research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of two benzene-1,2-di­amine complexes of zinc chloride: a mol­ecular compound and a co-crystal salt

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 3 June 2016; accepted 20 June 2016; online 24 June 2016)

The structures of two zinc complexes containing bidentate benzene-1,2-di­amine ligands are reported. (Benzene-1,2-di­amine-κ2N,N′)di­chloro­idozinc, [ZnCl2(C6H8N2)], (I), displays a distorted tetra­hedral coordination sphere for the metal cation. The di­amine ligand and the Zn atom reside on a crystallographic mirror plane. In the 1:1 co-crystal salt trans-di­aqua­bis­(4,5-di­methyl­benzene-1,2-di­amine-κ2N,N′)zinc chloride–4,5-di­methyl­benzene-1,2-di­amine (1/1), [Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2, (II), the zinc(II) complex cation exhibits a tetra­gonally distorted octa­hedral coordination sphere. The Zn atom sits on a crystallographically imposed inversion center and the di­amine ligands are tilted 30.63 (6)° with respect to the ZnN4 plane. Both complexes exhibit extensive hydrogen bonding. In (I), a stacked-sheet extended structure parallel to (101) is observed. In (II), the co-crystallized di­amine is hydrogen-bonded to the complex cation via O—H⋯N and N—H⋯N linkages. These units are in turn linked into planes along (200) by O—H⋯Cl and N—H⋯Cl hydrogen bonds.

1. Chemical context

Zinc complexes bearing aryl di­imine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum (DeStefano & Geiger, 2016[DeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491-497.]; Tan et al., 2012[Tan, R., Wang, Z.-B., Li, Y., Kozera, D. J., Lu, Z.-H. & Song, D. (2012). Inorg. Chem. 51, 7039-7049.]; Liu et al., 2010[Liu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795-4805.]; Xu et al., 2008[Xu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517-15525.]; Yue et al., 2006[Yue, S.-M., Xu, H.-B., Ma, J.-F., Su, Z.-M., Kan, Y.-H. & Zhang, H.-J. (2006). Polyhedron, 25, 635-644.]; Singh et al., 2011[Singh, K., Kumar, A., Srivastava, R., Kadyan, P. S., Kamalasanan, M. N. & Singh, I. (2011). Opt. Mater. 34, 221-227.]; Wang et al., 2010[Wang, C.-J., Yue, K.-F., Zhang, W.-H., Jin, J.-C., Huang, X.-Y. & Wang, Y.-Y. (2010). Inorg. Chem. Commun. 13, 1332-1336.]). These complexes have potential use in photooptical devices because of their high thermal stability and the ability to tune their color by varying ancillary ligands and coordination geometry (Xu et al., 2008[Xu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517-15525.]). Most of the compounds explored have acetate ligands. Substituting acetate with halide ligands provides an avenue for modulating the electronic structure of the complex and, hence, the carrier transport character. Toward that end, we have characterized several zinc complexes possessing benzene-1,2-di­amine ligands (Geiger, 2012[Geiger, D. K. (2012). Acta Cryst. E68, m1040.]; Geiger & Parsons, 2014[Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.]) and substituted benzimidazole ligands (DeStefano & Geiger, 2016[DeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491-497.]). The benzene-1,2-di­amine-containing complexes previously reported have a monodentate di­amine coordination mode. We report herein two new zinc complexes containing bidentate benzene-1,2-di­amine ligands: (benzene-1,2-di­amine-κ2N,N′)di­chlor­idozinc, (I), and the 1:1 co-crystal salt trans-di­aqua­bis­(4,5-di­methyl­benzene-1,2-di­amine-κ2N,N′)zinc chloride 4,5-di­methyl­benzene-1,2-di­amine, (II)[link].

[Scheme 1]
[Scheme 2]

2. Structural commentary

As seen in Fig. 1[link], compound (I) exhibits a distorted tetra­hedral coordination sphere for the metal cation. Tables 1[link] and 2[link] give relevant geometric parameters found in the coordination sphere. The di­amine ligand and the Zn atom sit on a mirror plane and, hence, are rigorously planar as a result of the symmetry constraint. The Zn—N bond lengths observed at the two temperatures are the same within the calculated s.u.s. The Zn—Cl bond lengths differ within the s.u.s, with the 200 K structure being 0.0030 (5) Å longer. The bond lengths observed at both temperatures fall within the s.u. of the average value [2.221 (19) Å] of similar complexes but the Cl—Zn—Cl bond angles are smaller than the average of the values [115 (1)°] reported for similar ZnII dichlorides in a tetra­hedral environment (Shi et al., 2010[Shi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593.]; You, 2005[You, Z.-L. (2005). Acta Cryst. C61, m383-m385.]; Lee et al., 2007[Lee, N. Y., Yoon, J. U. & Jeong, J. H. (2007). Acta Cryst. E63, m2471.]).

Table 1
Selected geometric parameters (Å, °) for (Ia)[link]

Zn1—Cl1 2.2271 (5) Zn1—N2 2.0454 (18)
Zn1—N1 2.0449 (19)    
       
Cl1—Zn1—Cl1i 110.82 (2) N1—Zn1—Cl1 113.82 (3)
N1—Zn1—N2 85.53 (8) N2—Zn1—Cl1 115.42 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Table 2
Selected geometric parameters (Å, °) for (Ib)[link]

Zn1—Cl1 2.2301 (5) Zn1—N2 2.045 (3)
Zn1—N1 2.047 (2)    
       
Cl1—Zn1—Cl1i 110.70 (3) N1—Zn1—Cl1 113.89 (4)
N1—Zn1—N2 85.45 (10) N2—Zn1—Cl1 115.46 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of (Ia), showing the atom-labeling scheme. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry code: (a) x, −y + [{3\over 2}], z.]

Compound (II)[link] consists of a ZnII complex cation with two bidentate 4,5-di­methyl­benzene-1,2-di­amine ligands and trans water ligands, chloride counter-ions and a non-coordinating mol­ecule of 4,5-di­methyl­benzene-1,2-di­amine. The compound is thus classified as a co-crystal salt (Grothe et al., 2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des.16, doi: 10.1021/acs. cgd. 6b00200.]). A representation of (II)[link] is found in Fig. 2[link]. The ZnII ion sits on a crystallographically imposed center of symmetry and has a tetra­gonally distorted octa­hedral coordination geometry. The observed Zn—O bond length (Table 3[link]) is significantly longer than the average of the values [2.14 (3) Å] reported for similar trans aqua zinc(II) complexes (Necefoglu et al., 2001[Necefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m462-m464.]; İbrahim et al., 2006[İbrahim, K., Şahin, O., Filiz, Y. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1909-m1911.]; Karimnejad et al., 2011[Karimnejad, K., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m421.]; Gallardo et al., 2008[Gallardo, H., Molin, F., Bortoluzzi, A. J. & Neves, A. (2008). Acta Cryst. E64, m541-m542.]; Li et al., 2012[Li, F., Ou, X.-P. & Huang, C.-C. (2012). Acta Cryst. E68, m653-m654.]) and the range [2.008 (3) to 2.147 (3) Å] found in the hexa­aqua­zinc(II) cation (Lian et al., 2009[Lian, Z., Zhao, N., Zhang, J., Gu, Y., Li, X. & Tang, B. (2009). Z. Kristallogr. New Cryst. Struct. 224, 399-401.]). However, it is close to the 2.2057 (16) Å found in the similar cation of trans-di­aqua­bis­(cyclo­hexane-1,2-di­amine)­zinc dichloride (Karimnejad et al., 2011[Karimnejad, K., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m421.]). The plane of the 4,5-di­methyl­benzene-1,2-di­amine ligand is canted 30.63 (6) Å out of the ZnN4 coordin­ation plane. The nitro­gen atoms of the di­amine ligand are 0.022 (3) and 0.131 (3) Å out of the benzene plane for N1 and N2, respectively. For the co-crystallized di­amine, N3 and N4 are 0.139 (3) and 0.088 (3) Å out of the plane, respectively.

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Zn1—N1 2.1214 (15) Zn1—O1 2.2410 (15)
Zn1—N2 2.1442 (17)    
       
N1i—Zn1—N2 100.31 (6) N1—Zn1—O1 92.18 (7)
N1—Zn1—N2 79.69 (6) N2—Zn1—O1 93.22 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] showing the atom-labeling scheme. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry code: (a) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

As seen in Figs. 3[link] and 4[link] and Tables 4[link] and 5[link], N1—H1⋯Cl hydrogen bonds between adjacent mol­ecules result in strips of mol­ecules of (I)[link] along [100]. The strips form planes parallel to (101). Additional N2—H2⋯Cl bonds join the strips to form the three-dimensional network.

Table 4
Hydrogen-bond geometry (Å, °) for (Ia)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1ii 0.86 (2) 2.59 (2) 3.3618 (16) 150.7 (18)
N2—H2⋯Cl1iii 0.85 (2) 2.52 (2) 3.3204 (16) 157 (2)
Symmetry codes: (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Table 5
Hydrogen-bond geometry (Å, °) for (Ib)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1ii 0.83 (3) 2.61 (3) 3.368 (2) 152 (2)
N2—H2⋯Cl1iii 0.83 (3) 2.53 (3) 3.327 (2) 160 (2)
Symmetry codes: (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
A view of the parallel sheets found in (I). Only H atoms involved in the N—H⋯Cl inter­actions are shown. [Symmetry codes: (a) x, −y + [{3\over 2}], z; (b) x + [{1\over 2}], −y + [{3\over 2}], −z + [{1\over 2}]; (c) −x, −y + 1, −z + 1.]
[Figure 4]
Figure 4
A view of the parallel sheets found in (I). Only H atoms involved in the N—H⋯Cl inter­actions are shown. [Symmetry codes: (a) x, −y + [{3\over 2}], z; (b) x + [{1\over 2}], −y + [{3\over 2}], −z + [{1\over 2}]; (d) x + [{1\over 2}], y, −z + [{1\over 2}]; (e) x − [{1\over 2}], −y + [{3\over 2}], −z + [{1\over 2}].]

Fig. 5[link] presents a view of the hydrogen-bonding network in (II)[link]. N—H⋯N and O—H⋯N hydrogen bonds connect inversion-related co-crystallized 4,5-di­methyl­benzene-1,2-di­amine mol­ecules to the complex cation (see Table 6[link]). Additional N—H⋯Cl and O—H⋯Cl hydrogen bonds join the units, forming planes parallel to (200).

Table 6
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1WA⋯N4ii 0.81 (3) 2.13 (3) 2.924 (3) 164 (2)
O1—H1WB⋯Cl1iii 0.80 (3) 2.31 (3) 3.1083 (17) 173 (2)
N1—H1A⋯Cl1iii 0.84 (2) 2.55 (2) 3.3551 (18) 160.3 (18)
N1—H1B⋯N3iv 0.85 (2) 2.31 (2) 3.137 (3) 162.6 (18)
N2—H2A⋯Cl1v 0.87 (2) 2.63 (2) 3.4401 (19) 155.3 (18)
N2—H2B⋯Cl1i 0.81 (2) 2.57 (2) 3.3105 (18) 154 (2)
N3—H3A⋯Cl1v 0.84 (3) 2.68 (3) 3.516 (2) 174 (2)
N3—H3B⋯Cl1vi 0.87 (3) 2.89 (2) 3.3284 (19) 112.9 (18)
N4—H4B⋯Cl1v 0.87 (3) 2.50 (3) 3.355 (2) 171 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+2.
[Figure 5]
Figure 5
A view of the hydrogen-bonded network of (II)[link] resulting in slabs along (200). Only H atoms bonded to the nitro­gen atoms are shown. [Symmetry codes: (a) −x + 1, −y + 1, −z + 1; (b) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (c) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (d) −x + 1, −y + 1, −z + 2.]

4. Database survey

The structures of the tetra­hedral complexes bis­(acetato-κO)(benzene-1,2-di­amine-κN)zinc (Mei et al., 2009[Mei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871-873.]) and bis(acetato-κO)(4,5-di­methyl­benzene-1,2-di­amine-κN)zinc (Geiger, 2012[Geiger, D. K. (2012). Acta Cryst. E68, m1040.]) have been reported. Poly[[tris­(μ2-acetato-κ2O:O′)(4-chloro­benzene-1,2-di­amine-κN)(μ3-hydroxido)dizinc] ethanol monosolvate] exhibits alternating octa­hedral and tetra­hedral zinc coordination modes (Geiger & Parsons, 2014[Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.]). Di­chlorido­[N-(2-pyridyl­methyl­idene)benzene-1,4-di­amine]­zinc has a tetra­hedral coordination sphere with inter­molecular N—H⋯Cl hydrogen bonds (Shi et al., 2010[Shi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593.]). Di­chlorido­[N,N,N′,N′-tetra­methyl­cyclo­hexane-1,2-di­amine-κ2N,N′]zinc displays a tetra­hedral coordination geometry (Lee et al., 2007[Lee, N. Y., Yoon, J. U. & Jeong, J. H. (2007). Acta Cryst. E63, m2471.]). For examples of zinc complexes with the metal in octahedral coordination including trans water ligands, see İbrahim et al. (2006[İbrahim, K., Şahin, O., Filiz, Y. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1909-m1911.]); Necefoglu et al. (2001[Necefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m462-m464.]); Karimnejad et al. (2011[Karimnejad, K., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m421.]). A tetra­gonally distorted octa­hedral zinc complex that contains both a mono- and a bidentate benzene-1,2-di­amine ligand (Qian et al., 2007[Qian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930.]) and a distorted octa­hedral complex with trans monodentate benzene-1,2-di­amine ligands (Ovalle-Marroquín et al., 2002[Ovalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269-m271.]) have been reported.

5. Synthesis and crystallization

Compound (I) was prepared by mixing a solution of 100. mg (0.734 mmol) zinc chloride dissolved in approximately 5 mL ethanol with a solution of 238 mg (2.20 mmol) benzene-1,2-di­amine dissolved in approximately 5 mL ethanol. The mixture became cloudy with a fine white precipitate. After the addition of 4 drops of 6 M HCl, the mixture was gently heated, filtered and allowed to slowly evaporate. After two days, 0.0273 g (0.117 mmol, 15% yield) of clear, colorless crystals were isolated, which were used for data collection. The diffraction pattern showed signs of degradation as the temperature was lowered to 200 K from 300 K and so data sets were collected at both temperatures.

Compound (II)[link] was prepared by combining solutions of 100 mg (0.734 mmole) zinc chloride in a few mL of ethanol and 300 mg (2.20 mmol) 4,5-di­methyl­benzene-1,2-di­amine in a few mL of ethanol. After the addition of 4 drops of 6 M HCl, the mixture was gently heated and filtered. The filtrate was divided into three portions and each allowed to slowly evaporate. After several days, a small number of clear, colorless crystals in the shape of hexa­gonal plates were isolated, one of which was used for data collection.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. For compound (I), data sets were collected at 300 K (Ia) and 200 K (Ib). The diffraction pattern showed clear degradation at the lower temperature. Examination of the crystal subjected to the cold stream showed fractures that were not previously present. As seen in Table 7[link], the cell constant s.u.s, R values and S values are lower for the 300 K data set.

Table 7
Experimental details

  (Ia) (Ib) (II)
Crystal data
Chemical formula [ZnCl2(C6H8N2)] [ZnCl2(C6H8N2)] [Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2
Mr 244.41 244.41 717.08
Crystal system, space group Orthorhombic, Pnma Orthorhombic, Pnma Monoclinic, P21/c
Temperature (K) 300 200 200
a, b, c (Å) 8.4039 (9), 7.5206 (7), 14.1667 (15) 8.4152 (12), 7.5141 (9), 14.199 (2) 18.529 (2), 12.6227 (16), 7.8691 (8)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 94.665 (4), 90
V3) 895.37 (16) 897.8 (2) 1834.4 (4)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.27 3.27 0.86
Crystal size (mm) 0.60 × 0.30 × 0.20 0.60 × 0.30 × 0.20 0.60 × 0.40 × 0.10
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.39, 0.56 0.40, 0.56 0.66, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 9435, 1129, 1026 4392, 1090, 992 25430, 3619, 2920
Rint 0.039 0.040 0.060
(sin θ/λ)max−1) 0.658 0.649 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.09 0.027, 0.074, 1.16 0.031, 0.079, 1.05
No. of reflections 1129 1090 3619
No. of parameters 72 72 245
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.40 0.41, −0.58 0.31, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For both (I) and (II)[link], all hydrogen atoms were located in difference Fourier maps. For (I), all hydrogen atoms bonded to the nitro­gen atoms were refined freely, including isotropic displacement parameters. For (Ia), the hydrogen atoms bonded to the benzene carbon atoms were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), whereas these hydrogen atoms were refined with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for (Ib).

For (II)[link], the amine hydrogen atoms of the non-coordinating 4,5-di­methyl­benzene-1,2-di­amine were refined freely, including the isotropic displacement parameters. For the hydrogen atoms of the coordinating amines, the atomic coord­inates were refined freely with Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the water ligands were refined freely, including the isotropic displacement parameters. The methyl hydrogen atoms were refined with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(Ia) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc top
Crystal data top
[ZnCl2(C6H8N2)]Dx = 1.813 Mg m3
Mr = 244.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 6300 reflections
a = 8.4039 (9) Åθ = 2.8–29.2°
b = 7.5206 (7) ŵ = 3.27 mm1
c = 14.1667 (15) ÅT = 300 K
V = 895.37 (16) Å3Parallelpiped, colorless
Z = 40.60 × 0.30 × 0.20 mm
F(000) = 488
Data collection top
Bruker SMART X2S benchtop
diffractometer
1129 independent reflections
Radiation source: sealed microfocus tube1026 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.039
Detector resolution: 8.3330 pixels mm-1θmax = 27.9°, θmin = 2.8°
/w scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 98
Tmin = 0.39, Tmax = 0.56l = 1815
9435 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.2253P]
where P = (Fo2 + 2Fc2)/3
1129 reflections(Δ/σ)max = 0.001
72 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.12910 (3)0.750.38035 (2)0.03301 (10)
N10.3667 (2)0.750.34928 (13)0.0359 (5)
H10.393 (2)0.656 (3)0.3182 (15)0.050 (6)*
N20.1999 (2)0.750.51849 (13)0.0362 (5)
H20.162 (3)0.660 (3)0.5468 (16)0.057 (6)*
Cl10.00181 (5)0.50621 (6)0.33277 (3)0.04250 (13)
C10.4560 (3)0.750.43712 (14)0.0301 (4)
C20.3724 (2)0.750.52146 (14)0.0293 (4)
C30.4541 (3)0.750.60645 (15)0.0406 (5)
H30.39820.750.66310.049*
C40.6191 (3)0.750.60699 (19)0.0496 (7)
H40.67420.750.66390.059*
C50.7007 (3)0.750.5231 (2)0.0508 (7)
H50.81140.750.52360.061*
C60.6208 (3)0.750.43830 (19)0.0434 (6)
H60.67740.750.38190.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03143 (15)0.04349 (19)0.02409 (14)00.00277 (9)0
N10.0353 (10)0.0523 (14)0.0200 (8)00.0028 (7)0
N20.0357 (10)0.0506 (14)0.0223 (8)00.0037 (7)0
Cl10.0528 (3)0.0391 (3)0.0355 (2)0.00706 (18)0.00622 (16)0.00356 (16)
C10.0339 (11)0.0307 (12)0.0258 (9)00.0001 (8)0
C20.0342 (11)0.0308 (12)0.0228 (9)00.0010 (7)0
C30.0499 (14)0.0474 (15)0.0244 (10)00.0057 (9)0
C40.0485 (15)0.0559 (18)0.0443 (14)00.0201 (11)0
C50.0354 (13)0.0582 (18)0.0587 (15)00.0093 (11)0
C60.0332 (12)0.0541 (17)0.0429 (13)00.0041 (9)0
Geometric parameters (Å, º) top
Zn1—Cl1i2.2271 (5)C5—C61.377 (4)
Zn1—Cl12.2271 (5)C5—H50.93
Zn1—N12.0449 (19)C4—C51.372 (4)
Zn1—N22.0454 (18)C4—H40.93
N2—C21.451 (3)C3—C41.387 (4)
N2—H20.85 (2)C3—H30.93
N1—C11.453 (3)C2—C31.386 (3)
N1—H10.86 (2)C1—C21.386 (3)
C6—H60.93C1—C61.385 (3)
Cl1—Zn1—Cl1i110.82 (2)C4—C5—C6120.8 (2)
N1—Zn1—N285.53 (8)C6—C5—H5119.6
N1—Zn1—Cl1113.82 (3)C4—C5—H5119.6
N2—Zn1—Cl1115.42 (3)C5—C4—C3119.7 (2)
N2—Zn1—Cl1i115.42 (3)C5—C4—H4120.2
N1—Zn1—Cl1i113.82 (3)C3—C4—H4120.2
Zn1—N2—H2110.1 (15)C2—C3—C4120.0 (2)
C2—N2—H2111.3 (15)C4—C3—H3120.0
C2—N2—Zn1108.56 (13)C2—C3—H3120.0
Zn1—N1—H1111.1 (14)C3—C2—C1119.8 (2)
C1—N1—H1107.8 (14)C3—C2—N2121.4 (2)
C1—N1—Zn1108.67 (13)C1—C2—N2118.81 (18)
C5—C6—C1119.9 (2)C6—C1—C2119.8 (2)
C5—C6—H6120.1C6—C1—N1121.79 (19)
C1—C6—H6120.1C2—C1—N1118.43 (19)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1ii0.86 (2)2.59 (2)3.3618 (16)150.7 (18)
N2—H2···Cl1iii0.85 (2)2.52 (2)3.3204 (16)157 (2)
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x, y+1, z+1.
(II) trans-Diaquabis(4,5-dimethylbenzene-1,2-diamine-κ2N,N')zinc chloride–4,5-dimethylbenzene-1,2-diamine (1/2) top
Crystal data top
[Zn(C8H12N2)2(H2O)2]Cl2·2C8H12N2F(000) = 760
Mr = 717.08Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.529 (2) ÅCell parameters from 8719 reflections
b = 12.6227 (16) Åθ = 2.7–25.8°
c = 7.8691 (8) ŵ = 0.86 mm1
β = 94.665 (4)°T = 200 K
V = 1834.4 (4) Å3Plate, clear colourless
Z = 20.60 × 0.40 × 0.10 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3619 independent reflections
Radiation source: sealed microfocus tube2920 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.060
Detector resolution: 8.3330 pixels mm-1θmax = 26.0°, θmin = 2.7°
/w scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1515
Tmin = 0.66, Tmax = 0.92l = 99
25430 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.4174P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3619 reflectionsΔρmax = 0.31 e Å3
245 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50.50.50.02953 (11)
Cl10.45668 (3)0.33892 (4)1.02374 (6)0.03564 (13)
O10.56720 (9)0.42255 (13)0.31090 (19)0.0392 (4)
H1WA0.6043 (14)0.447 (2)0.278 (3)0.051 (8)*
H1WB0.5410 (14)0.403 (2)0.231 (3)0.058 (8)*
N10.40508 (8)0.41964 (13)0.4016 (2)0.0274 (3)
H1A0.4163 (11)0.3837 (17)0.317 (3)0.033*
H1B0.3870 (11)0.3749 (17)0.468 (3)0.033*
N20.45593 (9)0.61470 (14)0.3192 (2)0.0322 (4)
H2A0.4637 (11)0.6792 (18)0.355 (3)0.039*
H2B0.4755 (12)0.6043 (17)0.233 (3)0.039*
N30.67491 (11)0.80052 (17)0.8184 (3)0.0422 (4)
H3A0.6415 (14)0.807 (2)0.741 (3)0.056 (8)*
H3B0.6781 (12)0.736 (2)0.859 (3)0.050 (7)*
N40.68407 (11)0.98800 (18)0.6276 (3)0.0408 (4)
H4A0.6917 (13)1.035 (2)0.560 (3)0.058 (8)*
H4B0.6509 (14)0.947 (2)0.579 (3)0.053 (7)*
C10.35297 (10)0.49852 (14)0.3405 (2)0.0261 (4)
C20.37896 (10)0.59711 (15)0.2950 (2)0.0280 (4)
C30.33004 (11)0.67499 (16)0.2373 (2)0.0356 (5)
H30.34790.74160.20310.043*
C40.25549 (11)0.65820 (17)0.2281 (2)0.0385 (5)
C50.22942 (10)0.56000 (18)0.2798 (2)0.0373 (5)
C60.27863 (10)0.48108 (16)0.3337 (2)0.0325 (5)
H60.26110.4140.36660.039*
C70.20454 (14)0.7463 (2)0.1635 (3)0.0584 (7)
H7A0.23280.80850.13510.088*
H7B0.17260.76510.25220.088*
H7C0.17530.72210.06150.088*
C80.14910 (12)0.5376 (2)0.2831 (3)0.0575 (7)
H8A0.12480.54960.16940.086*
H8B0.12850.58490.36530.086*
H8C0.14210.46380.31680.086*
C90.74336 (10)0.84050 (16)0.7842 (2)0.0337 (4)
C100.74828 (10)0.93442 (16)0.6917 (2)0.0330 (4)
C110.81603 (12)0.97694 (17)0.6739 (3)0.0389 (5)
H110.81931.04040.610.047*
C120.87968 (11)0.93093 (19)0.7455 (3)0.0437 (5)
C130.87500 (12)0.83640 (19)0.8363 (3)0.0441 (5)
C140.80689 (12)0.79322 (18)0.8537 (2)0.0403 (5)
H140.80360.72890.91540.048*
C150.95146 (14)0.9844 (2)0.7237 (4)0.0706 (8)
H15A0.97670.99770.8360.106*
H15B0.94291.05180.66360.106*
H15C0.98120.93840.65750.106*
C160.94172 (14)0.7809 (3)0.9159 (3)0.0710 (8)
H16A0.97450.76510.82750.107*
H16B0.92750.71470.96910.107*
H16C0.96640.82681.00260.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02417 (16)0.03331 (19)0.03039 (18)0.00446 (13)0.00213 (12)0.00003 (13)
Cl10.0358 (3)0.0413 (3)0.0299 (3)0.0041 (2)0.00360 (19)0.0004 (2)
O10.0308 (8)0.0510 (10)0.0362 (9)0.0069 (7)0.0048 (7)0.0091 (7)
N10.0275 (8)0.0270 (9)0.0280 (9)0.0030 (7)0.0028 (7)0.0012 (7)
N20.0310 (9)0.0344 (9)0.0318 (9)0.0076 (7)0.0061 (7)0.0018 (8)
N30.0411 (11)0.0428 (12)0.0436 (11)0.0114 (9)0.0094 (9)0.0012 (9)
N40.0359 (10)0.0443 (12)0.0422 (11)0.0001 (9)0.0027 (8)0.0053 (10)
C10.0261 (9)0.0311 (10)0.0209 (9)0.0002 (8)0.0004 (7)0.0021 (8)
C20.0287 (9)0.0329 (10)0.0225 (9)0.0024 (8)0.0019 (7)0.0002 (8)
C30.0435 (11)0.0314 (11)0.0318 (11)0.0007 (9)0.0024 (9)0.0035 (8)
C40.0401 (11)0.0471 (13)0.0279 (10)0.0131 (10)0.0005 (8)0.0020 (9)
C50.0279 (10)0.0544 (14)0.0297 (10)0.0019 (9)0.0020 (8)0.0012 (9)
C60.0273 (10)0.0400 (12)0.0301 (10)0.0055 (8)0.0024 (8)0.0004 (8)
C70.0582 (15)0.0603 (17)0.0559 (15)0.0239 (13)0.0010 (12)0.0009 (12)
C80.0301 (12)0.0844 (19)0.0582 (15)0.0066 (12)0.0043 (11)0.0051 (13)
C90.0359 (11)0.0376 (12)0.0288 (10)0.0068 (9)0.0093 (8)0.0070 (9)
C100.0354 (11)0.0364 (11)0.0276 (10)0.0011 (9)0.0060 (8)0.0047 (8)
C110.0405 (12)0.0393 (12)0.0379 (11)0.0076 (9)0.0089 (9)0.0030 (9)
C120.0342 (11)0.0583 (15)0.0394 (12)0.0083 (10)0.0071 (9)0.0055 (11)
C130.0389 (12)0.0572 (15)0.0361 (11)0.0042 (11)0.0025 (9)0.0024 (10)
C140.0493 (13)0.0380 (12)0.0342 (11)0.0031 (10)0.0069 (9)0.0025 (9)
C150.0383 (14)0.100 (2)0.0741 (19)0.0179 (14)0.0070 (13)0.0068 (16)
C160.0503 (15)0.095 (2)0.0656 (17)0.0143 (15)0.0073 (13)0.0084 (16)
Geometric parameters (Å, º) top
Zn1—N1i2.1214 (15)C4—C71.519 (3)
Zn1—N12.1214 (15)C5—C61.393 (3)
Zn1—N22.1442 (17)C5—C81.517 (3)
Zn1—N2i2.1442 (17)C6—H60.95
Zn1—O1i2.2409 (15)C7—H7A0.98
Zn1—O12.2410 (15)C7—H7B0.98
O1—H1WA0.81 (3)C7—H7C0.98
O1—H1WB0.80 (3)C8—H8A0.98
N1—C11.442 (2)C8—H8B0.98
N1—H1A0.84 (2)C8—H8C0.98
N1—H1B0.85 (2)C9—C141.391 (3)
N2—C21.441 (2)C9—C101.398 (3)
N2—H2A0.87 (2)C10—C111.383 (3)
N2—H2B0.81 (2)C11—C121.392 (3)
N3—C91.411 (3)C11—H110.95
N3—H3A0.84 (3)C12—C131.397 (3)
N3—H3B0.87 (3)C12—C151.514 (3)
N4—C101.425 (3)C13—C141.392 (3)
N4—H4A0.81 (3)C13—C161.512 (3)
N4—H4B0.87 (3)C14—H140.95
C1—C61.392 (2)C15—H15A0.98
C1—C21.392 (3)C15—H15B0.98
C2—C31.388 (3)C15—H15C0.98
C3—C41.393 (3)C16—H16A0.98
C3—H30.95C16—H16B0.98
C4—C51.403 (3)C16—H16C0.98
N1i—Zn1—N1180.0C6—C5—C4119.21 (18)
N1i—Zn1—N2100.31 (6)C6—C5—C8118.7 (2)
N1—Zn1—N279.69 (6)C4—C5—C8122.1 (2)
N1i—Zn1—N2i79.69 (6)C1—C6—C5121.32 (19)
N1—Zn1—N2i100.31 (6)C1—C6—H6119.3
N2—Zn1—N2i180.0C5—C6—H6119.3
N1i—Zn1—O1i92.18 (7)C4—C7—H7A109.5
N1—Zn1—O1i87.82 (7)C4—C7—H7B109.5
N2—Zn1—O1i86.78 (7)H7A—C7—H7B109.5
N2i—Zn1—O1i93.22 (7)C4—C7—H7C109.5
N1i—Zn1—O187.82 (7)H7A—C7—H7C109.5
N1—Zn1—O192.18 (7)H7B—C7—H7C109.5
N2—Zn1—O193.22 (7)C5—C8—H8A109.5
N2i—Zn1—O186.78 (7)C5—C8—H8B109.5
O1i—Zn1—O1180.00 (5)H8A—C8—H8B109.5
Zn1—O1—H1WA124.6 (18)C5—C8—H8C109.5
Zn1—O1—H1WB108.7 (18)H8A—C8—H8C109.5
H1WA—O1—H1WB110 (2)H8B—C8—H8C109.5
C1—N1—Zn1107.71 (12)C14—C9—C10118.65 (18)
C1—N1—H1A108.0 (14)C14—C9—N3121.1 (2)
Zn1—N1—H1A107.1 (14)C10—C9—N3120.01 (19)
C1—N1—H1B111.9 (14)C11—C10—C9118.68 (19)
Zn1—N1—H1B116.6 (13)C11—C10—N4121.26 (19)
H1A—N1—H1B105 (2)C9—C10—N4119.93 (18)
C2—N2—Zn1107.66 (11)C10—C11—C12122.9 (2)
C2—N2—H2A108.9 (14)C10—C11—H11118.5
Zn1—N2—H2A111.8 (14)C12—C11—H11118.5
C2—N2—H2B111.9 (15)C11—C12—C13118.52 (19)
Zn1—N2—H2B106.0 (16)C11—C12—C15119.4 (2)
H2A—N2—H2B111 (2)C13—C12—C15122.0 (2)
C9—N3—H3A116.8 (17)C14—C13—C12118.65 (19)
C9—N3—H3B111.6 (16)C14—C13—C16119.7 (2)
H3A—N3—H3B112 (2)C12—C13—C16121.7 (2)
C10—N4—H4A113.0 (18)C9—C14—C13122.6 (2)
C10—N4—H4B114.7 (17)C9—C14—H14118.7
H4A—N4—H4B107 (2)C13—C14—H14118.7
C6—C1—C2119.58 (17)C12—C15—H15A109.5
C6—C1—N1122.50 (17)C12—C15—H15B109.5
C2—C1—N1117.84 (16)H15A—C15—H15B109.5
C3—C2—C1119.14 (17)C12—C15—H15C109.5
C3—C2—N2123.19 (18)H15A—C15—H15C109.5
C1—C2—N2117.59 (16)H15B—C15—H15C109.5
C2—C3—C4121.84 (19)C13—C16—H16A109.5
C2—C3—H3119.1C13—C16—H16B109.5
C4—C3—H3119.1H16A—C16—H16B109.5
C3—C4—C5118.86 (18)C13—C16—H16C109.5
C3—C4—C7119.5 (2)H16A—C16—H16C109.5
C5—C4—C7121.6 (2)H16B—C16—H16C109.5
Zn1—N1—C1—C6152.85 (15)C4—C5—C6—C11.3 (3)
Zn1—N1—C1—C224.00 (19)C8—C5—C6—C1177.21 (19)
C6—C1—C2—C32.4 (3)C14—C9—C10—C110.4 (3)
N1—C1—C2—C3179.38 (16)N3—C9—C10—C11173.98 (18)
C6—C1—C2—N2174.28 (17)C14—C9—C10—N4176.29 (18)
N1—C1—C2—N22.7 (2)N3—C9—C10—N41.9 (3)
Zn1—N2—C2—C3156.68 (15)C9—C10—C11—C120.7 (3)
Zn1—N2—C2—C119.9 (2)N4—C10—C11—C12175.16 (19)
C1—C2—C3—C41.8 (3)C10—C11—C12—C131.4 (3)
N2—C2—C3—C4174.74 (17)C10—C11—C12—C15178.3 (2)
C2—C3—C4—C50.4 (3)C11—C12—C13—C141.1 (3)
C2—C3—C4—C7179.85 (18)C15—C12—C13—C14178.7 (2)
C3—C4—C5—C61.9 (3)C11—C12—C13—C16179.2 (2)
C7—C4—C5—C6178.34 (19)C15—C12—C13—C161.0 (3)
C3—C4—C5—C8176.51 (19)C10—C9—C14—C130.7 (3)
C7—C4—C5—C83.2 (3)N3—C9—C14—C13173.60 (19)
C2—C1—C6—C50.9 (3)C12—C13—C14—C90.0 (3)
N1—C1—C6—C5177.72 (17)C16—C13—C14—C9179.7 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···N4ii0.81 (3)2.13 (3)2.924 (3)164 (2)
O1—H1WB···Cl1iii0.80 (3)2.31 (3)3.1083 (17)173 (2)
N1—H1A···Cl1iii0.84 (2)2.55 (2)3.3551 (18)160.3 (18)
N1—H1B···N3iv0.85 (2)2.31 (2)3.137 (3)162.6 (18)
N2—H2A···Cl1v0.87 (2)2.63 (2)3.4401 (19)155.3 (18)
N2—H2B···Cl1i0.81 (2)2.57 (2)3.3105 (18)154 (2)
N3—H3A···Cl1v0.84 (3)2.68 (3)3.516 (2)174 (2)
N3—H3B···Cl1vi0.87 (3)2.89 (2)3.3284 (19)112.9 (18)
N4—H4B···Cl1v0.87 (3)2.50 (3)3.355 (2)171 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y, z1; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y+1, z+2.
(Ib) (Benzene-1,2-diamine-κ2N,N')dichloroidozinc top
Crystal data top
[ZnCl2(C6H8N2)]Dx = 1.808 Mg m3
Mr = 244.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 2561 reflections
a = 8.4152 (12) Åθ = 2.8–29.2°
b = 7.5141 (9) ŵ = 3.27 mm1
c = 14.199 (2) ÅT = 200 K
V = 897.8 (2) Å3Prism, clear colourless
Z = 40.60 × 0.30 × 0.20 mm
F(000) = 488
Data collection top
Bruker SMART X2S benchtop
diffractometer
1090 independent reflections
Radiation source: XOS X-beam microfocus source992 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.040
Detector resolution: 8.3330 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 105
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 89
Tmin = 0.40, Tmax = 0.56l = 1518
4392 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0377P)2]
where P = (Fo2 + 2Fc2)/3
1090 reflections(Δ/σ)max < 0.001
72 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.12938 (3)0.750.38034 (2)0.03201 (15)
N10.3669 (2)0.750.3494 (2)0.0343 (6)
H10.388 (2)0.661 (3)0.318 (2)0.040 (7)*
N20.2002 (3)0.750.51812 (18)0.0354 (6)
H20.165 (3)0.666 (3)0.550 (2)0.047 (7)*
Cl10.00184 (5)0.50585 (6)0.33279 (4)0.04089 (18)
C10.4559 (3)0.750.4370 (2)0.0294 (6)
C20.3728 (3)0.750.5215 (2)0.0284 (6)
C30.4543 (4)0.750.6066 (2)0.0402 (7)
H30.39730.750.66440.048*
C40.6198 (4)0.750.6068 (3)0.0482 (9)
H40.67610.750.66480.058*
C50.7015 (4)0.750.5231 (3)0.0493 (8)
H50.81440.750.52370.059*
C60.6220 (3)0.750.4382 (3)0.0423 (8)
H60.67980.750.38070.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0301 (2)0.0408 (3)0.0251 (2)00.00244 (10)0
N10.0345 (12)0.0468 (18)0.0216 (12)00.0024 (8)0
N20.0346 (12)0.0469 (17)0.0246 (12)00.0041 (9)0
Cl10.0502 (3)0.0367 (3)0.0358 (3)0.0066 (2)0.0058 (2)0.0032 (2)
C10.0341 (12)0.0282 (14)0.0259 (13)00.0001 (10)0
C20.0309 (13)0.0289 (14)0.0253 (14)00.0005 (9)0
C30.0498 (16)0.0423 (17)0.0283 (15)00.0035 (12)0
C40.0487 (18)0.051 (2)0.045 (2)00.0201 (14)0
C50.0331 (14)0.053 (2)0.061 (2)00.0120 (14)0
C60.0331 (14)0.051 (2)0.0425 (19)00.0048 (11)0
Geometric parameters (Å, º) top
Zn1—Cl12.2301 (5)C5—C61.379 (5)
Zn1—Cl1i2.2301 (5)C5—H50.95
Zn1—N12.047 (2)C4—C51.373 (5)
Zn1—N22.045 (3)C4—H40.95
N2—C21.453 (3)C3—C41.393 (4)
N2—H20.83 (3)C3—H30.95
N1—C11.452 (4)C2—C31.389 (4)
N1—H10.83 (3)C1—C21.388 (4)
C6—H60.95C1—C61.398 (3)
Cl1—Zn1—Cl1i110.70 (3)C4—C5—C6120.9 (3)
N1—Zn1—N285.45 (10)C6—C5—H5119.5
N1—Zn1—Cl1113.89 (4)C4—C5—H5119.5
N2—Zn1—Cl1i115.46 (3)C5—C4—C3119.9 (3)
N2—Zn1—Cl1115.46 (3)C5—C4—H4120.0
N1—Zn1—Cl1i113.89 (4)C3—C4—H4120.0
Zn1—N2—H2114.1 (19)C2—C3—C4119.7 (3)
C2—N2—H2110.0 (17)C4—C3—H3120.2
C2—N2—Zn1108.84 (19)C2—C3—H3120.2
Zn1—N1—H1109.0 (14)C1—C2—C3120.2 (2)
C1—N1—H1111.0 (18)C3—C2—N2121.5 (3)
C1—N1—Zn1108.62 (18)C1—C2—N2118.4 (2)
C5—C6—C1119.7 (3)C2—C1—C6119.6 (3)
C5—C6—H6120.2C6—C1—N1121.7 (3)
C1—C6—H6120.2C2—C1—N1118.7 (2)
Zn1—N1—C1—C20C1—C2—C3—C40.0000 (10)
Zn1—N1—C1—C6180.0N2—C2—C3—C4180.0000 (10)
C6—C1—C2—C30.0000 (10)C2—C3—C4—C50.0000 (10)
N1—C1—C2—C3180.0000 (10)C3—C4—C5—C60.0000 (10)
C6—C1—C2—N2180.0C4—C5—C6—C10.0000 (10)
N1—C1—C2—N20.0000 (10)C2—C1—C6—C50.0000 (10)
Zn1—N2—C2—C10.0000 (10)N1—C1—C6—C5180.0000 (10)
Zn1—N2—C2—C3180.0000 (10)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1ii0.83 (3)2.61 (3)3.368 (2)152 (2)
N2—H2···Cl1iii0.83 (3)2.53 (3)3.327 (2)160 (2)
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a Congressionally-directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeStefano, M. R. & Geiger, D. K. (2016). Acta Cryst. C72, 491–497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGallardo, H., Molin, F., Bortoluzzi, A. J. & Neves, A. (2008). Acta Cryst. E64, m541–m542.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. (2012). Acta Cryst. E68, m1040.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247–m248.  CSD CrossRef IUCr Journals Google Scholar
First citationGrothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des.16, doi: 10.1021/acs. cgd. 6b00200.  Google Scholar
First citationİbrahim, K., Şahin, O., Filiz, Y. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1909–m1911.  CSD CrossRef IUCr Journals Google Scholar
First citationKarimnejad, K., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m421.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, N. Y., Yoon, J. U. & Jeong, J. H. (2007). Acta Cryst. E63, m2471.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, F., Ou, X.-P. & Huang, C.-C. (2012). Acta Cryst. E68, m653–m654.  CSD CrossRef IUCr Journals Google Scholar
First citationLian, Z., Zhao, N., Zhang, J., Gu, Y., Li, X. & Tang, B. (2009). Z. Kristallogr. New Cryst. Struct. 224, 399–401.  CAS Google Scholar
First citationLiu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795–4805.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871–873.  Web of Science CrossRef CAS Google Scholar
First citationNecefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m462–m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOvalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269–m271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y.-F., Feng, Q.-H., Zhao, W.-J., Shi, Y.-B. & Zhan, P. (2010). Acta Cryst. E66, m593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, K., Kumar, A., Srivastava, R., Kadyan, P. S., Kamalasanan, M. N. & Singh, I. (2011). Opt. Mater. 34, 221–227.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, R., Wang, Z.-B., Li, Y., Kozera, D. J., Lu, Z.-H. & Song, D. (2012). Inorg. Chem. 51, 7039–7049.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, C.-J., Yue, K.-F., Zhang, W.-H., Jin, J.-C., Huang, X.-Y. & Wang, Y.-Y. (2010). Inorg. Chem. Commun. 13, 1332–1336.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B. & Zhang, J.-W. (2008). J. Phys. Chem. C, 112, 15517–15525.  Web of Science CrossRef CAS Google Scholar
First citationYou, Z.-L. (2005). Acta Cryst. C61, m383–m385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYue, S.-M., Xu, H.-B., Ma, J.-F., Su, Z.-M., Kan, Y.-H. & Zhang, H.-J. (2006). Polyhedron, 25, 635–644.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds