

Received 24 April 2016 Accepted 8 June 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; silicon; phthalocyanine; phenol; phenoxy; phenoxylation; interactions; halogen; bonds.

CCDC references: 1484189; 1484188; 1484187

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of bis(phenoxy)silicon phthalocyanines: increasing π - π interactions, solubility and disorder and no halogen bonding observed

Benoît H. Lessard,^{a,b} Alan J. Lough^c and Timothy P. Bender^{a,d,c*}

^aUniversity of Toronto, Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario, M5S 3E5, Canada, ^bUniversity of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada, ^cUniversity of Toronto, Department of Chemistry, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada, and ^dUniversity of Toronto, Department of Materials Science and Engineering, 200 College Street, Toronto, Ontario, M5S 3E5, Canada. *Correspondence e-mail: tim.bender@utoronto.ca

We report the syntheses and characterization of three solution-processable phenoxy silicon phthalocyanines (SiPcs), namely bis(3-methylphenoxy)-(phthalocyanine)silicon [(3MP)2-SiPc], C46H30N8O2Si, bis(2-sec-butylphenoxy)(phthalocyanine)silicon [(2secBP)₂-SiPc], C₄₄H₂₄I₂N₈O₂Si, and bis(3-iodophenoxy)(phthalocyanine)silicon [(3IP)₂-SiPc], C₅₂H₄₂N₈O₂Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π - π interactions between the aromatic SiPc cores were studied. It was determined that (3MP)₂-SiPc has similar interactions to previously reported bis(3,4,5-trifluorophenoxy)silicon phthalocyanines [(345 F)₂-SiPc] with significant π - π interactions between the SiPc groups. (3IP)₂-SiPc and (2secBP)₂-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these molecules was increased by the addition of phenoxy groups while maintaining π - π interactions between the aromatic SiPc groups. The solubility of $(2secBP)_2$ -SiPc was significantly higher than other bisphenoxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure.

1. Chemical Context

Organic photovoltaic (OPV) devices represent an emerging technology with immense potential for inexpensive solar energy generation. The majority of these prototypes depend on fullerenes as acceptor molecules that are problematic due to their high manufacturing cost, low photovoltage generation and poor photochemical stability (Li *et al.*, 2014; Eftaiha *et al.*, 2014). Recently, examples have emerged where fullerene-free materials are being implemented into OPV devices reaching overall efficiencies of 5–7% (Li *et al.*, 2014; Eftaiha *et al.*, 2014; Cnops *et al.*, 2014; Zhang *et al.*, 2013). Among these emerging materials are the family of silicon phthalocyanines (SiPcs).

Metalphthalocyanines (MPcs) are composed of a nitrogenlinked tetrameric diiminoisoindoline conjugated macrocycle that chelate a metal or metalloid through two covalent bonds and two coordination bonds (see Scheme 1). The resulting molecules are highly stable materials that have been used for a variety of applications including dyes and pigments for decades. Silicon phthalocyanines (SiPcs) are characterized by having an additional two axial bonds that are perpendicular to the SiPc macrocycle. These axial groups can serve as chemical handles for the functionalization of the base SiPc molecule. Such functionalizational groups can impart solubility as well as change the solid-state arrangement.

Scheme 1. Chemical structures of the phenoxy silicon phthalocyanines detailed in this study.

Honda *et al.* and our group have studied highly soluble tri-*n*-hexyl-silyl-SiPc $[(3HS)_2$ -SiPc] as ternary additives in bulk heterojunction (BHJ) OPV devices (Lessard *et al.*, 2014; Honda *et al.*, 2011, 2009). Our hypothesis was that the high solubility was also combined with a high tendency to crystal-lize into the solid state with high levels of order. As part of that study, $(3HS)_2$ -SiPc and an analog bis(3-pentadecylphenoxy)-

SiPc [(PDP)2-SiPc] were found to have very few π - π interactions between the aromatic SiPc core due to the large alkyl substituents (Lessard et al., 2014). Our group recently reported that simple phenoxylation chemistry can be employed to enhance the π - π interactions present with the solid-state arrangement of the SiPc molecules, resulting in improved efficiency of planar heterojunction (PHJ) OPV devices (Lessard, White et al., 2015; Lessard, Grant et al., 2015). Our work on boron subphthalocyanines (BsubPcs) has also illustrated that a meta-methyl phenoxy group is a carbonefficient method for significantly increasing the solubility of BsubPcs (Paton et al., 2012), a characteristic that is necessary for solution-processed OPVs and other characterization techniques. In addition, 3-iodo-phenoxy-BsubPc was found to exhibit halogen bonding between the iodo group and the BsubPc macrocycle and therefore resulting in a well-defined solid-state arrangement. The sum of these observations therefore lead our group to focus on the synthesis of soluble solution-processable phenoxy SiPcs that may have varying degrees of carbon-efficient solubilities and tendencies to crystallize with high order into the solid state. We therefore have synthesized three new derivatives: bis(3-methylphen-

Figure 1

(a) Chemical schemes and (b) molecular structures showing 50% probability displacement ellipsoids of (3MP)₂-SiPc (left), (3IP)₂-SiPc (middle) and (2secBP)₂-SiPc (right). H atoms omitted for clarity.

research communications

Figure 2

An optical microscope image of $(3MP)_2$ -SiPc grown by slow diffusion of heptane into THF.

oxy)silicon phthalocyanine [(3MP)₂-SiPc], bis(2-*sec*-butylphenoxy)silicon phthalocyanine [(2*sec*BP)₂-SiPc] and bis(3iodophenoxy)silicon phthalocyanine [(3IP)₂-SiPc] (Fig. 1). We wished to investigate whether a 1- and 4-carbon solubilizing group would both enable solubility and facilitate more π - π interactions between the aromatic SiPc units compared to (3HS)₂-SiPc and also to probe whether halogen bonding would be present in crystals grown of (3IP)₂-SiPc (Virdo *et al.*, 2013).

Single crystals of (3MP)₂-SiPc, (3IP)₂-SiPc and (2*sec*BP)₂-SiPc were grown by slow diffusion of heptane into THF and were characterized by single crystal X-ray diffraction. (3MP)₂-

Figure 3

Hirshfeld surface analysis of $(3MP)_2$ -SiPc mapped with (a) d_{norm} and (b) shape index. Red spots on the d_{norm} surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant π - π interactions between $(3MP)_2$ -SiPc are outlined by the dashed black circle.

Figure 4

Hirshfeld surface analysis of $(2secBP)_2$ -SiPc mapped with (a) d_{norm} and (b) shape index. Red spots on the d_{norm} surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant π - π interactions between $(2secBP)_2$ -SiPc are outlined by the dashed black circle.

SiPc was also grown by slow diffusion of pentane into benzene and evaporation form chloroform, resulting in identical crystals as identified by X-ray crystallography. Fig. 2 is a picture of

Figure 5

Hirshfeld surface analysis of (3IP)₂-SiPc mapped with (a) d_{norm} and (b) shape index. Red spots on the d_{norm} surface indicate contacts at distances closer than the sum of the corresponding van der Waals radii. Significant π - π interactions between (3IP)₂-SiPc are outlined by the dashed black circle.

 Table 1

 Comparison of contacts (Å) less than the sum of the van der Waals radii for various *meta*-functional bis(*meta*-functional phenoxy) silicon phthalocyanines.

Molecule	C(K)-H(L)-H(M)-C(N)	distance	$X \cdots X$
(3MP)2-SiPc	$C4-H4A\cdots O2-Si1$	2.67	H···O
(3MP)2-SiPc	C46-H46B···H11-C11	2.39	$H \cdot \cdot \cdot H$
(3MP)2-SiPc	C39-H39C···H3A-C3	2.34	$H \cdot \cdot \cdot H$
(3MP)2-SiPc	C42-C43···H21A-C21	2.75	$C \cdot \cdot \cdot H$
(3IP)2-SiPc	C4-H1···H11-C21	2.32	$H \cdot \cdot \cdot H$
(2secBP)2-SiPc	$C24-H16\cdots H19-C26$	2.30	$H \cdot \cdot \cdot H$

actual crystals of $(3MP)_2$ -SiPc, roughly 1.5 mm in size, grown by slow evaporation.

2. Structural commentary

Of note at the structural level, when considering the three reported structures, is the relatively higher disorder observed for $(2secBP)_2$ -SiPc in the solid state (as indicted by the size of the ellipsoids, Fig. 1) compared to that of $(3MP)_2$ -SiPc, $(3IP)_2$ -SiPc and other known bis-phenoxy-SiPc structures (Lessard, Grant *et al.*, 2015). This is consistent with the very high solubility observed for $(2secBP)_2$ -SiPc and in contrast to the low disorder observed for the also highly soluble $(3HS)_2$ -SiPc) (Lessard *et al.*, 2014).

3. Supermolecular Features

The crystal structures were studied using Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009). All three crystals were mapped using (a) d_{norm} and (b) shape index in Fig. 3 for $(3MP)_2$ -SiPc, Fig. 4 for $(3IP)_2$ -SiPc and Fig. 5 for $(2secBP)_2$ -SiPc. In all three figures, the regions shaded in red correspond to the contacts at distances shorter than the sum of the van der Waals radii while the white to blue are for the distances longer than the sum of the van der Waals radii. In each crystal, the

close contacts (and their symmetry equivalents) are readily identified on these maps and in all three cases they are different. For example for (3MP)₂-SiPc (Fig. 3) one of the hydrogen atoms (H39C) of the 3-methyl group on the phenoxy group experiences a contact of a distance of 2.341 Å (C39- $H39C \cdots H3A - C3$; Table 1). It is interesting to note that for (3IP)₂-SiPc, the iodo group does not have any significant interactions with adjacent molecules (Fig. 2a). These observations are not consistent with our previous observations for various halo-phenoxy-BsubPcs such as 3-iodo-phenoxy BsubPc (Virdo et al., 2013). The shape index (Fig. 3b, 4b, 5b) is based on the two local principal curvatures of the HS, with concave regions shaded in red and convex regions shaded in blue (Spackman & Jayatilaka, 2009). Again, these plots illustrate the difference in the solid-state arrangement between all three molecules (Fig. 3b, 4b, 5b). Unfortunately, similarly to previously reported carbazole derivatives (Rozycka-Sokolowska et al., 2015), these plots do not generate further insight into the π - π interactions between molecules due to their relatively large distances of 3.5-4.0 Å.

Being interested in the stacking between aromatic macrocycles, we previously established (Lessard, Grant et al., 2015) criteria to compare the π - π interactions between neighboring Pc molecules for single crystals of SiPcs. Following these established criteria, the π - π interactions of (3MP)₂-SiPc were identified and compared to previously published phenoxy SiPcs (Table 2). Fig. 6a illustrates the packing of (3MP)₂-SiPc crystals which is very similar to the packing of previously reported bis(3,4,5-trifluorophenoxy) SiPc [(345F)₂-SiPc; Lessard, Grant et al., 2015]. For example, both molecules experience a complete isoindoline stacking where the shortest molecular distances between isoindoline groups of (3MP)₂-SiPc and (345FP)₂-SiPc were determined to be 3.655 and 3.580 Å, respectively. In addition, the $(3MP)_2$ -SiPc exhibits a slip angle of $22.33/22.53^{\circ}$ with a slight offset of 0.21° between the aromatic planes while (345F)₂-SiPc has a less significant slip angle of 18.90° and exactly parallel (0° between planes) interacting isoindoline groups (Fig. 6b).

Figure 6

Part of the crystal structure of (a) $(3MP)_2$ -SiPc, (b) $(3IP)_2$ -SiPc and (c) $(2secBP)_2$ -SiPc. The dotted green lines represent significant π - π interactions with a centroid–centroid distance < 4.0 Å. Details on the π - π interactions are tabulated in Table 3.

Table 2

Summary of single-crystal X-ray diffraction data (Å, $^{\circ}$).

Slip angle between Pc aromatic = angle between centroid-to-centroid and normal of each aromatic Pc benzene; angle between aromatic planes = smallest angle between both planes that contain the stacking aromatic benzene rings.

Compound	details of packing	shortest distance between <i>Pc</i> aromatic	slip angle between <i>Pc</i> aromatic	angle between aromatic planes	Reference
Cl ₂ -SiPc	dual benzene ring stacking	4.172, 4.172	34.87 / 36.59	1.72	Lessard, White et al. (2015)
(3MP) ₂ -SiPc	isoindoline stacking	3.794, 3.655, 3.794	22.33 / 22.53	0.21	This work
(345F) ₂ -SiPc	isoindoline stacking	3.716, 3.580, 3.716	18.90 / 18.90	0	Lessard, Grant et al., (2015)
(246F) ₂ -SiPc	dual benzene ring stacking	3.860, 3.860	30.08 / 30.08	0	Lessard, Grant et al. (2015)
(3IP) ₂ -SiPc	dual benzene ring stacking	3.716, 3.716	17.55/14.60	10.9	This work
(2secBP) ₂ -SiPc	dual benzene ring stacking	3.947, 3.947	32.53/26.02	6.5	This work

Notes: in all cases the single crystals were grown by slow diffusion of heptane into a THF solution of the respective compound. Identical crystals of (3MP)₂-SiPc were also grown by diffusion of pentane into a solution of benzene as well as from slow evaporation of a chloroform solution.

These results indicate that (3MP)₂-SiPc has similar interactions to (345F)₂-SiPc, which represents significant increases in π - π interaction between SiPc groups compared to the starting Cl₂-SiPc molecule. (3IP)₂-SiPc and (2secBP)₂-SiPc on the other hand exhibit a parallel stacking of two of the peripheral aromatic groups. Of the SiPcs similar to (35F)₂-SiPc and (246F)2-SiPc (Lessard, White et al., 2015; Lessard, Grant et al., 2015), for example, (3IP)₂-SiPc experienced a similar stacking to (246F)₂-SiPc (Lessard, Grant et al., 2015), both having a parallel stacking of two of the peripheral aromatic units of the SiPc chromophore, with very similar inter-ring distances of 3.716 and 3.860 Å, respectively, suggesting similar strength in π - π interactions between neighboring molecules for both (3IP)₂-SiPc and (246F)₂-SiPc (Fig. 6, Table 2). (3IP)₂-SiPc has a slip angle of 17.55/14.60° with 10.99° between the aromatic planes while (246F)₂-SiPc has a more significant slip angle of 30.08° and completely parallel (0° between planes) and interacting aromatic groups (Fig. 6, Table 2). (2secBP)₂-SiPc has a unique two-dimensional stacking where two peripheral aromatic groups will stack with an adjacent SiPc molecule and one of the same peripheral aromatic groups along with a third one will stack in a similar fashion but at 90° from the first interaction (Fig. 6c, Table 2). In both cases a relatively large inter-ring distance of 3.947 Å was observed, suggesting a weak π - π interactions between neighboring (2secBP)₂-SiPcs (Fig. 6, Table 2). This weak interaction is not a surprise due to the additional solubilizing groups (sec-butyl) which space out the molecules and increase the size of the unit cell.

4. Synthesis and crystallization

Materials

m-Cresol (>98%) 2-*sec*-butylphenol (98%) and 3-iodophenol (98%) were obtained from Sigma–Aldrich and chlorobenzene (99.5%) and chloroform (CHCl₃, 99.8%) were obtained from Caledon Laboratories Ltd. All chemicals were used as received unless otherwise specified. Dichloro silicon phthalocyanine (Cl₂-SiPc) was synthesized according to the literature (Lowery *et al.* 1965).

Synthesis of silicon phthalocyanine derivatives

The synthesis of (3MP)₂-SiPc, (3IP)₂-SiPcs and (2secBP)₂-SiPcs were performed following the general procedure used to synthesize F₁₀-SiPc (Lessard, White, et al. 2015). For example, the synthesis of (3MP)₂-SiPc was performed in a roundbottom flask equipped with a condenser and nitrogen purge, which was filled with a 10:1 molar excess of m-cresol (2.3g, 21 mol) to Cl₂-SiPc (1.3g, 2.1 mol) in chlorobenzene (100 ml). The mixture was stirred and heated to 388 K overnight and cooled to room temperature. The product was then obtained by precipitation into isopropanol and filtered. The product was then dried in a vacuum oven overnight. Yield: 1.3g (80.2 mol%). DART Mass spectroscopy: calculated mass: 755.234, obtained mass: 755.236. (3IP)₂-SiPcs and (2secBP)₂-SiPcs were synthesized under similar conditions and crystals were again obtained by slow diffusion of heptane into a THF solution.

5. Refinement

Crystal data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions C-H = 0.94–0.98 Å and included in a riding-motion approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

In (3MP)₂-Si there appears to be pseudosymmetry with an approximate centre of symmetry. The *c*-glide reflections are weak but present and the $P2_1/c$ structure refines only to *ca* R1 = 10% compared to 4.4% for the $P2_1$ structure. The crystal is an inversion twin with a ratio of components of 0.51 (4):0.49 (4).

During the refinement of $(2secBP)_2$ -SiPc, electron density peaks were located that were believed to be highly disordered solvent molecules (possibly pentane/dichloromethane). Attempts made to model the solvent molecule were not successful. The SQUEEZE option (Spek, 2015) in *PLATON* (Spek, 2009) indicated there was a large solvent cavity 367 A³. In the final cycles of refinement, this contribution (99 electrons) to the electron density was removed from the observed data. The density, the *F*(000) value, the molecular weight and the formula are given without taking into account the results obtained with SQUEEZE. Similar treatments of disordered

Table 3Experimental details.

	3MP ₂ -SiPc	3IP ₂ -SiPc	2secBP ₂ -SiPc
Crystal data			
Chemical formula	$C_{46}H_{30}N_8O_2Si$	C44H24I2N8O2Si	$C_{52}H_{42}N_8O_2Si$
М.	754.87	978.60	839.03
Crystal system, space group	Monoclinic, $P2_1$	Monoclinic, $P2_1/c$	Orthorhombic, Ibca
Temperature (K)	147	147	220
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.2566 (4), 16.5665 (8), 11.5120 (5)	12.6431 (6), 19.587 (1), 7.5403 (4)	10.9239 (3), 25.7282 (7), 33.2065 (8)
α, β, γ (°)	90, 115.860 (3), 90	90, 103.222 (1), 90	90, 90, 90
$V(\dot{A}^3)$	1760.20 (13)	1817.78 (16)	9332.8 (4)
Z	2	2	8
Radiation type	Cu Ka	Μο Κα	Cu Ka
$\mu (\text{mm}^{-1})$	1.04	1.82	0.83
Crystal size (mm)	$0.27 \times 0.08 \times 0.03$	$0.40\times0.22\times0.04$	$0.12\times0.12\times0.01$
Data collection			
Diffractometer	Bruker Kappa APEX DUO CCD	Bruker Kappa APEX DUO CCD	Bruker Kappa APEX DUO CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2011)	Multi-scan (SADABS; Bruker, 2011)	Multi-scan (<i>TWINABS</i> ; Bruker, 2007)
T_{\min}, T_{\max}	0.606, 0.753	0.635, 0.746	0.621, 0.753
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11133, 5548, 4909	31089, 4119, 3721	120855, 4085, 2969
R _{int}	0.042	0.024	0.104
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595	0.650	0.596
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.111, 1.03	0.037, 0.101, 1.07	0.066, 0.208, 1.08
No. of reflections	5548	4119	4085
No. of parameters	516	259	287
No. of restraints	1	0	4
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.20, -0.44	2.25, -1.33	0.40, -0.36
Absolute structure	Flack (1983), 2431 Friedel pairs	-	_
Absolute structure parameter	0.51 (4)	_	_

Computer programs: APEX2 and SAINT (Bruker, 2011), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006).

solvent molecules were carried out by Stähler *et al.* (2001), Cox *et al.* (2003), Mohamed *et al.* (2003) and Athimoolam *et al.* (2005).

The crystal of $(2secBP)_2$ -SiPc was a non-merehedral twin with a twin law determined by *CELL_NOW* (Bruker, 2011) of 0.1 0.0 0.0, 0.1 1.0 0.0, 0.3 0.0 1.0. The data were detwinned using *TWINABS* (Bruker, 2011) giving twin fractions in the ratio 0.92:0.08.

Acknowledgements

This work was supported by a Natural Sciences and Engineer Research Council (NSERC) Banting Post-Doctoral fellowship to BHL and a Discovery Grant to TPB. The authors would also like to acknowledge financial support from Saudi Basic Industries (SABIC). We would also like to thank Dr Alan Lough for his help performing the single-crystal X-ray diffractions.

References

- Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.
- Bruker (2011). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cnops, K., Rand, B. P., Cheyns, D., Verreet, B., Empl, M. & Heremans, P. (2014). *Nat. Commun.* **5**, 3406.

Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, 0975–0977.

- Lessard, B. H., Dang, J. D., Grant, T. M., Gao, D., Seferos, D. S. & Bender, T. P. (2014). Appl. Mater. Interfaces, 6, 15040–15051.
- Eftaiha, A. F., Sun, J.-P., Hill, I. G. & Welch, G. C. (2014). J. Mater. Chem. A, 2, 1201–1213.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Honda, S., Nogami, T., Ohkita, H., Benten, H. & Ito, S. (2009). Appl. Mater. Interfaces, 1, 804–810.
- Honda, S., Ohkita, H., Benten, H. & Ito, S. (2011). *Adv. Energ. Mater.* **1**, 588–598.
- Lessard, B. H., Grant, T. M., White, R., Thibau, E., Lu, Z.-H. & Bender, T. P. (2015). J. Mater. Chem. A, **3**, 24512–24524.
- Lessard, B. H., White, R. T., AL-Amar, M., Plint, T., Castrucci, J. S., Josey, D. S., Lu, Z.-H. & Bender, T. P. (2015). *Appl. Mater. Interfaces*, 7, 5076–5088.
- Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N. M., Subramaniyan, S., Crane, M. J., Seki, S. & Jenekhe, S. (2014). J. Am. Chem. Soc. 136, 14589–14597.
- Lowery, M. K., Starshak, A. J., Esposito, J. N., Krueger, P. C. & Kenney, M. E. (1965). *Inorg. Chem.* 4, 128.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). *Acta Cryst.* C**59**, m84–m86.
- Paton, A. S., Lough, A. J. & Bender, T. P. (2012). *Ind. Eng. Chem. Res.* **51**, 6290–6296.
- Rozycka-Sokolowska, E., Marciniak, B., Kosik, S., Dondela, B. & Bak, Z. (2015). *Struct. Chem.* **26**, 873–886.

research communications

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.
- Virdo, J. D., Kawar, Y. H., Lough, A. J. & Bender, T. P. (2013). *CrystEngComm*, **15**, 3187–3199.
- Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S., Liu, Y., Shi, Q., Liu, Y. & Yao, J. (2013). *Adv. Mater.* **25**, 5791–5797.

Acta Cryst. (2016). E72, 988-994 [https://doi.org/10.1107/S205698901600935X]

Crystal structures of bis(phenoxy)silicon phthalocyanines: increasing π - π interactions, solubility and disorder and no halogen bonding observed

Benoît H. Lessard, Alan J. Lough and Timothy P. Bender

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT* (Bruker, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008). Program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) for 3MP-SiPc, 2secBP2-SiPc; *SHELXL2013* (Sheldrick, 2015) for 3IP2-SiPc. For all compounds, molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(3MP-SiPc) Bis(3-methylphenoxy)(phthalocyanine)silicon

Crystal data

C₄₆H₃₀N₈O₂Si $M_r = 754.87$ Monoclinic, P2₁ Hall symbol: P 2yb a = 10.2566 (4) Å b = 16.5665 (8) Å c = 11.5120 (5) Å $\beta = 115.860$ (3)° V = 1760.20 (13) Å³ Z = 2

Data collection

Bruker Kappa APEX DUO CCD diffractometer Radiation source: Bruker ImuS Multi-layer optics monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{\min} = 0.606, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.111$ S = 1.035548 reflections 516 parameters 1 restraint F(000) = 784 $D_x = 1.424 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6829 reflections $\theta = 4.3-66.2^{\circ}$ $\mu = 1.04 \text{ mm}^{-1}$ T = 147 KNeedle, blue $0.27 \times 0.08 \times 0.03 \text{ mm}$

11133 measured reflections 5548 independent reflections 4909 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 66.5^\circ, \theta_{min} = 4.3^\circ$ $h = -11 \rightarrow 12$ $k = -19 \rightarrow 18$ $l = -13 \rightarrow 11$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.6078P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.44 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2431 Friedel pairs Absolute structure parameter: 0.51 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si1	0.25875 (11)	0.47830 (9)	0.25868 (9)	0.02494 (17)
O1	0.2884 (3)	0.39581 (16)	0.1824 (2)	0.0290 (6)
O2	0.2301 (2)	0.56160 (17)	0.33650 (19)	0.0266 (6)
N1	0.4400 (3)	0.5208 (2)	0.2753 (2)	0.0235 (7)
N2	0.3569 (3)	0.5980 (2)	0.0763 (3)	0.0283 (7)
N3	0.1579 (3)	0.5340 (2)	0.0995 (3)	0.0270 (7)
N4	-0.0891 (3)	0.4903 (2)	0.0372 (2)	0.0276 (7)
N5	0.0788 (3)	0.4350 (2)	0.2432 (2)	0.0265 (7)
N6	0.1590 (3)	0.3578 (2)	0.4415 (3)	0.0289 (7)
N7	0.3600 (3)	0.4220 (2)	0.4188 (2)	0.0258 (7)
N8	0.6078 (3)	0.4650 (2)	0.4808 (3)	0.0278 (7)
C1	0.5733 (4)	0.5069 (2)	0.3729 (3)	0.0268 (9)
C2	0.6846 (4)	0.5463 (2)	0.3453 (3)	0.0285 (9)
C3	0.8346 (4)	0.5475 (3)	0.4119 (3)	0.0324 (9)
H3A	0.8835	0.5218	0.4934	0.039*
C4	0.9092 (4)	0.5869 (3)	0.3555 (3)	0.0369 (10)
H4A	1.0120	0.5887	0.3985	0.044*
C5	0.8360 (4)	0.6254 (3)	0.2339 (4)	0.0346 (10)
H5A	0.8906	0.6520	0.1966	0.042*
C6	0.6871 (4)	0.6248 (3)	0.1691 (3)	0.0313 (9)
H6A	0.6376	0.6513	0.0883	0.038*
C7	0.6117 (4)	0.5839 (2)	0.2267 (3)	0.0268 (9)
C8	0.4576 (4)	0.5688 (2)	0.1855 (3)	0.0264 (8)
C9	0.2206 (4)	0.5802 (3)	0.0375 (3)	0.0280 (9)
C10	0.1101 (4)	0.6066 (3)	-0.0867 (3)	0.0277 (8)
C11	0.1158 (4)	0.6537 (3)	-0.1856 (3)	0.0341 (10)
H11A	0.2035	0.6783	-0.1763	0.041*
C12	-0.0104 (4)	0.6629 (3)	-0.2966 (3)	0.0346 (10)
H12A	-0.0090	0.6938	-0.3656	0.042*
C13	-0.1409 (4)	0.6280 (3)	-0.3111 (3)	0.0350 (10)
H13A	-0.2258	0.6353	-0.3895	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	-0.1475 (4)	0.5829 (3)	-0.2121 (3)	0.0301 (9)
H14A	-0.2361	0.5601	-0.2205	0.036*
C15	-0.0202 (4)	0.5725 (3)	-0.1006 (3)	0.0288 (9)
C16	0.0115 (4)	0.5290 (3)	0.0167 (3)	0.0277 (9)
C17	-0.0582 (4)	0.4489 (2)	0.1432 (3)	0.0267 (9)
C18	-0.1672 (4)	0.4097(2)	0.1710 (3)	0.0277 (9)
C19	-0.3173(4)	0.4088(2)	0.1052 (3)	0.0302(9)
H19A	-0.3672	0.4354	0.0247	0.036*
C20	-0.3912(4)	0.3666 (3)	0.1636(3)	0.0328 (9)
H20A	-0.4939	0.3630	0.1207	0.039*
C21	-0.3177(4)	0.3299(3)	0.1207 0.2828(4)	0.0352(10)
H21A	-0.3717	0.3032	0.3205	0.042*
C22	-0.1689(4)	0.3310(3)	0.3203 0.3483(3)	0.012 0.0307 (9)
H22A	-0.1198	0.3054	0.2709 (3)	0.037*
C23	-0.0933(4)	0.3709(2)	0.4299 0.2904 (3)	0.0270 (8)
C23	0.0530(4)	0.3769(2)	0.2304(3)	0.0266 (8)
C25	0.0380(4) 0.2982(4)	0.3746(3)	0.3315(3) 0.4805(3)	0.0200(8)
C25	0.2982(4) 0.4081(4)	0.3740(3) 0.3485(3)	0.4805(3)	0.0249(8)
C20	0.4081(4) 0.4001(4)	0.3485(3) 0.3010(3)	0.0033(3) 0.7021(3)	0.0285(8)
U27	0.4001 (4)	0.3019(3)	0.7021 (3)	0.0310 (9)
П2/А С29	0.5114	0.2783 0.2011 (2)	0.0920	0.038°
1120 4	0.5274 (4)	0.2911 (5)	0.8151 (5)	0.0332 (10)
П20А	0.5204	0.2393 0.2258(3)	0.8013	0.042°
U29	0.0370 (4)	0.3238 (3)	0.8200 (3)	0.0334 (9)
H29A	0.7421	0.31/9	0.9047	0.040^{*}
	0.0054 (4)	0.3/13(3)	0.7299 (3)	0.0320 (9)
H30A	0.7544	0.3939	0.7390	0.038*
C31 C22	0.5375(4)	0.3825 (3)	0.6184(3)	0.02/1(9)
C32	0.5058 (4)	0.4273(2)	0.5001 (3)	0.0254 (8)
C33	0.19/5 (4)	0.3625 (3)	0.0649 (3)	0.0269 (9)
C34	0.1916 (4)	0.3949 (3)	-0.0485 (3)	0.0334 (9)
H34A	0.2538	0.4385	-0.0443	0.040*
C35	0.0947 (4)	0.3641 (3)	-0.1699 (3)	0.0369 (10)
C36	0.0095 (4)	0.2991 (3)	-0.1/35 (4)	0.0413 (11)
H36A	-0.0568	0.2774	-0.2541	0.050*
C37	0.0204 (4)	0.2654 (3)	-0.0604 (4)	0.0408 (11)
H37A	-0.0373	0.2195	-0.0648	0.049*
C38	0.1119 (4)	0.2957 (3)	0.0591 (3)	0.0314 (9)
H38A	0.1165	0.2718	0.1357	0.038*
C39	0.0801 (5)	0.4049 (3)	-0.2914 (3)	0.0517 (13)
H39A	0.0626	0.3642	-0.3584	0.077*
H39B	0.1695	0.4344	-0.2744	0.077*
H39C	-0.0015	0.4428	-0.3208	0.077*
C40	0.3230 (4)	0.5949 (3)	0.4516 (3)	0.0275 (9)
C41	0.3322 (4)	0.5644 (3)	0.5675 (3)	0.0300 (9)
H41A	0.2701	0.5213	0.5656	0.036*
C42	0.4292 (4)	0.5950 (3)	0.6852 (3)	0.0375 (10)
C43	0.5138 (4)	0.6615 (3)	0.6862 (3)	0.0377 (10)
H43A	0.5814	0.6836	0.7659	0.045*

C44	0.4987 (4)	0.6952 (3)	0.5704 (4)	0.0346 (9)
H44A	0.5532	0.7419	0.5720	0.042*
C45	0.4063 (4)	0.6623 (3)	0.4537 (3)	0.0336 (9)
H45A	0.3991	0.6851	0.3754	0.040*
C46	0.4508 (5)	0.5569 (3)	0.8108 (3)	0.0514 (12)
H46A	0.4249	0.4996	0.7968	0.077*
H46B	0.3891	0.5840	0.8440	0.077*
H46C	0.5525	0.5622	0.8734	0.077*

Atomic displacement parameters ($Å^2$)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0259 (4)	0.0263 (4)	0.0259 (4)	-0.0001 (3)	0.0143 (3)	0.0008 (3)
O1	0.0319 (12)	0.0291 (17)	0.0296 (11)	-0.0004 (11)	0.0167 (10)	-0.0026 (10)
O2	0.0232 (11)	0.0313 (17)	0.0263 (11)	-0.0027 (10)	0.0117 (10)	-0.0046 (10)
N1	0.0230 (13)	0.0267 (18)	0.0247 (13)	-0.0033 (12)	0.0141 (12)	-0.0011 (12)
N2	0.0321 (15)	0.025 (2)	0.0295 (14)	-0.0007 (13)	0.0154 (13)	0.0011 (12)
N3	0.0293 (15)	0.028 (2)	0.0296 (13)	-0.0007 (13)	0.0181 (12)	-0.0044 (12)
N4	0.0275 (14)	0.032 (2)	0.0247 (13)	0.0007 (13)	0.0125 (12)	-0.0017 (12)
N5	0.0299 (14)	0.0259 (19)	0.0254 (13)	0.0006 (13)	0.0136 (12)	0.0001 (12)
N6	0.0329 (15)	0.029 (2)	0.0302 (14)	-0.0011 (13)	0.0186 (13)	-0.0004 (12)
N7	0.0296 (15)	0.0260 (19)	0.0264 (13)	0.0007 (13)	0.0166 (12)	0.0047 (12)
N8	0.0271 (14)	0.029 (2)	0.0320 (14)	-0.0009 (12)	0.0173 (12)	0.0016 (12)
C1	0.0330 (18)	0.027 (2)	0.0253 (16)	-0.0025 (15)	0.0177 (15)	-0.0053 (14)
C2	0.0338 (18)	0.024 (2)	0.0359 (17)	-0.0014 (16)	0.0230 (16)	-0.0017 (15)
C3	0.0306 (18)	0.036 (3)	0.0338 (17)	-0.0027 (16)	0.0167 (16)	-0.0024 (16)
C4	0.0291 (18)	0.041 (3)	0.043 (2)	-0.0025 (16)	0.0177 (17)	-0.0079 (17)
C5	0.040 (2)	0.032 (3)	0.0430 (19)	-0.0036 (17)	0.0284 (18)	0.0026 (16)
C6	0.0333 (19)	0.031 (3)	0.0369 (18)	-0.0015 (16)	0.0218 (17)	0.0027 (15)
C7	0.0313 (18)	0.025 (2)	0.0281 (16)	-0.0010 (15)	0.0162 (15)	-0.0013 (14)
C8	0.0308 (17)	0.023 (2)	0.0327 (16)	-0.0013 (15)	0.0206 (15)	-0.0071 (14)
C9	0.0333 (19)	0.026 (2)	0.0334 (17)	0.0006 (15)	0.0221 (16)	-0.0040 (15)
C10	0.0326 (18)	0.026 (2)	0.0246 (15)	0.0015 (16)	0.0120 (15)	0.0011 (15)
C11	0.0354 (19)	0.035 (3)	0.0378 (18)	-0.0009 (17)	0.0216 (17)	0.0033 (17)
C12	0.042 (2)	0.034 (3)	0.0303 (17)	0.0005 (17)	0.0177 (17)	0.0080 (16)
C13	0.040 (2)	0.035 (3)	0.0295 (17)	0.0091 (17)	0.0150 (16)	0.0040 (16)
C14	0.0299 (17)	0.026 (2)	0.0345 (17)	0.0033 (16)	0.0145 (16)	-0.0014 (15)
C15	0.0363 (19)	0.026 (2)	0.0279 (15)	0.0045 (16)	0.0173 (15)	-0.0027 (15)
C16	0.0250 (17)	0.030 (3)	0.0297 (16)	0.0028 (16)	0.0138 (15)	-0.0011 (15)
C17	0.0237 (17)	0.026 (2)	0.0297 (16)	0.0031 (15)	0.0114 (15)	-0.0018 (14)
C18	0.0281 (17)	0.027 (2)	0.0305 (16)	-0.0011 (16)	0.0155 (15)	-0.0064 (15)
C19	0.0274 (17)	0.029 (2)	0.0354 (17)	-0.0008 (15)	0.0145 (16)	-0.0080 (15)
C20	0.0295 (18)	0.033 (3)	0.0403 (19)	-0.0044 (16)	0.0195 (16)	-0.0083 (17)
C21	0.0354 (19)	0.033 (3)	0.050 (2)	-0.0074 (18)	0.0299 (18)	-0.0115 (17)
C22	0.0373 (19)	0.026 (2)	0.0344 (18)	-0.0046 (16)	0.0204 (16)	-0.0048 (15)
C23	0.0281 (18)	0.026 (2)	0.0318 (16)	-0.0011 (15)	0.0178 (15)	-0.0049 (15)
C24	0.0341 (19)	0.021 (2)	0.0288 (16)	0.0013 (16)	0.0177 (15)	0.0015 (14)
C25	0.0251 (17)	0.024 (2)	0.0275 (15)	0.0006 (14)	0.0128 (14)	0.0027 (14)

C26	0.0352 (18)	0.024 (2)	0.0326 (17)	0.0026 (16)	0.0205 (16)	0.0019 (15)
C27	0.0373 (19)	0.026 (2)	0.0326 (18)	0.0024 (16)	0.0161 (17)	0.0059 (16)
C28	0.043 (2)	0.030 (3)	0.0352 (19)	0.0047 (18)	0.0188 (17)	0.0020 (16)
C29	0.0335 (19)	0.034 (3)	0.0288 (17)	0.0014 (16)	0.0099 (16)	0.0000 (15)
C30	0.0336 (19)	0.035 (3)	0.0278 (16)	0.0002 (17)	0.0138 (15)	0.0005 (16)
C31	0.0265 (17)	0.030 (2)	0.0265 (16)	0.0019 (15)	0.0135 (15)	0.0021 (15)
C32	0.0310 (17)	0.022 (2)	0.0270 (15)	-0.0004 (15)	0.0162 (15)	-0.0009 (14)
C33	0.0258 (17)	0.028 (2)	0.0266 (16)	0.0010 (15)	0.0114 (15)	-0.0017 (15)
C34	0.0383 (19)	0.033 (3)	0.0378 (19)	0.0046 (17)	0.0245 (16)	-0.0002 (16)
C35	0.045 (2)	0.033 (3)	0.0327 (18)	0.0109 (18)	0.0172 (17)	-0.0020 (17)
C36	0.040 (2)	0.037 (3)	0.042 (2)	0.0057 (18)	0.0128 (18)	-0.0098 (18)
C37	0.038 (2)	0.033 (3)	0.051 (2)	0.0008 (17)	0.0188 (19)	-0.0056 (19)
C38	0.0345 (18)	0.024 (2)	0.044 (2)	0.0034 (16)	0.0249 (17)	0.0016 (16)
C39	0.075 (3)	0.054 (3)	0.0285 (17)	0.016 (2)	0.0245 (19)	0.0034 (18)
C40	0.0239 (16)	0.029 (2)	0.0314 (16)	0.0067 (15)	0.0138 (14)	0.0010 (15)
C41	0.0385 (19)	0.024 (2)	0.0309 (17)	-0.0026 (16)	0.0186 (16)	-0.0013 (14)
C42	0.041 (2)	0.041 (3)	0.0330 (17)	0.0140 (18)	0.0181 (16)	0.0023 (17)
C43	0.039 (2)	0.034 (3)	0.0355 (18)	0.0060 (17)	0.0115 (16)	-0.0079 (16)
C44	0.0368 (19)	0.024 (2)	0.046 (2)	-0.0021 (16)	0.0216 (18)	-0.0039 (17)
C45	0.038 (2)	0.029 (3)	0.0331 (18)	-0.0027 (17)	0.0149 (17)	-0.0001 (16)
C46	0.068 (3)	0.055 (3)	0.0336 (19)	0.013 (2)	0.024 (2)	0.0043 (19)

Geometric parameters (Å, °)

Sil—Ol	1.722 (3)	C18—C23	1.402 (5)
Sil—O2	1.739 (3)	C19—C20	1.401 (6)
Sil—N3	1.904 (3)	C19—H19A	0.9500
Sil—N5	1.915 (3)	C20—C21	1.384 (6)
Sil—N7	1.917 (3)	C20—H20A	0.9500
Sil—N1	1.918 (3)	C21—C22	1.377 (5)
O1—C33	1.379 (4)	C21—H21A	0.9500
O2—C40	1.367 (4)	C22—C23	1.391 (6)
N1-C1	1.358 (5)	C22—H22A	0.9500
N1—C8	1.378 (5)	C23—C24	1.435 (5)
N2-C9	1.302 (5)	C25—C26	1.453 (5)
N2-C8	1.322 (5)	C26—C27	1.386 (6)
N3—C9	1.382 (5)	C26—C31	1.389 (5)
N3—C16	1.387 (5)	C27—C28	1.384 (5)
N4—C17	1.313 (5)	C27—H27A	0.9500
N4—C16	1.320 (5)	C28—C29	1.394 (6)
N5-C24	1.383 (5)	C28—H28A	0.9500
N5-C17	1.393 (4)	C29—C30	1.377 (6)
N6-C25	1.325 (5)	C29—H29A	0.9500
N6-C24	1.326 (4)	C30—C31	1.391 (5)
N7—C32	1.378 (5)	C30—H30A	0.9500
N7—C25	1.385 (5)	C31—C32	1.457 (5)
N8—C32	1.318 (5)	C33—C34	1.389 (5)
N8—C1	1.329 (5)	C33—C38	1.395 (6)

C1—C2	1.464 (5)	C34—C35	1.410 (5)
C2—C7	1.386 (5)	C34—H34A	0.9500
C2—C3	1.388 (5)	C35—C36	1.377 (7)
C3—C4	1.367 (6)	C35—C39	1.501 (6)
С3—НЗА	0.9500	C36—C37	1.376 (7)
C4—C5	1.418 (6)	С36—Н36А	0.9500
C4—H4A	0.9500	C37—C38	1.378 (5)
C5—C6	1.377 (5)	С37—Н37А	0.9500
C5—H5A	0.9500	C38—H38A	0.9500
C6—C7	1.395 (5)	С39—Н39А	0.9800
С6—Н6А	0.9500	C39—H39B	0.9800
C7—C8	1.459 (5)	C39—H39C	0.9800
C9—C10	1 451 (5)	C40—C41	1 391 (5)
C10—C15	1 395 (6)	C40-C45	1 400 (6)
C10-C11	1 402 (6)	C_{41} C_{42}	1.100(0) 1.381(5)
C_{11} C_{12}	1.102(0) 1.374(5)	C41—H41A	0.9500
C11_H11A	0.9500	C42 - C43	1 309 (7)
C_{12} C_{13}	1 308 (6)	$C_{42} = C_{45}$	1.577(7) 1.503(6)
C12 - C13	0.0500	C_{42} C_{40}	1.303 (0)
C12— $II12A$	1 200 (6)	C_{43}	1.390 (0)
C_{13} U_{12}	1.590 (0)	C43 - H43A	0.9300
CI3—HISA	0.9300	C44 - C43	1.3/4(3)
C14—C13	1.385 (5)	C44—H44A	0.9500
CI4—HI4A	0.9500	C45—H45A	0.9500
	1.437 (5)	C46—H46A	0.9800
C17—C18	1.444 (6)	C46—H46B	0.9800
C18—C19	1.387 (5)	С46—Н46С	0.9800
01—Si1—O2	179.59 (14)	С20—С19—Н19А	121.7
O1—Si1—N3	92.10 (13)	C21—C20—C19	121.3 (3)
O2—Si1—N3	88.17 (13)	C21—C20—H20A	119.4
O1—Si1—N5	91.88 (14)	С19—С20—Н20А	119.4
O2—Si1—N5	88.43 (13)	C22—C21—C20	122.2 (4)
N3—Si1—N5	89.72 (13)	C22—C21—H21A	118.9
01—Si1—N7	87.84 (13)	C20—C21—H21A	118.9
02—Si1—N7	91.89 (13)	C_{21} C_{22} C_{23}	117.4 (4)
N3—Si1—N7	179.9 (2)	C21—C22—H22A	121.3
N5—Si1—N7	90.18 (13)	C23—C22—H22A	121.3
01—Si1—N1	87.88 (13)	C^{22} C^{23} C^{18}	1207(3)
02-sil-N1	91 81 (14)	C^{22} C^{23} C^{24}	120.7(3) 132.5(3)
N3—Si1—N1	90.80 (13)	C_{18} C_{23} C_{24}	102.0(3)
N5N1	179 44 (19)	N6_C24_N5	100.0(3) 127.2(3)
N7N1	89 30 (13)	N6-C24-C23	127.2(3)
$C_{33} O_1 S_1$	1286(2)	N5 C24 C23	122.2(3)
$C_{40} = 0^{2} = 0^{1}$	120.0(2) 128.2(2)	$N_{-}C_{2} = C_{2}$	1277(2)
$C_1 = 02 - 511$	120.2(2) 1077(3)	$N_{0} = C_{2}^{2} = N_{1}^{2}$	127.7(3)
$C_1 = 101 = C_0$	107.7(3) 1271(3)	N7 C25 C26	122.0(3) 110.2(3)
$C_1 = 1 \times 1 = -511$	127.1(3) 125.2(2)	117 - 0.23 - 0.20	1210.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \angle 3. \angle (\angle)$	$C_{21} = C_{20} = C_{31}$	121.9 (3)
U9—N2—U8	121.4 (3)	$U_2 / - U_2 0 - U_2 3$	131.9 (3)

C9—N3—C16	106.6 (3)	C31—C26—C25	106.2 (3)
C9—N3—Si1	125.9 (2)	C28—C27—C26	116.8 (4)
C16—N3—Si1	127.1 (3)	C28—C27—H27A	121.6
C17—N4—C16	122.0 (3)	С26—С27—Н27А	121.6
C24—N5—C17	106.3 (3)	C27—C28—C29	121.3 (4)
C24—N5—Si1	126.8 (2)	C27—C28—H28A	119.3
C17—N5—Si1	126.8 (3)	C29—C28—H28A	119.3
C25—N6—C24	121.7 (3)	C30—C29—C28	121.9 (3)
C32—N7—C25	106.9 (3)	С30—С29—Н29А	119.1
C32—N7—Si1	126.5 (3)	С28—С29—Н29А	119.1
C25—N7—Si1	126.3 (2)	C29—C30—C31	116.9 (4)
C32—N8—C1	119.9 (3)	С29—С30—Н30А	121.5
N8—C1—N1	128.5 (4)	C31—C30—H30A	121.5
N8—C1—C2	121.4 (3)	C26—C31—C30	121.1 (3)
N1-C1-C2	110.1 (3)	C26—C31—C32	107.0 (3)
C7—C2—C3	121.9 (4)	C_{30} $-C_{31}$ $-C_{32}$	131.8 (4)
C7—C2—C1	106.1 (3)	N8-C32-N7	128.4 (3)
$C_{3}-C_{2}-C_{1}$	131.9 (3)	N8-C32-C31	121.9 (3)
C4-C3-C2	117.4 (3)	N7-C32-C31	109.7 (3)
C4—C3—H3A	121.3	01-C33-C34	120.0 (4)
C2-C3-H3A	121.3	01-C33-C38	120.4(3)
$C_{3}-C_{4}-C_{5}$	121.2 (3)	C_{34} C_{33} C_{38}	119.5 (3)
C3—C4—H4A	119.4	C33—C34—C35	121.0 (4)
C5—C4—H4A	119.4	C33—C34—H34A	119.5
C6—C5—C4	121.1 (4)	C35—C34—H34A	119.5
C6—C5—H5A	119.5	C36—C35—C34	118.5 (4)
C4—C5—H5A	119.5	C36—C35—C39	121.3 (4)
C5—C6—C7	117.4 (3)	C34—C35—C39	120.1 (4)
С5—С6—Н6А	121.3	C37—C36—C35	120.1 (4)
С7—С6—Н6А	121.3	С37—С36—Н36А	120.0
C2—C7—C6	120.9 (3)	С35—С36—Н36А	120.0
C2—C7—C8	106.6 (3)	C36—C37—C38	122.3 (4)
C6—C7—C8	132.4 (3)	С36—С37—Н37А	118.8
N2—C8—N1	128.4 (3)	С38—С37—Н37А	118.8
N2—C8—C7	122.2 (3)	C37—C38—C33	118.6 (4)
N1—C8—C7	109.4 (3)	С37—С38—Н38А	120.7
N2—C9—N3	128.3 (3)	C33—C38—H38A	120.7
N2—C9—C10	122.0 (4)	С35—С39—Н39А	109.5
N3—C9—C10	109.7 (3)	С35—С39—Н39В	109.5
C15—C10—C11	120.6 (3)	H39A—C39—H39B	109.5
C15—C10—C9	106.8 (3)	С35—С39—Н39С	109.5
C11—C10—C9	132.6 (3)	Н39А—С39—Н39С	109.5
C12—C11—C10	117.4 (4)	H39B—C39—H39C	109.5
C12—C11—H11A	121.3	O2—C40—C41	120.7 (4)
C10—C11—H11A	121.3	O2—C40—C45	120.1 (3)
C11—C12—C13	122.0 (4)	C41—C40—C45	119.2 (3)
C11—C12—H12A	119.0	C42—C41—C40	121.7 (4)
C13—C12—H12A	119.0	C42—C41—H41A	119.2

C14—C13—C12	120.7 (3)	C40—C41—H41A	119.2
C14—C13—H13A	119.6	C41—C42—C43	118.5 (4)
C12—C13—H13A	119.6	C41—C42—C46	122.0 (4)
C15—C14—C13	117.6 (4)	C43—C42—C46	119.5 (4)
C15—C14—H14A	121.2	C44—C43—C42	119.9 (3)
C13—C14—H14A	121.2	C44—C43—H43A	120.0
C14—C15—C10	121.6 (4)	C42—C43—H43A	120.0
C14—C15—C16	131.9 (4)	C45—C44—C43	121.3 (4)
C10-C15-C16	106.4 (3)	C45—C44—H44A	119.4
N4—C16—N3	127.1 (3)	C43—C44—H44A	119.4
N4—C16—C15	122.5 (3)	C44—C45—C40	119.2 (4)
N3—C16—C15	110.4 (3)	C44—C45—H45A	120.4
N4—C17—N5	127.0 (4)	C40—C45—H45A	120.4
N4—C17—C18	123.0 (3)	C42—C46—H46A	109.5
N5-C17-C18	110.0 (3)	C42—C46—H46B	109.5
C19—C18—C23	121.8 (4)	H46A—C46—H46B	109.5
C19—C18—C17	131.7 (4)	C42—C46—H46C	109.5
C23—C18—C17	106.4 (3)	H46A—C46—H46C	109.5
C18—C19—C20	116.6 (4)	H46B—C46—H46C	109.5
C18—C19—H19A	121.7		

(3IP2-SiPc) Bis(2-sec-butylphenoxy)(phthalocyanine)silicon

Crystal data

C₄₄H₂₄I₂N₈O₂Si $M_r = 978.60$ Monoclinic, P2₁/c a = 12.6431 (6) Å b = 19.587 (1) Å c = 7.5403 (4) Å $\beta = 103.222$ (1)° V = 1817.78 (16) Å³ Z = 2

Data collection

Bruker Kappa APEX DUO CCD diffractometer Radiation source: sealed tube with Bruker Triumph monocnromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{\min} = 0.635$, $T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.101$ S = 1.074119 reflections F(000) = 960 $D_x = 1.788 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 9148 reflections $\theta = 2.7-27.5^{\circ}$ $\mu = 1.82 \text{ mm}^{-1}$ T = 147 KPlate, blue $0.40 \times 0.22 \times 0.04 \text{ mm}$

31089 measured reflections 4119 independent reflections 3721 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.7^\circ$ $h = -16 \rightarrow 16$ $k = -25 \rightarrow 25$ $l = -9 \rightarrow 7$

259 parameters0 restraintsHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 4.7192P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\rm max} = 2.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -1.33 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.58373 (2)	0.18313 (2)	0.00675 (4)	0.03731 (10)
Si1	1.0000	0.0000	0.0000	0.0150 (2)
01	0.95195 (16)	0.07333 (10)	-0.1198 (3)	0.0179 (4)
N1	0.88930 (19)	0.00288 (12)	0.1341 (3)	0.0169 (4)
N2	0.9741 (2)	0.07375 (12)	0.3918 (3)	0.0193 (5)
N3	1.09243 (18)	0.05331 (12)	0.1863 (3)	0.0165 (4)
N4	1.25478 (19)	0.06065 (12)	0.0671 (3)	0.0195 (5)
C1	0.8921 (2)	0.03894 (14)	0.2930 (4)	0.0176 (5)
C2	1.0663 (2)	0.07947 (14)	0.3410 (4)	0.0179 (5)
C3	1.1573 (2)	0.11803 (14)	0.4453 (4)	0.0201 (5)
C4	1.1716 (3)	0.15271 (16)	0.6108 (4)	0.0254 (6)
H4A	1.1165	0.1537	0.6778	0.031*
C5	1.2702 (3)	0.18575 (16)	0.6727 (5)	0.0298 (7)
H5A	1.2828	0.2102	0.7843	0.036*
C6	1.3518 (3)	0.18382 (16)	0.5743 (5)	0.0293 (7)
H6A	1.4180	0.2074	0.6208	0.035*
C7	1.3387 (3)	0.14851 (15)	0.4112 (4)	0.0248 (6)
H7A	1.3945	0.1468	0.3455	0.030*
C8	1.2387 (2)	0.11562 (14)	0.3486 (4)	0.0196 (5)
C9	1.1969 (2)	0.07466 (14)	0.1873 (4)	0.0180 (5)
C10	1.2146 (2)	0.02365 (14)	-0.0789 (4)	0.0179 (5)
C11	1.2804 (2)	0.00286 (14)	-0.2035 (4)	0.0199 (5)
C12	1.3895 (2)	0.01224 (16)	-0.2023 (4)	0.0238 (6)
H12A	1.4349	0.0400	-0.1130	0.029*
C13	1.4293 (3)	-0.02018 (18)	-0.3354 (5)	0.0289 (7)
H13A	1.5042	-0.0163	-0.3348	0.035*
C14	1.3613 (3)	-0.05895 (17)	-0.4722 (4)	0.0280 (6)
H14A	1.3911	-0.0802	-0.5630	0.034*
C15	1.2519 (3)	-0.06679 (15)	-0.4774 (4)	0.0227 (6)
H15A	1.2054	-0.0918	-0.5719	0.027*
C16	1.2129 (2)	-0.03648 (14)	-0.3382 (4)	0.0193 (5)
C17	0.9045 (2)	0.12947 (14)	-0.0640 (4)	0.0180 (5)
C18	0.7937 (2)	0.12940 (14)	-0.0651 (4)	0.0192 (5)
H18A	0.7506	0.0901	-0.1044	0.023*
C19	0.7474 (2)	0.18679 (15)	-0.0088 (4)	0.0223 (6)
C20	0.8061 (3)	0.24578 (17)	0.0427 (5)	0.0317 (7)

H20A	0.7728	0.2848	0.0816	0.038*
C21	0.9147 (3)	0.24686 (17)	0.0365 (5)	0.0342 (7)
H21A	0.9555	0.2876	0.0667	0.041*
C22	0.9651 (3)	0.18879 (15)	-0.0136 (4)	0.0246 (6)
H22A	1.0402	0.1897	-0.0134	0.030*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02480 (14)	0.04162 (16)	0.04785 (17)	0.00971 (8)	0.01317 (10)	0.00607 (10)
Si1	0.0145 (5)	0.0154 (5)	0.0134 (5)	0.0021 (4)	-0.0001 (4)	-0.0025 (4)
01	0.0204 (9)	0.0172 (9)	0.0149 (9)	0.0057 (7)	0.0016 (7)	-0.0005 (7)
N1	0.0174 (11)	0.0157 (11)	0.0159 (10)	0.0014 (8)	0.0000 (8)	-0.0015 (8)
N2	0.0215 (12)	0.0198 (11)	0.0155 (11)	0.0030 (9)	0.0016 (9)	-0.0022 (8)
N3	0.0158 (10)	0.0175 (11)	0.0145 (10)	0.0018 (8)	0.0000 (8)	-0.0026 (8)
N4	0.0190 (11)	0.0189 (11)	0.0196 (11)	-0.0014 (9)	0.0021 (9)	-0.0002 (9)
C1	0.0211 (13)	0.0153 (12)	0.0157 (12)	0.0043 (10)	0.0029 (10)	0.0002 (9)
C2	0.0209 (13)	0.0153 (12)	0.0149 (12)	0.0025 (10)	-0.0014 (10)	-0.0026 (9)
C3	0.0229 (14)	0.0169 (13)	0.0170 (13)	0.0025 (10)	-0.0025 (10)	-0.0008 (10)
C4	0.0295 (15)	0.0222 (14)	0.0205 (14)	0.0033 (12)	-0.0026 (11)	-0.0052 (11)
C5	0.0363 (18)	0.0219 (15)	0.0243 (15)	-0.0023 (12)	-0.0074 (13)	-0.0073 (11)
C6	0.0322 (17)	0.0227 (15)	0.0266 (16)	-0.0081 (12)	-0.0065 (13)	-0.0014 (11)
C7	0.0247 (15)	0.0194 (14)	0.0261 (15)	-0.0028 (11)	-0.0027 (11)	0.0008 (11)
C8	0.0218 (13)	0.0153 (12)	0.0180 (13)	0.0010 (10)	-0.0031 (10)	-0.0012 (10)
C9	0.0165 (12)	0.0166 (12)	0.0180 (13)	0.0004 (10)	-0.0024 (10)	-0.0012 (10)
C10	0.0185 (13)	0.0162 (12)	0.0182 (12)	0.0010 (10)	0.0028 (10)	0.0016 (10)
C11	0.0231 (14)	0.0175 (13)	0.0189 (13)	0.0009 (10)	0.0043 (11)	0.0027 (10)
C12	0.0231 (14)	0.0264 (15)	0.0219 (14)	-0.0049 (11)	0.0053 (11)	0.0017 (11)
C13	0.0243 (15)	0.0351 (17)	0.0305 (16)	-0.0032 (13)	0.0128 (12)	0.0025 (13)
C14	0.0333 (17)	0.0305 (16)	0.0246 (15)	0.0005 (13)	0.0159 (13)	-0.0009 (12)
C15	0.0280 (15)	0.0212 (14)	0.0199 (13)	-0.0016 (11)	0.0078 (11)	-0.0007 (10)
C16	0.0222 (13)	0.0170 (13)	0.0183 (13)	0.0009 (10)	0.0040 (10)	0.0025 (10)
C17	0.0222 (13)	0.0165 (12)	0.0144 (12)	0.0024 (10)	0.0021 (10)	-0.0007 (9)
C18	0.0217 (13)	0.0182 (13)	0.0159 (12)	-0.0006 (10)	0.0008 (10)	0.0027 (10)
C19	0.0200 (14)	0.0256 (15)	0.0217 (14)	0.0035 (11)	0.0054 (11)	0.0039 (10)
C20	0.0393 (19)	0.0215 (15)	0.0365 (18)	0.0048 (13)	0.0132 (14)	-0.0069 (13)
C21	0.0388 (19)	0.0211 (15)	0.0426 (19)	-0.0084 (13)	0.0092 (15)	-0.0101 (13)
C22	0.0216 (15)	0.0233 (15)	0.0282 (16)	-0.0027 (11)	0.0041 (12)	-0.0017 (11)

Geometric parameters (Å, °)

I1—C19	2.100 (3)	С7—С8	1.401 (4)
Si1-O1 ⁱ	1.7314 (19)	C7—H7A	0.9500
Si1—O1	1.7314 (19)	C8—C9	1.452 (4)
Si1—N1	1.906 (2)	C10—N1 ⁱ	1.385 (4)
Si1—N1 ⁱ	1.906 (2)	C10—C11	1.449 (4)
Si1—N3 ⁱ	1.918 (2)	C11—C12	1.389 (4)
Si1—N3	1.918 (2)	C11—C16	1.399 (4)

O1—C17	1.364 (3)	C12—C13	1.376 (4)
N1	1.385 (3)	C12—H12A	0.9500
N1-C10 ⁱ	1.385 (4)	C13—C14	1.405 (5)
N2—C2	1.313 (4)	C13—H13A	0.9500
N2—C1	1.319 (4)	C14—C15	1.383 (4)
N3—C2	1.381 (3)	C14—H14A	0.9500
N3—C9	1.384 (4)	C15-C16	1.390 (4)
N4—C9	1 317 (4)	C15—H15A	0.9500
N4-C10	1.319(4)	$C16-C1^{i}$	1 444 (4)
$C1$ $C16^{i}$	1.515(4) 1.444(4)	C17 $C22$	1 306 (4)
$C_1 = C_1 C_2$	1.440 (4)	C17 - C12	1.300(4)
$C_2 = C_3$	1.449(4) 1.202(4)	C17 - C18	1.339(4) 1.378(4)
$C_3 = C_8$	1.392 (4)	C_{10} U_{10}	1.378 (4)
$C_3 = C_4$	1.390 (4)	C18—H18A	0.9500
C4—C5	1.388 (5)	C19—C20	1.381 (5)
C4—H4A	0.9500	C20—C21	1.384 (5)
C5—C6	1.401 (5)	C20—H20A	0.9500
C5—H5A	0.9500	C21—C22	1.397 (5)
C6—C7	1.388 (4)	C21—H21A	0.9500
С6—Н6А	0.9500	C22—H22A	0.9500
O1 ⁱ —Si1—O1	180.0	C3—C8—C7	121.8 (3)
O1 ⁱ —Si1—N1	87.72 (9)	C3—C8—C9	106.6 (2)
O1—Si1—N1	92.28 (9)	C7—C8—C9	131.6 (3)
O1 ⁱ —Si1—N1 ⁱ	92.28 (9)	N4—C9—N3	127.8 (2)
O1—Si1—N1 ⁱ	87.72 (9)	N4—C9—C8	122.6 (3)
$N1$ — $Si1$ — $N1^i$	180.0	N3—C9—C8	109.6 (2)
$O1^{i}$ —Si1—N3 ⁱ	90.74 (9)	N4—C10—N1 ⁱ	127.9 (3)
01—Si1—N3 ⁱ	89 26 (9)	N4-C10-C11	1218(3)
$N1$ Si1 $N3^{i}$	90.37(10)	$N1^{i}$ - C10 - C11	1102(2)
$N1^{i}$ Si1 $N3^{i}$	89.63 (10)	C_{12} C_{11} C_{16}	121.2(2)
$O1^{i}$ Si1 N3	89.26 (0)	C12 $C11$ $C10$	121.2(3) 1325(3)
01 - 511 - 103	09.20(9)	C12 - C11 - C10	106.3(3)
N1 S1 N2	90.74(9)	$C_{10} = C_{11} = C_{10}$	100.5(2)
NI SII N2	09.03(10)	C13 - C12 - C11	117.5 (5)
N1 - S11 - N3	90.37 (10)	C13-C12-H12A	121.2
N3	180.0	CII—CI2—HIZA	121.2
	129.36 (17)	C12—C13—C14	121.4 (3)
$C1-N1-C10^4$	106.6 (2)	С12—С13—Н13А	119.3
C1—N1—Si1	126.73 (19)	C14—C13—H13A	119.3
C10 ⁱ —N1—Si1	126.19 (18)	C15—C14—C13	121.4 (3)
C2—N2—C1	121.0 (2)	C15—C14—H14A	119.3
C2—N3—C9	107.2 (2)	C13—C14—H14A	119.3
C2—N3—Si1	126.65 (19)	C14—C15—C16	117.1 (3)
C9—N3—Si1	126.11 (19)	C14—C15—H15A	121.4
C9—N4—C10	121.4 (2)	C16—C15—H15A	121.4
N2—C1—N1	127.8 (3)	C15—C16—C11	121.3 (3)
N2-C1-C16 ⁱ	122.0 (2)	C15-C16-C1 ⁱ	131.9 (3)
N1—C1—C16 ⁱ	110.1 (2)	C11-C16-C1 ⁱ	106.7 (2)
N2—C2—N3	127.9 (2)	O1—C17—C22	120.2 (3)
	. /		· · ·

N2—C2—C3	122.3 (3)	O1—C17—C18	120.5 (2)
N3—C2—C3	109.8 (2)	C22—C17—C18	119.2 (3)
C8—C3—C4	121.6 (3)	C19—C18—C17	119.5 (3)
C8—C3—C2	106.8 (2)	C19—C18—H18A	120.2
C4—C3—C2	131.6 (3)	C17—C18—H18A	120.2
C5—C4—C3	116.8 (3)	C18—C19—C20	122.0 (3)
C5—C4—H4A	121.6	C18—C19—I1	118.9(2)
C3—C4—H4A	121.6	C_{20} $-C_{19}$ $-I_{1}$	1191(2)
C4-C5-C6	121.0 121.5(3)	C19 - C20 - C21	119.1(2) 118.5(3)
C4-C5-H5A	119.2	C19 - C20 - H20A	120.7
C6-C5-H5A	119.2	C_{1} C_{20} H_{20A}	120.7
C_{7} C_{6} C_{5}	119.2 122.0(3)	$C_{21} = C_{20} = H_{20} R_{12}$	120.7 120.9(3)
C7 C6 H6A	122.0 (3)	$C_{20} = C_{21} = C_{22}$	120.9 (5)
$C_{}C_{0}$	119.0	C_{20} C_{21} H_{21A}	119.5
C_{3}	119.0	$C_{22} = C_{21} = H_{21} A$	119.5
C_{0}	110.3 (3)	C17 = C22 = C21	119.7 (3)
C6C/H/A	121.9	C1/-C22-H22A	120.1
С8—С/—Н/А	121.9	C21—C22—H22A	120.1
N1—Si1—O1—C17	340(2)	C2—N3—C9—C8	0.2(3)
$N1^{i}$ Si1 -01 $-C17$	-146.0(2)	Si1_N3_C9_C8	$178\ 24\ (18)$
$N_{3i} = S_{i1} = O_{1} = C_{17}$	140.0(2) 124 3 (2)	C_{3} C_{8} C_{9} N_{4}	-1784(3)
N3 Sil Ol Cl7	-55.7(2)	C7 C8 C9 N4	170.4(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23(4)	$C_7 = C_8 = C_9 = N_7$	1.3(3)
$C_2 = N_2 = C_1 = N_1$	2.3(4) -174.0(2)	$C_3 = C_8 = C_9 = N_3$	-170.0(3)
$C_2 = N_2 = C_1 = C_1 O_1$	-1/4.9(3)	$C_{1} = C_{2} = C_{2} = N_{3}$	-1/9.9(3)
C10 $N1$ $C1$ $N2$	-1/8./(3)	C_{9} N4 C_{10} C_{11}	3.0(4)
SII - NI - CI - N2	-6.1 (4)	C9—N4—C10—C11	-1/4.4(3)
$C10^{-}$ NI $-C1$ $-C16^{-}$	-1.2(3)	N4—C10—C11—C12	2.4 (5)
$S11-N1-C1-C16^{4}$	1/1.45 (18)	NI	-1/5.4 (3)
C1—N2—C2—N3	1.0 (4)	N4—C10—C11—C16	178.7 (3)
C1—N2—C2—C3	179.2 (3)	N1 ¹ —C10—C11—C16	0.8 (3)
C9—N3—C2—N2	177.7 (3)	C16—C11—C12—C13	-1.8 (4)
Si1—N3—C2—N2	-0.4(4)	C10—C11—C12—C13	174.0 (3)
C9—N3—C2—C3	-0.7 (3)	C11—C12—C13—C14	2.7 (5)
Si1—N3—C2—C3	-178.75 (18)	C12—C13—C14—C15	-0.8 (5)
N2—C2—C3—C8	-177.5 (3)	C13—C14—C15—C16	-2.0 (5)
N3—C2—C3—C8	1.0 (3)	C14—C15—C16—C11	2.9 (4)
N2—C2—C3—C4	2.8 (5)	C14-C15-C16-C1 ⁱ	-174.1 (3)
N3—C2—C3—C4	-178.7 (3)	C12—C11—C16—C15	-1.0 (4)
C8—C3—C4—C5	1.2 (4)	C10-C11-C16-C15	-177.7 (3)
C2—C3—C4—C5	-179.2 (3)	C12-C11-C16-C1 ⁱ	176.7 (3)
C3—C4—C5—C6	-0.5 (5)	C10-C11-C16-C1 ⁱ	-0.1 (3)
C4—C5—C6—C7	-0.5(5)	Si1-01-C17-C22	100.8 (3)
C5—C6—C7—C8	0.9 (5)	Si1—O1—C17—C18	-82.4(3)
C4—C3—C8—C7	-0.8 (4)	O1—C17—C18—C19	-179.8 (2)
C2—C3—C8—C7	179.5 (3)	C22—C17—C18—C19	-2.9 (4)
C4—C3—C8—C9	178.9 (3)	C17—C18—C19—C20	2.5 (4)
C2-C3-C8-C9	-0.8(3)	C17—C18—C19—I1	-175.6(2)
C6-C7-C8-C3	-0.3(4)	C18 - C19 - C20 - C21	0.2(5)
	~~~ ( ' <i>)</i>		~~~ (~)

C6—C7—C8—C9 C10—N4—C9—N3	-179.9 (3) 1.9 (4)	I1—C19—C20—C21 C19—C20—C21—C22	178.3 (3) -2.6 (6)
C10 - N4 - C9 - C8 C2 - N3 - C9 - N4	-179.6 (3)	01-C17-C22-C21	177.5 (3) 0.6 (5)
Si1—N3—C9—N4	-3.1 (4)	C20—C21—C22—C17	2.1 (5)

F(000) = 3520

 $\theta = 4.4 - 35.1^{\circ}$ 

 $\mu = 0.83 \text{ mm}^{-1}$ 

T = 220 K

Plate, blue

 $D_{\rm x} = 1.194 {\rm Mg m^{-3}}$ 

 $0.12 \times 0.12 \times 0.01 \text{ mm}$ 

Cu *K* $\alpha$  radiation,  $\lambda = 1.54178$  Å

Cell parameters from 586 reflections

Symmetry code: (i) -x+2, -y, -z.

(2secBP2-SiPc) Bis(3-iodophenoxy)(phthalocyanine)silicon

### Crystal data

C₅₂H₄₂N₈O₂Si  $M_r = 839.03$ Orthorhombic, *Ibca* Hall symbol: -I 2b 2c a = 10.9239 (3) Å b = 25.7282 (7) Å c = 33.2065 (8) Å V = 9332.8 (4) Å³ Z = 8

### Data collection

Bruker Kappa APEX DUO CCD diffractometer	120855 measured reflections 4085 independent reflections
Radiation source: fine-focus sealed tube	2969 reflections with $I > 2\sigma(I)$
Multi-layer optics monochromator	$R_{\rm int} = 0.104$
$\varphi$ and $\omega$ scans	$\theta_{\rm max} = 66.8^\circ, \ \theta_{\rm min} = 3.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(TWINABS; Bruker, 2007)	$k = -30 \rightarrow 30$
$T_{\min} = 0.621, \ T_{\max} = 0.753$	$l = -38 \rightarrow 38$

### Refinement

Refinement on $F^2$	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.208$	neighbouring sites
S = 1.08	H-atom parameters constrained
4085 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1166P)^2 + 6.9892P]$
287 parameters	where $P = (F_0^2 + 2F_c^2)/3$
4 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta  ho_{ m max} = 0.40 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Si1	0.0000	0.2500	0.14722 (3)	0.0424 (3)	
01	0.10423 (18)	0.30013 (7)	0.15037 (5)	0.0502 (5)	
N1	0.0000	0.2500	0.09000 (10)	0.0477 (8)	
N2	0.1543 (2)	0.18453 (10)	0.07595 (7)	0.0557 (6)	
N3	0.1325 (2)	0.20136 (9)	0.14701 (6)	0.0469 (6)	
N4	0.1747 (2)	0.19492 (9)	0.21844 (7)	0.0467 (6)	
N5	0.0000	0.2500	0.20454 (8)	0.0414 (7)	
C1	0.0427 (3)	0.22952 (14)	-0.04755 (9)	0.0655 (9)	
H1	0.0707	0.2161	-0.0722	0.079*	
C2	0.0858 (3)	0.20892 (13)	-0.01231 (8)	0.0600 (8)	
H2	0.1428	0.1816	-0.0123	0.072*	
C3	0.0421 (3)	0.22993 (12)	0.02363 (8)	0.0527 (7)	
C4	0.0689 (3)	0.21830 (11)	0.06512 (8)	0.0484 (7)	
C5	0.1844 (3)	0.17777 (11)	0.11392 (8)	0.0535 (7)	
C6	0.2850 (3)	0.14513 (12)	0.12648 (9)	0.0586 (8)	
C7	0.3677 (3)	0.11427 (14)	0.10481 (11)	0.0758 (11)	
H7A	0.3629	0.1112	0.0767	0.091*	
C8	0.4562 (4)	0.08877 (15)	0.12662 (12)	0.0847 (12)	
H8A	0.5136	0.0681	0.1129	0.102*	
C9	0.4635 (4)	0.09263 (15)	0.16849 (12)	0.0799 (11)	
H9A	0.5243	0.0740	0.1823	0.096*	
C10	0.3830 (3)	0.12339 (12)	0.18996 (10)	0.0623 (8)	
H10A	0.3883	0.1265	0.2181	0.075*	
C11	0.2936 (3)	0.14950 (11)	0.16799 (9)	0.0536 (7)	
C12	0.1969 (2)	0.18421 (11)	0.18043 (8)	0.0473 (6)	
C13	0.0820 (2)	0.22489 (10)	0.22928 (8)	0.0433 (6)	
C14	0.0520 (2)	0.23430 (10)	0.27105 (8)	0.0447 (6)	
C15	0.1064 (3)	0.21848 (12)	0.30650 (8)	0.0540 (7)	
H15	0.1773	0.1978	0.3065	0.065*	
C16	0.0525 (3)	0.23430 (13)	0.34196 (9)	0.0597 (8)	
H16	0.0867	0.2238	0.3666	0.072*	
C17	0.1460 (3)	0.33683 (12)	0.12375 (9)	0.0561 (7)	
C18	0.2136 (3)	0.32242 (15)	0.09020 (9)	0.0658 (9)	
H18A	0.2303	0.2871	0.0854	0.079*	
C19	0.2570 (4)	0.3601 (2)	0.06368 (12)	0.0995 (15)	
H19A	0.3009	0.3505	0.0405	0.119*	
C20	0.2341 (5)	0.4119 (2)	0.07211 (19)	0.123 (2)	
H20A	0.2588	0.4378	0.0538	0.147*	
C21	0.1763 (5)	0.42528 (19)	0.10666 (19)	0.126 (2)	
H21A	0.1681	0.4607	0.1130	0.151*	
C22	0.1292 (4)	0.38908 (15)	0.13276 (15)	0.0906 (13)	
C23	0.0718 (5)	0.40626 (17)	0.17334 (18)	0.128 (2)	
H23A	0.0410	0.3745	0.1867	0.154*	
C24	0.1738 (8)	0.4300 (3)	0.20158 (18)	0.179 (3)	
H24A	0.2376	0.4044	0.2059	0.269*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

H24B	0.1377	0.4395	0.2272	0.269*	
H24C	0.2085	0.4606	0.1890	0.269*	
C25	-0.0369 (6)	0.4412 (2)	0.1666 (3)	0.181 (4)	
H25A	-0.0956	0.4249	0.1482	0.218*	
H25B	-0.0110	0.4745	0.1551	0.218*	
C26	-0.0956 (8)	0.4494 (3)	0.2095 (3)	0.226 (4)	
H26A	-0.1689	0.4704	0.2070	0.339*	
H26B	-0.0374	0.4668	0.2269	0.339*	
H26C	-0.1168	0.4159	0.2210	0.339*	

Atomic displacement parameters  $(Å^2)$ 

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	U ²³
Sil	0.0459 (6)	0.0491 (6)	0.0323 (5)	0.0052 (4)	0.000	0.000
01	0.0573 (12)	0.0531 (11)	0.0402 (11)	-0.0034 (9)	-0.0045 (8)	0.0066 (8)
N1	0.0552 (19)	0.0534 (18)	0.0344 (16)	0.0052 (14)	0.000	0.000
N2	0.0658 (15)	0.0622 (14)	0.0390 (13)	0.0115 (12)	0.0092 (11)	0.0023 (11)
N3	0.0516 (13)	0.0526 (13)	0.0366 (12)	0.0080 (10)	0.0062 (10)	0.0035 (9)
N4	0.0455 (12)	0.0558 (13)	0.0387 (12)	0.0043 (10)	0.0028 (10)	0.0038 (9)
N5	0.0434 (16)	0.0514 (17)	0.0295 (15)	0.0019 (13)	0.000	0.000
C1	0.066 (2)	0.097 (2)	0.0342 (15)	0.0023 (16)	0.0047 (14)	-0.0033 (15)
C2	0.0594 (18)	0.080(2)	0.0410 (16)	0.0041 (15)	0.0065 (14)	-0.0070 (14)
C3	0.0555 (16)	0.0632 (17)	0.0395 (15)	-0.0014 (13)	-0.0014 (13)	-0.0007 (12)
C4	0.0522 (15)	0.0568 (16)	0.0363 (14)	0.0049 (13)	0.0058 (12)	-0.0003 (11)
C5	0.0628 (18)	0.0565 (16)	0.0411 (16)	0.0103 (14)	0.0108 (13)	0.0017 (12)
C6	0.0665 (19)	0.0603 (17)	0.0490 (17)	0.0188 (14)	0.0146 (14)	0.0095 (13)
C7	0.091 (3)	0.077 (2)	0.059 (2)	0.032 (2)	0.0247 (18)	0.0101 (17)
C8	0.088 (3)	0.080 (2)	0.086 (3)	0.039 (2)	0.024 (2)	0.016 (2)
C9	0.075 (2)	0.080(2)	0.084 (3)	0.034 (2)	0.007 (2)	0.0160 (19)
C10	0.0606 (18)	0.0678 (19)	0.0586 (18)	0.0153 (15)	0.0047 (15)	0.0135 (15)
C11	0.0535 (16)	0.0553 (16)	0.0518 (18)	0.0100 (13)	0.0095 (13)	0.0102 (13)
C12	0.0447 (14)	0.0535 (15)	0.0437 (15)	0.0061 (12)	0.0029 (12)	0.0086 (12)
C13	0.0395 (13)	0.0524 (14)	0.0379 (14)	-0.0013 (11)	-0.0006 (11)	0.0006 (11)
C14	0.0406 (13)	0.0557 (15)	0.0379 (14)	-0.0030 (11)	0.0018 (11)	0.0012 (11)
C15	0.0486 (15)	0.0730 (19)	0.0403 (15)	0.0000 (13)	-0.0051 (13)	0.0035 (13)
C16	0.0605 (18)	0.082 (2)	0.0365 (14)	-0.0010 (15)	-0.0072 (14)	0.0028 (14)
C17	0.0517 (16)	0.0635 (18)	0.0530 (17)	-0.0010 (13)	0.0000 (14)	0.0167 (14)
C18	0.0513 (17)	0.098 (2)	0.0487 (18)	-0.0062 (16)	-0.0014 (14)	0.0108 (17)
C19	0.072 (2)	0.159 (5)	0.068 (3)	-0.022 (3)	0.008 (2)	0.037 (3)
C20	0.117 (4)	0.122 (4)	0.129 (4)	-0.012 (3)	0.013 (3)	0.076 (4)
C21	0.127 (4)	0.085 (3)	0.164 (5)	0.008 (3)	0.054 (4)	0.058 (3)
C22	0.092 (3)	0.059 (2)	0.120 (3)	0.000 (2)	0.033 (2)	0.022 (2)
C23	0.155 (5)	0.059 (2)	0.171 (5)	-0.016 (3)	0.082 (4)	-0.007 (3)
C24	0.259 (8)	0.144 (5)	0.135 (5)	-0.085 (6)	0.066 (5)	-0.030 (4)
C25	0.143 (5)	0.085 (3)	0.316 (9)	-0.011 (4)	0.099 (6)	-0.056 (5)
C26	0.183 (7)	0.172 (7)	0.324 (11)	0.024 (6)	0.067 (8)	-0.090 (8)

Geometric parameters (Å, °)

Sil—Ol	1.7236 (19)	C10-C11	1.391 (4)	
Sil—Ol ⁱ	1.7237 (19)	C10—H10A	0.9400	
Sil—N1	1.900 (3)	C11—C12	1.444 (4)	
Si1—N5	1.904 (3)	C13—C14	1.446 (4)	
Si1—N3	1.913 (2)	C14—C15	1.380 (4)	
Si1—N3 ⁱ	1.913 (2)	C14—C14 ⁱ	1.394 (5)	
O1-C17	1.372 (3)	C15—C16	1.378 (4)	
N1—C4 ⁱ	1.384 (3)	C15—H15	0.9400	
N1—C4	1.384 (3)	C16—C16 ⁱ	1.403 (6)	
N2—C5	1.315 (4)	C16—H16	0.9400	
N2—C4	1.324 (4)	C17—C18	1.387 (4)	
N3—C5	1.378 (3)	C17—C22	1.390 (5)	
N3—C12	1.386 (3)	C18—C19	1.392 (5)	
N4—C12	1.314 (4)	C18—H18A	0.9400	
N4-C13	1.323 (3)	C19-C20	1.385 (8)	
$N5-C13^{i}$	1.376 (3)	C19—H19A	0.9400	
N5-C13	1.376 (3)	C20—C21	1.354 (7)	
C1-C2	1.368 (4)	C20—H20A	0.9400	
$C1-C1^{i}$	1.408(7)	C21—C22	1.372 (6)	
C1—H1	0.9400	C21—H21A	0.9400	
C2-C3	1.394 (4)	C22—C23	1.550 (7)	
C2—H2	0.9400	C23—C25	1.506 (9)	
C3—C3 ⁱ	1.383 (6)	C23—C24	1.578 (7)	
C3—C4	1.440 (4)	C23—H23A	0.9900	
С5—С6	1.445 (4)	C24—H24A	0.9700	
C6—C11	1.386 (4)	C24—H24B	0.9700	
C6—C7	1.401 (4)	C24—H24C	0.9700	
С7—С8	1.375 (5)	C25—C26	1.577 (7)	
C7—H7A	0.9400	C25—H25A	0.9800	
С8—С9	1.396 (6)	C25—H25B	0.9800	
C8—H8A	0.9400	C26—H26A	0.9700	
C9—C10	1.381 (5)	C26—H26B	0.9700	
С9—Н9А	0.9400	C26—H26C	0.9700	
01-Si1-O1i	173.03 (13)	C10-C11-C12	131.4 (3)	
O1—Si1—N1	93.48 (7)	N4—C12—N3	127.5 (2)	
O1 ⁱ —Si1—N1	93.49 (7)	N4—C12—C11	122.6 (2)	
O1—Si1—N5	86.52 (7)	N3—C12—C11	109.8 (2)	
O1 ⁱ —Si1—N5	86.51 (7)	N4—C13—N5	127.6 (2)	
N1—Si1—N5	180.0	N4—C13—C14	122.2 (2)	
O1—Si1—N3	89.42 (10)	N5-C13-C14	110.3 (2)	
O1 ⁱ —Si1—N3	90.61 (10)	C15-C14-C14 ⁱ	121.46 (17)	
N1—Si1—N3	89.79 (7)	C15—C14—C13	132.2 (3)	
N5—Si1—N3	90.21 (7)	C14 ⁱ —C14—C13	106.38 (15)	
O1—Si1—N3 ⁱ	90.61 (10)	C16—C15—C14	117.2 (3)	
O1 ⁱ —Si1—N3 ⁱ	89.42 (10)	C16—C15—H15	121.4	

N1—Si1—N3 ⁱ	89.79 (7)	C14—C15—H15	121.4
N5—Si1—N3 ⁱ	90.21 (7)	C15—C16—C16 ⁱ	121.30 (18)
N3—Si1—N3 ⁱ	179.58 (14)	C15—C16—H16	119.3
C17—O1—Si1	134.08 (18)	C16 ⁱ —C16—H16	119.3
$C4^{i}$ N1–C4	106.7 (3)	O1-C17-C18	120.7 (3)
$C4^{i}$ —N1—Si1	126.66 (15)	01 - C17 - C22	118.9 (3)
C4—N1—Si1	126.66 (15)	$C_{18} - C_{17} - C_{22}$	120.1(3)
C5-N2-C4	121.6(2)	C17 - C18 - C19	120.1(0) 120.2(4)
$C_{5} N_{3} C_{12}$	106.8(2)	C17—C18—H18A	119.9
C5-N3-Sil	127.05(19)	C19— $C18$ — $H18A$	119.9
C12 N3 Sil	126.11 (18)	$C_{20}$ $C_{19}$ $C_{18}$	119.5 118 7 (4)
C12 - N4 - C13	120.11(10) 1216(2)	$C_{20} - C_{19} - H_{19A}$	120.6
$C12^{i}$ N5-C13	121.0(2) 106.7(3)	$C_{18}$ $C_{19}$ $H_{19A}$	120.6
$C13^{i}$ N5 Si1	100.7(5) 126.63(14)	$C_{10} = C_{10} = C_{10}$	120.0 120.0(4)
$C_{13} = N_5 = S_{11}$	126.63(14)	$C_{21} = C_{20} = C_{10}$	120.0 (4)
$C_{13} = N_{3} = S_{11}$	120.05(14) 121.10(10)	$C_{21} - C_{20} - H_{20A}$	120.0
$C_2 = C_1 = C_1$	121.19(19)	C19 - C20 - 1120A	120.0
	119.4	$C_{20}$ $C_{21}$ $U_{21}$	122.3 (3)
CI = CI = CI	119.4	$C_{20}$ $C_{21}$ $H_{21A}$	110.0
C1 - C2 - C3	117.7 (5)	$C_{22}$ $C_{21}$ $H_{21}A$	110.0
C1 - C2 - H2	121.2	$C_{21} = C_{22} = C_{17}$	118.1(4)
$C_3 - C_2 - H_2$	121.2	$C_{21} - C_{22} - C_{23}$	120.5 (4)
$C_3 = C_3 = C_2$	121.13 (18)	C1/-C22-C23	121.1 (3)
$C_3 - C_3 - C_4$	106.89 (16)	$C_{25} = C_{23} = C_{22}$	111.1 (5)
C2—C3—C4	132.0 (3)	C25—C23—C24	114.5 (5)
N2—C4—N1	127.4 (2)	C22—C23—C24	109.9 (4)
N2	122.6 (2)	C25—C23—H23A	107.0
N1—C4—C3	109.8 (2)	C22—C23—H23A	107.0
N2—C5—N3	127.1 (3)	C24—C23—H23A	107.0
N2—C5—C6	123.0 (3)	C23—C24—H24A	109.5
N3—C5—C6	109.8 (2)	C23—C24—H24B	109.5
C11—C6—C7	120.9 (3)	H24A—C24—H24B	109.5
C11—C6—C5	106.9 (2)	C23—C24—H24C	109.5
C7—C6—C5	132.2 (3)	H24A—C24—H24C	109.5
C8—C7—C6	116.9 (3)	H24B—C24—H24C	109.5
С8—С7—Н7А	121.5	C23—C25—C26	105.4 (6)
С6—С7—Н7А	121.5	C23—C25—H25A	110.7
С7—С8—С9	122.0 (3)	C26—C25—H25A	110.7
С7—С8—Н8А	119.0	C23—C25—H25B	110.7
С9—С8—Н8А	119.0	C26—C25—H25B	110.7
C10—C9—C8	121.3 (3)	H25A—C25—H25B	108.8
С10—С9—Н9А	119.4	C25—C26—H26A	109.5
С8—С9—Н9А	119.4	C25—C26—H26B	109.5
C9—C10—C11	116.9 (3)	H26A—C26—H26B	109.5
C9—C10—H10A	121.6	C25—C26—H26C	109.5
C11—C10—H10A	121.6	H26A—C26—H26C	109.5

C6—C11—C10	122.0 (3)	H26B—C26—H26C	109.5
C6-C11-C12	106.6 (2)		

Symmetry code: (i) -x, -y+1/2, z.