the Bi1-S1 distance of 2.87476 (15) and Bi1-S2 distance of 2.530 (6) Å in $LaO_{1-x}F_xBiS_2$. The [(O,F)₂La₂] layers exhibit O1/F1-La1 bond lengths of 2.4414 (6) Å and La1-O1/F1-La1 bond angles of 108.08 (2) and 112.29 (4)°, which are close to the La-O/F bond length of 2.4402 (8) Å and La1-O1/F1-La1 bond angles of 107.82(3) and 112.82 (6)° in LaO_{1-x} F_x BiS₂. The ionic radius of Ca²⁺ is 114 pm which is a little shorter than that of 117.2/117 pm for La³⁺/Bi³⁺. The distinct reduced Bi1/Ca1-S2 distances in the title compound reflect the fact that Ca substitutes Bi sites rather than La sites.

3. Magnetic property measurements

The magnetization versus temperature under a 1 T field for the title compound is given in Fig. 4. Magnetization versus magnetic field is given in Fig. 5 for fields ranging from -5 to 5 T at 2 K and 300 K. The magnetic properties indicate weak ferromagnetism at 2 K and a very low magnetization at 300 K. The superconducting transition is not observed in the measured temperature range. This might be related to the Ca substitution of the Bi site in the title compound. For superconducting $LaO_{1-x}F_xBiS_2$ crystals, the density of states at the Fermi level is mainly directed by the Bi p orbital. [BiS₂] layers play a vital role in the transport and superconducting properties. The Ca substitution of the Bi site leads to a hole doping which changed the electronic band structure and density of state of $LaO_{1-x}F_xBiS_2$. Another reason might be the reduced F content in LaCa_{0.143 (4)}O_{0.857 (4)}F_{0.143 (4)}Bi_{0.857 (4)}S₂ compared with $LaO_{1-x}F_xBiS_2$.

4. Database survey

 $LnO_{1-x}F_xBiS_2$ (Ln = La, Ce, Pr and Nd) compounds were reported by Nagao *et al.* (2013) and Demura *et al.* (2013).

Crystal structure of $LaCa_{0.143}(_4)O_{0.857}(_4)F_{0.143}(_4)Bi_{0.857}(_4)S_2$, showing $[(O,F)_2La_2]$ layers and double $[BiS_2]$ layers (O/F in red, La in blue, Bi/Ca in pink and S in yellow; 50% probability ellipsoids).

Magnetic moment versus temperature for $LaCa_{0.143} {}_{(4)}O_{0.857} {}_{(4)}F_{0.143} {}_{(4)}$ -Bi_{0.857} ${}_{(4)}S_2$ under a 1 T field.

 $AeFBiS_2$ (Ae = Ca, Sr, Ba) (Lei *et al.*, 2013; Han *et al.*, 2008) are isostructural to $LnOBiS_2$. The doped $Sr_{0.5}La_{0.5}FBiS_2$ (Lin *et al.*, 2013) is isostructural to $AeFBiS_2$.

5. Synthesis and crystallization

LaCa_{0.143} (4)O_{0.857} (4)F_{0.143} (4)Bi_{0.857} (4)S₂ was prepared using of Bi₂O₃, CaF₂, La₂S₃, Bi₂S₃ and Bi raw materials. The mixtures with a nominal composition of La_{0.85}Ca_{0.15}O_{0.70}F_{0.30}BiS₂ were ground, pressed into pellets, sealed in an evacuated quartz tube, and heated at 1073 K for 3 d. High-quality single crystals were grown by using KI as the flux. Nominal La_{0.85}Ca_{0.15}O_{0.70}F_{0.30}BiS₂ and KI in the molar ratio of 1:3 were

Figure 5

Magnetic moment versus field for LaCa_{0.143~(4)}O_{0.857~(4)}F_{0.143~(4)}Bi_{0.857~(4)}S_2 from -5~T to 5~T at 2~K and 300 K.

Experimental details.	
Crystal data	
Chemical formula	LaCa _{0.143 (4)} O _{0.857 (4)} F _{0.143 (4)} Bi _{0.857 (4)} S ₂
M _r	404.26
Crystal system, space group	Tetragonal, P4/nmm
Temperature (K)	300
a, c (Å)	4.0548 (9), 13.370 (3)
$V(Å^3)$	219.82 (11)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	44.78
Crystal size (mm)	$0.05 \times 0.05 \times 0.02$
Data collection	
Diffractometer	Bruker D8 Quest
Absorption correction	Multi-scan (SADABS; Bruker, 2001)
T_{\min}, \bar{T}_{\max}	0.154, 0.511
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	3493, 191, 190
R _{int}	0.046
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.648
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.052, 1.31
No. of reflections	191
No. of parameters	17
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} \ { m \AA}^{-3})$	1.48, -1.53

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS* (Sheldrick, 2008), *SHELXL2014* (Sheldrick 2015), *DIAMOND* (Brandenburg, 2004) and *publCIF* (Westrip, 2010).

mixed and placed in a quartz tube, which was sealed and heated to 1273 K and kept at this temperature for 1 d, then cooled to room temperature in 10 d. The product was washed with distilled water and acetone, then dried at 353 K for 12 h; finally black plate-shaped crystals were obtained.

The morphology and element compositions were investigated by a scanning electronic microscope equipped with an energy dispersive X-ray spectroscopy (EDXS, Oxford Instruments). The EDXS shows the atom % ratio for S:Ca:La:Bi to be 48.23: 6.94: 24.36: 20.48. O and F could not be determined precisely. Magnetic properties were measured on a multifunctional physical properties measurement system (PPMS, Quantum Design).

6. Refinement

Table 1

Crystal data, data collection and structure refinement details are summarized in Table 1. The La, Bi, S and O atoms were located in difference maps and their positions were freely refined. Ca was assumed at La sites at first, but the refinement show no reducing occupancy of La. The partial occupancy of Bi indicates a mixed occupancy with Ca. Ca and Bi were refined together later. EDXS measurements could not determine occupancies of O and F precisely. If the occupancies of F and O are refined together, the obtained composition is $La_2Bi_{1.859}$ (4)Ca_{0.141} (4)O_{0.48} (14)F_{0.52} (14)S₄ with high standard errors for O and F. In order to keep charge neutrality, the occupancy of F was fixed to be the same as Ca so the final composition of LaCa_{0.143} (4)O_{0.857} (4)F_{0.143} (4)Bi_{0.857} (4)S₂ was obtained.

Acknowledgements

This work was supported financially by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant No. XDB04040200).

References

- Brandenburg, K. (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, X. H., Wu, T., Wu, G., Liu, R. H., Chen, H. & Fang, D. F. (2008). *Nature*, **453**, 761–762.
- Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H. & Takano, Y. (2013). J. Phys. Soc. Jpn, 82, 033708.

- Fang, A. H., Huang, F. Q., Xie, X. M. & Jiang, M. H. (2010). J. Am. Chem. Soc. 132, 3260–3261.
- Han, F., Zhu, X., Mu, G., Cheng, P. & Wen, H. H. (2008). *Phys. Rev. B*, **78**, 180503(R).
- Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. (2008). J. Am. Chem. Soc. 130, 3296–3297.
- Lei, H. C., Wang, K. F., Abeykoon, M., Bozin, E. S. & Petrovic, C. (2013). *Inorg. Chem.* 52, 10685–10689.
- Lin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G. & Xu, Z. (2013). *Phys. Rev. B*, 87 020504(R).
- Nagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N. & Tanaka, I. (2013). J. Phys. Soc. Jpn, 82, 113701.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, S. K., Kumar, A., Gahtori, B., Sharma, G., Patnaik, S. & Awana, V. P. S. (2012). J. Am. Chem. Soc. 134, 16504–16507.
- Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y. & Yazdani, A. (2004). Science, 303, 1995–1998.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2016). E72, 845-848 [https://doi.org/10.1107/S2056989016008082]

Crystal structure and magnetic properties of LaCa_{0.143} (4)O_{0.857} (4)F_{0.143} (4)Bi_{0.857} $(4)S_2$

Rongtie Huang, Hui Zhang, Dong Wang, Chuanbing Cai and Fuqiang Huang

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick 2015); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Lanthanum calcium bismuth oxide fluoride disulfide

Crystal data

Bi_{0.857}Ca_{0.143}F_{0.143}LaO_{0.857}S₂ $M_r = 404.26$ Mo *Ka* radiation. $\lambda = 0.71073$ Å Tetragonal, P4/nmm Cell parameters from 189 reflections a = 4.0548 (9) Å $\theta = 4.6 - 27.4^{\circ}$ c = 13.370(3) Å $\mu = 44.78 \text{ mm}^{-1}$ $V = 219.82 (11) \text{ Å}^3$ T = 300 KZ = 2Block, blue F(000) = 342.3 $0.05 \times 0.05 \times 0.02 \text{ mm}$ Data collection Bruker D8 Quest 190 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.046$ $\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 4.6^{\circ}$ Radiation source: fine-focus sealed tube Profile fitted $2\theta/\omega$ scans (Clegg, 1981) $h = -5 \rightarrow 5$ Absorption correction: multi-scan $k = -5 \rightarrow 4$ (SADABS; Bruker, 2001) $l = -17 \rightarrow 17$ $T_{\min} = 0.154, \ T_{\max} = 0.511$ 3493 measured reflections intensity decay: none 191 independent reflections Refinement Refinement on F^2 where $P = (F_o^2 + 2F_c^2)/3$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $(\Delta/\sigma)_{\rm max} < 0.001$ $wR(F^2) = 0.052$ $\Delta \rho_{\rm max} = 1.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.53 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.31191 reflections Extinction correction: SHELXL2014 17 parameters (Sheldrick, 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ 0 restraints Primary atom site location: difference Fourier Extinction coefficient: 0.033 (3) map

 $D_{\rm x} = 6.108 {\rm Mg} {\rm m}^{-3}$

3 standard reflections every 90 reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0318P)^2 + 0.5025P]$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Lal	0.7500	0.7500	0.89827 (6)	0.0127 (3)	
Ca1	0.2500	0.2500	0.62178 (4)	0.0126 (3)	0.143 (4)
Bi1	0.2500	0.2500	0.62178 (4)	0.0126 (3)	0.857 (4)
F1	0.7500	0.2500	1.0000	0.0079 (14)	0.143 (4)
01	0.7500	0.2500	1.0000	0.0079 (14)	0.857 (4)
S1	0.2500	0.2500	0.8110 (2)	0.0104 (6)	
S2	0.7500	0.7500	0.6221 (3)	0.0236 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lal	0.0115 (4)	0.0115 (4)	0.0151 (5)	0.000	0.000	0.000
Cal	0.0146 (3)	0.0146 (3)	0.0087 (3)	0.000	0.000	0.000
Bi1	0.0146 (3)	0.0146 (3)	0.0087 (3)	0.000	0.000	0.000
F1	0.0087 (18)	0.0087 (18)	0.006 (3)	0.000	0.000	0.000
01	0.0087 (18)	0.0087 (18)	0.006 (3)	0.000	0.000	0.000
S1	0.0101 (7)	0.0101 (7)	0.0109 (12)	0.000	0.000	0.000
S2	0.0200 (10)	0.0200 (10)	0.0306 (18)	0.000	0.000	0.000

Geometric parameters (Å, °)

La1—O1 ⁱ	2.4414 (6)	Cal—Cal ^v	4.0548 (9)
La1—O1 ⁱⁱ	2.4414 (6)	Ca1—Ca1 ^{viii}	4.0548 (9)
La1—F1 ⁱ	2.4414 (6)	Ca1—Bi1 ⁱⁱ	4.0548 (9)
La1—F1 ⁱⁱ	2.4414 (6)	Ca1—Bi1 ^{viii}	4.0548 (9)
La1—F1	2.4414 (6)	F1—La1 ⁱ	2.4414 (6)
La1—O1 ⁱⁱⁱ	2.4414 (6)	F1—La1 ^{viii}	2.4414 (6)
La1—O1	2.4414 (6)	F1—La1 ⁱⁱⁱ	2.4414 (6)
La1—F1 ⁱⁱⁱ	2.4414 (6)	O1—La1 ⁱ	2.4414 (6)
La1—S1	3.0954 (13)	O1—La1 ^{viii}	2.4414 (6)
La1—S1 ^{iv}	3.0954 (13)	O1—La1 ⁱⁱⁱ	2.4414 (6)
La1—S1 ⁱⁱ	3.0954 (13)	S1—La1 ^{vi}	3.0954 (13)
La1—S1 ^v	3.0954 (13)	S1—La1 ^{vii}	3.0954 (13)
Ca1—S1	2.530 (3)	S1—La1 ^{viii}	3.0954 (13)
Ca1—S2	2.8672 (6)	S2—Bi1 ^{iv}	2.8672 (6)
Ca1—S2 ^{vi}	2.8672 (6)	S2—Ca1 ^{iv}	2.8672 (6)
Ca1—S2 ^{vii}	2.8672 (6)	S2—Ca1 ^v	2.8672 (6)
Ca1—S2 ^{viii}	2.8672 (6)	S2—Ca1 ⁱⁱ	2.8672 (6)
Ca1—S2 ^{ix}	3.261 (4)	S2—Bi1 ⁱⁱ	2.8672 (6)

Ca1—Ca1 ⁱⁱ	4.0548 (9)	S2—Bi1 ^v	2.8672 (6)
Ca1—Ca1 ^{vii}	4.0548 (9)	S2—Ca1 ^{ix}	3.261 (4)
O1 ⁱ —La1—O1 ⁱⁱ	71,917 (18)	S2 ^{viii} —Ca1—Ca1 ^{vii}	135.0
$O1^{i}$ —La1—F1 ⁱ	0.0	S2 ^{ix} —Ca1—Ca1 ^{vii}	90.0
$O1^{ii}$ —La1—F1 ⁱ	71.917 (18)	Ca1 ⁱⁱ —Ca1—Ca1 ^{vii}	90.0
$O1^{i}$ La1 $-F1^{i}$	71 917 (18)	S1—Ca1—Ca1 ^v	90.0
$O1^{ii}$ $Ia1$ $F1^{ii}$	0.0	S^2 —Ca1—Ca1 ^v	45.0
$F1^{i}$ $I = 1 = F1^{ii}$	71 917 (18)	$S2^{vi}$ Cal Cal	135.0
Ω^{i} I al F1	71.917 (18)	$S2^{\text{vii}}$ Cal Cal	135.0
O1 ⁱⁱ La1 F1	112 20 (4)	S2 Cul Cul	45.0
$F1^i$ $F1^i$ $F1$	71 017 (18)	S^{2ix} Cal Cal	45.0
$\Gamma_1 = La_1 = \Gamma_1$ $\Gamma_1 = La_1 = \Gamma_1$	(1.917 (10))	$S_2 = Ca1 = Ca1$	90.0
$\Gamma I - LaI - \Gamma I$	112.29 (4)	Cal - Cal - Cal	90.0
OI - LaI - OI	112.29 (4) 71.017 (19)		180.0
$OI^{}LaI^{}OI^{}$	/1.91/(18)	S1 - Ca1 - Ca1	90.0
	112.29 (4)		135.0
FI"—Lal—OI	71.917 (18)	S2 ^{vi} —Ca1—Ca1 ^{viii}	45.0
F1—La1—O1 ^m	71.917 (18)	S2 ^{vn} —Ca1—Ca1 ^{vm}	135.0
Ol ¹ —Lal—Ol	71.917 (18)	$S2^{vin}$ —Ca1—Ca1 vin	45.0
Ol ^u —Lal—Ol	112.29 (4)	$S2^{ix}$ —Ca1—Ca1 ^{vm}	90.0
F1 ⁱ —La1—O1	71.917 (18)	Ca1 ⁱⁱ —Ca1—Ca1 ^{viii}	180.0
F1 ⁱⁱ —La1—O1	112.29 (4)	Ca1 ^{vii} —Ca1—Ca1 ^{viii}	90.0
F1—La1—O1	0.0	Ca1v—Ca1—Ca1viii	90.0
O1 ⁱⁱⁱ —La1—O1	71.917 (18)	S1—Ca1—Bi1 ⁱⁱ	90.0
O1 ⁱ —La1—F1 ⁱⁱⁱ	112.29 (4)	S2—Ca1—Bi1 ⁱⁱ	45.0
O1 ⁱⁱ —La1—F1 ⁱⁱⁱ	71.917 (18)	S2 ^{vi} —Ca1—Bi1 ⁱⁱ	135.0
F1 ⁱ —La1—F1 ⁱⁱⁱ	112.29 (4)	S2 ^{vii} —Ca1—Bi1 ⁱⁱ	45.0
F1 ⁱⁱ —La1—F1 ⁱⁱⁱ	71.917 (18)	S2 ^{viii} —Ca1—Bi1 ⁱⁱ	135.0
F1—La1—F1 ⁱⁱⁱ	71.917 (18)	S2 ^{ix} —Ca1—Bi1 ⁱⁱ	90.0
O1 ⁱⁱⁱ —La1—F1 ⁱⁱⁱ	0.0	Ca1 ⁱⁱ —Ca1—Bi1 ⁱⁱ	0.000 (15)
O1-La1-F1 ⁱⁱⁱ	71.917 (18)	Ca1 ^{vii} —Ca1—Bi1 ⁱⁱ	90.0
O1 ⁱ —La1—S1	138.93 (2)	Ca1v—Ca1—Bi1 ⁱⁱ	90.0
O1 ⁱⁱ —La1—S1	138.93 (3)	Ca1 ^{viii} —Ca1—Bi1 ⁱⁱ	180.0
F1 ⁱ —La1—S1	138.93 (2)	S1—Ca1—Bi1 ^{viii}	90.0
F1 ⁱⁱ —La1—S1	138.93 (3)	S2—Ca1—Bi1 ^{viii}	135.0
F1—La1—S1	70.49 (4)	S2 ^{vi} —Ca1—Bi1 ^{viii}	45.0
$O1^{iii}$ —La1—S1	70.49 (4)	$S2^{vii}$ —Ca1—Bi1 ^{viii}	135.0
01 - La1 - S1	70.49 (4)	$S2^{\text{viii}}$ Cal Bil	45.0
$F1^{iii}$ _I $a1$ _S1	70.49(4)	$S2^{ix}$ Cal Bil	90.0
Ω^{1i} I a 1 S1	70.49(4)	$Ca1^{ii}$ —Ca1—Bi1 ^{viii}	180.0
$O1^{ii}$ I_{21} $S1^{iv}$	70.49(4)	Cal^{vii} $Cal Bil^{viii}$	90.0
$F1^{i}$ La1 $S1^{iv}$	70.49 (4)	$Cal^{v} = Cal = Bil^{viii}$	90.0
F1 - La1 - 51 F1ii $La1 - 51iv$	70.49 (4)	Ca1 - Ca1 - B11	90.0
F1 La1 S1	128 02 (2)	$\begin{array}{ccc} Ca_{1} & -Ca_{1} & -Di_{1} \\ Bi_{1}^{ii} & Ca_{1} & Bi_{1}^{iii} \end{array}$	180.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.02 (2)	$DII = CaI = DII^{\dagger}$	100.0
O1 - La1 - S1	130.93 (2)	$La1 - \Gamma I - La1 =$	108.082 (18)
$\Box_{\text{Lal}} = \Box_{\text{liv}}$	130.93(3)	$La1 - \Gamma I - La1 $	112.29 (4)
$\Gamma I^{}$ LaI-SI"	138.93 (2)	La1 ^{····} — $r1$ — $La1$ ^{····}	108.082 (18)
SI-LaI-SI''	135.72(11)	Lai'—Fi—Lai	108.082 (18)

O1 ⁱ —La1—S1 ⁱⁱ	138.93 (3)	La1 ^{viii} —F1—La1	112.29 (4)
O1 ⁱⁱ —La1—S1 ⁱⁱ	70.49 (4)	La1 ⁱⁱⁱ —F1—La1	108.082 (18)
F1 ⁱ —La1—S1 ⁱⁱ	138.93 (3)	La1 ⁱ —O1—La1 ^{viii}	108.082 (18)
F1 ⁱⁱ —La1—S1 ⁱⁱ	70.49 (4)	La1 ⁱ —O1—La1 ⁱⁱⁱ	112.29 (4)
F1—La1—S1 ⁱⁱ	138.93 (3)	La1 ^{viii} —O1—La1 ⁱⁱⁱ	108.082 (18)
O1 ⁱⁱⁱ —La1—S1 ⁱⁱ	70.49 (4)	La1 ⁱ —O1—La1	108.082 (18)
O1—La1—S1 ⁱⁱ	138.93 (3)	La1 ^{viii} —O1—La1	112.29 (4)
F1 ⁱⁱⁱ —La1—S1 ⁱⁱ	70.49 (4)	La1 ⁱⁱⁱ —O1—La1	108.082 (18)
S1—La1—S1 ⁱⁱ	81.84 (4)	Cal—S1—La1	112.14 (5)
S1 ^{iv} —La1—S1 ⁱⁱ	81.84 (4)	Ca1—S1—La1 ^{vi}	112.14 (5)
O1 ⁱ —La1—S1 ^v	70.49 (4)	La1—S1—La1 ^{vi}	135.72 (11)
O1 ⁱⁱ —La1—S1 ^v	138.93 (3)	Ca1—S1—La1 ^{vii}	112.14 (5)
F1 ⁱ —La1—S1 ^v	70.49 (4)	La1—S1—La1 ^{vii}	81.84 (4)
F1 ⁱⁱ —La1—S1 ^v	138.93 (3)	La1 ^{vi} —S1—La1 ^{vii}	81.84 (4)
F1—La1—S1 ^v	70.49 (4)	Ca1—S1—La1 ^{viii}	112.14 (5)
O1 ⁱⁱⁱ —La1—S1 ^v	138.93 (3)	La1—S1—La1 ^{viii}	81.84 (4)
O1—La1—S1 ^v	70.49 (4)	La1 ^{vi} —S1—La1 ^{viii}	81.84 (4)
F1 ⁱⁱⁱ —La1—S1 ^v	138.93 (3)	La1 ^{vii} —S1—La1 ^{viii}	135.72 (11)
S1—La1—S1 ^v	81.84 (4)	Ca1—S2—Bi1 ^{iv}	179.8
S1 ^{iv} —La1—S1 ^v	81.84 (4)	Ca1—S2—Ca1 ^{iv}	179.82 (17)
S1 ⁱⁱ —La1—S1 ^v	135.72 (11)	Bi1 ^{iv} —S2—Ca1 ^{iv}	0.0
S1—Ca1—S2	89.91 (9)	Ca1—S2—Ca1 ^v	90.0
S1—Ca1—S2 ^{vi}	89.91 (9)	Bi1 ^{iv} —S2—Ca1 ^v	90.0
S2—Ca1—S2 ^{vi}	179.82 (17)	Ca1 ^{iv} —S2—Ca1 ^v	90.0
S1—Ca1—S2 ^{vii}	89.91 (9)	Ca1—S2—Ca1 ⁱⁱ	90.0
S2—Ca1—S2 ^{vii}	90.000 (1)	Bi1 ^{iv} —S2—Ca1 ⁱⁱ	90.0
S2 ^{vi} —Ca1—S2 ^{vii}	90.000 (1)	Ca1 ^{iv} —S2—Ca1 ⁱⁱ	90.0
S1—Ca1—S2 ^{viii}	89.91 (9)	Ca1 ^v —S2—Ca1 ⁱⁱ	179.82 (17)
S2—Ca1—S2 ^{viii}	90.000 (1)	Ca1—S2—Bi1 ⁱⁱ	90.0
S2 ^{vi} —Ca1—S2 ^{viii}	90.0	Bi1 ^{iv} —S2—Bi1 ⁱⁱ	90.0
S2 ^{vii} —Ca1—S2 ^{viii}	179.82 (17)	Ca1 ^{iv} —S2—Bi1 ⁱⁱ	90.0
S1—Ca1—S2 ^{ix}	180.0	Ca1 ^v —S2—Bi1 ⁱⁱ	179.82 (17)
S2—Ca1—S2 ^{ix}	90.09 (9)	Ca1 ⁱⁱ —S2—Bi1 ⁱⁱ	0.00(2)
S2 ^{vi} —Ca1—S2 ^{ix}	90.09 (9)	Ca1—S2—Bi1 ^v	90.0
S2 ^{vii} —Ca1—S2 ^{ix}	90.09 (9)	$Bi1^{iv}$ — $S2$ — $Bi1^{v}$	90.0
S2 ^{viii} —Ca1—S2 ^{ix}	90.09 (9)	Ca1 ^{iv} —S2—Bi1 ^v	90.0
S1—Ca1—Ca1 ⁱⁱ	90.0	Ca1 ^v —S2—Bi1 ^v	0.00 (2)
S2—Ca1—Ca1 ⁱⁱ	45.0	Ca1 ⁱⁱ —S2—Bi1 ^v	179.82 (17)
S2 ^{vi} —Ca1—Ca1 ⁱⁱ	135.0	Bi1 ⁱⁱ —S2—Bi1 ^v	179.82 (17)
S2 ^{vii} —Ca1—Ca1 ⁱⁱ	45.0	Ca1—S2—Ca1 ^{ix}	89.91 (9)
S2 ^{viii} —Ca1—Ca1 ⁱⁱ	135.0	Bi1 ^{iv} —S2—Ca1 ^{ix}	89.9
S2 ^{ix} —Ca1—Ca1 ⁱⁱ	90.0	$Ca1^{iv}$ — $S2$ — $Ca1^{ix}$	89.91 (9)
S1—Ca1—Ca1 ^{vii}	90.0	Ca1 ^v —S2—Ca1 ^{ix}	89.91 (9)
S2—Ca1—Ca1 ^{vii}	135.0	Ca1 ⁱⁱ —S2—Ca1 ^{ix}	89.91 (9)

S2 ^{vi} —Ca1—Ca1 ^{vii}	45.0	Bi1 ⁱⁱ —S2—Ca1 ^{ix}	89.9
S2 ^{vii} —Ca1—Ca1 ^{vii}	45.0	Bi1 ^v —S2—Ca1 ^{ix}	89.9

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) *x*+1, *y*+1, *z*; (v) *x*+1, *y*, *z*; (vi) *x*-1, *y*-1, *z*; (vii) *x*-1, *y*, *z*; (viii) *x*, *y*-1, *z*; (ix) -*x*+1, -*y*+1, -*z*+1.