

ISSN 2056-9890

Received 20 May 2016 Accepted 3 June 2016

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; density functional theory; citrate; sodium.

CCDC references: 1483449; 1483448

Supporting information: this article has supporting information at journals.iucr.org/e

Disodium hydrogen citrate sesquihydrate, $Na_2HC_6H_5O_7(H_2O)_{1.5}$

Alagappa Rammohan,^a Amy A. Sarjeant^b and James A. Kaduk^c*

^aAtlantic International University, Honolulu HI, USA, ^bDepartment of Chemistry, Northwestern University, Evanston IL, USA, and ^cIllinois Institute of Technology, Department of Chemistry, 3101 S. Dearborn St., Chicago IL 60616, USA. *Correspondence e-mail: kaduk@polycrystallography.com

The crystal structure of disodium hydrogen citrate sesquihydrate, $Na_2HC_6H_5O_7(H_2O)_{1.5}$, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carboxylic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O···O distances of 2.46 Å.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a). Four of the new structures - NaKHC₆H₅O₇, NaK₂C₆H₅O₇, Na₃C₆H₅O₇, and a second polymorph of NaH₂C₆H₅O₇ - have been published recently (Rammohan & Kaduk, 2016b,c,d,e) and two additional structures - KH₂C₆H₅O₇ and KH₂C₆H₅O₇(H₂O)₂ have been communicated to the CSD (Kaduk & Stern, 2016*a*,*b*).

research communications

Figure 1

The asymmetric unit of the DFT-optimized structure, with the atom numbering. The atoms are represented by 50% probability spheroids.

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1. The root-mean-square deviation of the non-hydrogen atoms in the refined and DFT-optimized structures is only 0.048 Å. The excellent agreement between the two structures (Fig. 2) is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). This discussion uses the DFT-optimized structure. Almost all of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a *Mercury Mogul* geometry check (Macrae *et al.*, 2008). Only the C3–O13 bond length [observed = 1.416 (2), optimized = 1.410, *Mogul* average = 1.445 (11) Å, Z-score =

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

, , ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
074 H104 012	1.070	1 303	2 465	171 1
$07 - H19 \dots 0124$	1.079	1.393	2.405	172.5
0/=111)(10012A) $013A = H16A \cdots 011A$	0.986	1.725	2.698	168.3
O13−H16···O11	0.987	1.760	2.743	173.4
$O1W - H1W \cdots O10$	0.988	1.806	2.772	165.0
O3W−H5W···O12A	0.981	1.751	2.714	165.9
O3W−H6W···O9A	0.979	1.945	2.881	159.0
$O1W-H2W\cdots O10A$	0.980	2.122	3.067	161.4
$O2W-H4W\cdots O12$	0.971	2.171	2.877	128.5
$O2W - H3W \cdot \cdot \cdot O8$	0.972	2.146	2.946	138.6
$O2W - H3W \cdots O1W$	0.972	2.503	3.166	125.3

3.3] and the C2-C3-C4-C5 torsion angle [observed = -55.7(1), optimized = -50.6°] are flagged as unusual. The standard deviation on the *Mogul* average for the C3-O13 distance is exceptionally low, resulting in the elevated Z-score. The C2-C3-C4-C5 torsion angle lies in the tail of a minority gauche conformation. None of the experimental quantities are flagged as unusual.

The two independent citrate ions in the optimized structure are very similar; the root-mean-square displacement of the non-hydrogen atoms is 0.10 Å. Both anions occur in a *gauche,trans* conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxylate and hydroxyl groups are in the normal planar arrangement. The central and one terminal carboxylate groups in each hydrogen citrate anion are deprotonated. Both citrates chelate to Na2 atom through the end carboxylate atom 08, the central carboxylate atom O10, and the hydroxyl group O13.

The four independent Na1, Na2, Na3, and Na4 cations are 6-, 7-, 6-, and 6-coordinate. The 6-coordinate Na⁺ cations are in an approximately octahedral environment. The bond-valence sums are 1.12, 1.26, 1.16, and 1.20, respectively. Only

Figure 2

Comparison of the refined and optimized structures of disodium hydrogen citrate sesquihydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

Figure 3 The 8-rings formed by edge sharing of the Na coordination polyhedra.

research communications

Figure 4 The crystal structure of $Na_2HC_6H_5O_7(H_2O)_{1.5}$, viewed down the *a* axis.

the oxygen atoms O12 and O12A do not coordinate to an Na atom; these are part of central carboxylate groups, and the Na-O distances are very long at 2.76 Å. There are one, one, one, and three water molecules in the coordination spheres of atoms Na1, Na2, Na3, and Na4.

3. Supramolecular features

The $[NaO_x \text{ coordination polyhedra } (x = 6, 7)$ share edges to form 8-ring units (Fig. 3), which are isolated from each other in the crystal structure (Fig. 4).

The OH functions of the carboxy groups, O7–H19 and O17A–H19A, form very strong hydrogen bonds to the noncoordinating atoms O12A and O12, respectively (Table 1). The experimental donor-hydrogen distances are significantly longer than the DFT-optimized ones. The refined O7–H19 and O7A–H19A distances are both 1.20 (3) Å, and the optimized distances are both 1.079 Å. The other hydrogen bonds participate in a variety of rings.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016*a*). The observed powder pattern matched that of Na₂HC₆H₅O₇(H₂O)₂ in PDF entry 00-016-1182 (de Wolff *et al.*, 1966) A reduced-cell search in the Cambridge Structural Database (Groom *et al.*, 2016) yielded 104 hits, but limiting the chemistry to C, H, Na, and O only resulted in no hits.

5. Synthesis and crystallization

The sample was purchased from Sigma–Aldrich (lot #BCBC6031V). Single crystals were isolated from the as-received material.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	Na ₂ HC ₆ H ₅ O ₇ (H ₂ O) _{1.5}
M _r	263.11
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	8.6713 (3), 10.6475 (4), 10.9961 (4)
α, β, γ (°)	68.461 (1), 79.617 (2), 81.799 (2)
$V(\text{\AA}^3)$	925.63 (6)
Ζ	4
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	2.34
Crystal size (mm)	$0.24 \times 0.14 \times 0.06$
Data collection	
Diffractometer	Bruker Kappa APEX CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2006)
T_{\min}, T_{\max}	0.652, 0.753
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9177, 3235, 3137
R _{int}	0.021
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.599
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.070, 1.10
No. of reflections	3235
No. of parameters	370
H-atom treatment	All H-atom parameters refined
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.36, -0.31

The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: *APEX2* and *SAINT* (Bruker, 2006), *XM* and *XL* (Bruker, 2004), *OLEX2* (Dolomanov *et al.*, 2009), *DIAMOND* (Brandenburg, 2006) and *Materials Studio* (Dassault Systemes, 2014).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen-atom parameters were refined.

7. DFT Calculations

A density functional geometry optimization (fixed experimental unit cell) was carried out using *CRYSTAL09* (Dovesi *et al.*, 2005). The basis sets for the C, H, and O atoms were those of Gatti *et al.* (1994), and the basis set for Na was that of Dovesi *et al.* (1991). The calculation used 8 *k*-points and the B3LYP functional, and took about 10 days on a 2.4 GHz PC. $U_{\rm iso}$ values were assigned to the optimized fractional coordinates based on the $U_{\rm eq}$ values from the refined structure.

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2004). XL and XM. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). *APEX2*, *SADABS* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Dassault Systemes (2014). *Materials Studio*. BIOVIA, San Diego CA. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &

Puschmann, H. (2009). J. Appl. Cryst. **42**, 339–341.

research communications

- Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.
- Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). *Chem. Phys.* **156**, 11–19.
- Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kaduk, J. A. & Stern, C. (2016a). Private Communication (refcodes 1446457 and 1446458). CCDC, Cambridge, England.
- Kaduk, J. A. & Stern, C. (2016b). Private Communication (refcodes 1446460 and 1446461). CCDC, Cambridge, England.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.
- Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170-173.
- Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403-406.
- Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793-796.
- Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854-857.
- Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020– 1032.
- Wolff, P. de (1966). ICDD Grant-in-Aid, PDF entry 00-016-1182.

Acta Cryst. (2016). E72, 943-946 [https://doi.org/10.1107/S2056989016009014]

Disodium hydrogen citrate sesquihydrate, Na₂HC₆H₅O₇(H₂O)_{1.5}

Alagappa Rammohan, Amy A. Sarjeant and James A. Kaduk

Computing details

Data collection: *APEX2* (Bruker, 2006) for na2c. Cell refinement: *SAINT* (Bruker, 2006) for na2c. Data reduction: *SAINT* (Bruker, 2006) for na2c. Program(s) used to solve structure: *XM* (Bruker, 2004) for na2c. Program(s) used to refine structure: *XL* (Bruker, 2004) for na2c. Molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009), *DIAMOND* (Brandenburg, 2006) and *Materials Studio* (Dassault Systemes, 2014) for na2c. Software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) for na2c.

(na2c) Disodium hydrogen citrate sesquihydrate

Crystal data

2Na⁺·C₆H₆O₇²⁻·1.5H₂O $M_r = 263.11$ Triclinic, $P\overline{1}$ a = 8.6713 (3) Å b = 10.6475 (4) Å c = 10.9961 (4) Å a = 68.461 (1)° $\beta = 79.617$ (2)° $\gamma = 81.799$ (2)° V = 925.63 (6) Å³

Data collection

Bruker Kappa APEX CCD area detector diffractometer Radiation source: microsource MX optics monochromator Detector resolution: 8 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\min} = 0.652, T_{\max} = 0.753$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.070$ S = 1.103235 reflections 370 parameters 0 restraints Z = 4 F(000) = 540 $D_x = 1.888 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 7113 reflections $\theta = 4.4-67.1^{\circ}$ $\mu = 2.34 \text{ mm}^{-1}$ T = 100 KRod, colourless $0.24 \times 0.14 \times 0.06 \text{ mm}$

9177 measured reflections 3235 independent reflections 3137 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 67.6^{\circ}, \theta_{min} = 4.4^{\circ}$ $h = -7 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 12$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 0.4756P]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} = 0.002$$

 $\Delta\rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$$

Special details

Experimental. *SADABS* (Bruker,2006) was used for absorption correction. R(int) was 0.0787 before and 0.0318 after correction. The Ratio of minimum to maximum transmission is 0.8655. The $\lambda/2$ correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nal	-0.36905 (6)	0.67174 (5)	1.09406 (5)	0.01145 (13)	
Na2	-0.26692 (6)	0.20337 (5)	0.79550 (5)	0.01118 (14)	
Na3	0.08801 (6)	1.08405 (5)	0.67885 (5)	0.01112 (13)	
Na4	0.34928 (6)	0.86038 (5)	0.85665 (5)	0.01460 (14)	
O1W	0.26747 (14)	0.99605 (11)	0.99770 (10)	0.0155 (2)	
H1W	0.333 (3)	1.053 (3)	0.943 (3)	0.047 (7)*	
H2W	0.181 (3)	1.034 (2)	0.983 (2)	0.037 (6)*	
O2W	0.62348 (12)	0.82465 (11)	0.87230 (11)	0.0161 (2)	
H3W	0.679 (3)	0.886 (3)	0.849 (3)	0.047 (7)*	
H4W	0.647 (4)	0.789 (3)	0.814 (3)	0.067 (9)*	
O3W	0.09169 (12)	0.84523 (10)	0.82906 (11)	0.0134 (2)	
H5W	0.065 (3)	0.813 (2)	0.779 (2)	0.036 (6)*	
H6W	0.029 (3)	0.813 (2)	0.901 (2)	0.029 (5)*	
O7	-0.16831 (11)	0.95459 (10)	0.52380 (9)	0.0127 (2)	
08	-0.20033 (11)	1.04882 (10)	0.67830 (9)	0.0123 (2)	
09	-0.63550 (11)	1.06594 (9)	0.68976 (9)	0.0109 (2)	
O10	-0.53711 (11)	1.17365 (9)	0.79545 (9)	0.0107 (2)	
011	-0.46736 (11)	1.50841 (9)	0.30164 (9)	0.0108 (2)	
O12	-0.49461 (11)	1.33279 (9)	0.24551 (9)	0.0114 (2)	
013	-0.36210 (11)	1.32227 (10)	0.57450 (9)	0.0098 (2)	
H16	-0.419 (2)	1.378 (2)	0.603 (2)	0.023 (5)*	
C1	-0.23366 (15)	1.04395 (13)	0.57558 (13)	0.0091 (3)	
C2	-0.35405 (16)	1.14161 (13)	0.49599 (13)	0.0092 (3)	
H14	-0.413 (2)	1.0882 (17)	0.4733 (16)	0.009 (4)*	
H15	-0.291 (2)	1.1960 (18)	0.4148 (18)	0.015 (4)*	
C3	-0.46014 (15)	1.23514 (13)	0.55909 (13)	0.0087 (3)	
C4	-0.58579 (15)	1.31651 (13)	0.46879 (13)	0.0094 (3)	
H17	-0.648 (2)	1.3845 (17)	0.5050 (17)	0.011 (4)*	
H18	-0.6557 (19)	1.2561 (16)	0.4648 (15)	0.006 (4)*	
C5	-0.51150 (15)	1.39448 (13)	0.33037 (13)	0.0090 (3)	
C6	-0.55179 (15)	1.15103 (13)	0.69346 (13)	0.0087 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O7A	-0.33313 (12)	0.47238 (10)	1.04866 (9)	0.0137 (2)	
O8A	-0.32692 (11)	0.32406 (9)	0.94823 (9)	0.0112 (2)	
09A	0.10082 (11)	0.29981 (10)	0.93250 (9)	0.0125 (2)	
O10A	0.00229 (11)	0.19514 (9)	0.82508 (10)	0.0118 (2)	
011A	-0.01900 (11)	0.69477 (9)	0.48444 (9)	0.0112 (2)	
O12A	-0.01213 (11)	0.75754 (9)	0.65463 (9)	0.0114 (2)	
O13A	-0.15562 (11)	0.42424 (9)	0.68263 (9)	0.0099 (2)	
H16A	-0.101 (3)	0.395 (2)	0.626 (2)	0.029 (5)*	
C1A	-0.27937 (15)	0.42486 (13)	0.95554 (13)	0.0095 (3)	
C2A	-0.15323 (16)	0.50579 (13)	0.85584 (13)	0.0099 (3)	
H14A	-0.088(2)	0.5291 (17)	0.9052 (17)	0.011 (4)*	
H15A	-0.209 (2)	0.5897 (19)	0.8023 (18)	0.019 (4)*	
C3A	-0.05408 (15)	0.43861 (13)	0.76326 (13)	0.0087 (3)	
C4A	0.07926 (16)	0.52892 (13)	0.67715 (13)	0.0097 (3)	
H17A	0.138 (2)	0.4872 (18)	0.6159 (18)	0.014 (4)*	
H18A	0.148 (2)	0.5361 (16)	0.7318 (17)	0.010 (4)*	
C5A	0.01286 (15)	0.66847 (13)	0.59661 (13)	0.0088 (3)	
C6A	0.02354 (15)	0.29878 (13)	0.84637 (13)	0.0091 (3)	
H19A	-0.415 (4)	0.402 (3)	1.143 (3)	0.078 (10)*	
H19	-0.090 (4)	0.861 (3)	0.591 (3)	0.069 (9)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0130 (3)	0.0106 (3)	0.0106 (3)	-0.0013 (2)	-0.0011 (2)	-0.0038 (2)
Na2	0.0106 (3)	0.0124 (3)	0.0117 (3)	-0.0022 (2)	-0.0012 (2)	-0.0053 (2)
Na3	0.0120 (3)	0.0112 (3)	0.0102 (3)	-0.0002 (2)	-0.0019 (2)	-0.0040(2)
Na4	0.0160 (3)	0.0117 (3)	0.0137 (3)	-0.0042 (2)	-0.0051 (2)	0.0009 (2)
O1W	0.0162 (5)	0.0143 (5)	0.0132 (5)	-0.0023 (4)	-0.0003 (4)	-0.0020 (4)
O2W	0.0163 (5)	0.0145 (5)	0.0150 (5)	-0.0029 (4)	-0.0018 (4)	-0.0021 (4)
O3W	0.0150 (5)	0.0154 (5)	0.0105 (5)	-0.0042 (4)	-0.0025 (4)	-0.0040 (4)
O7	0.0153 (5)	0.0116 (5)	0.0123 (5)	0.0038 (4)	-0.0041 (4)	-0.0064 (4)
08	0.0144 (5)	0.0127 (5)	0.0108 (5)	0.0010 (4)	-0.0039 (4)	-0.0052 (4)
09	0.0118 (5)	0.0101 (5)	0.0105 (5)	-0.0037 (4)	-0.0024 (4)	-0.0018 (4)
O10	0.0120 (5)	0.0118 (5)	0.0088 (5)	-0.0023 (4)	-0.0003 (4)	-0.0043 (4)
011	0.0120 (5)	0.0091 (5)	0.0105 (5)	-0.0018 (4)	-0.0007 (4)	-0.0025 (4)
O12	0.0146 (5)	0.0112 (5)	0.0088 (5)	-0.0031 (4)	-0.0003 (4)	-0.0035 (4)
013	0.0094 (5)	0.0096 (5)	0.0117 (5)	-0.0024 (4)	-0.0008 (4)	-0.0050 (4)
C1	0.0082 (6)	0.0084 (6)	0.0094 (6)	-0.0032 (5)	0.0011 (5)	-0.0018 (5)
C2	0.0100 (6)	0.0096 (6)	0.0085 (6)	-0.0012 (5)	-0.0018 (5)	-0.0033 (5)
C3	0.0083 (6)	0.0081 (6)	0.0099 (6)	-0.0011 (5)	-0.0017 (5)	-0.0031 (5)
C4	0.0088 (6)	0.0092 (6)	0.0089 (6)	-0.0011 (5)	-0.0006 (5)	-0.0020 (5)
C5	0.0059 (6)	0.0105 (6)	0.0095 (6)	0.0019 (5)	-0.0025 (5)	-0.0025 (5)
C6	0.0064 (6)	0.0077 (6)	0.0103 (7)	0.0026 (5)	-0.0020 (5)	-0.0021 (5)
O7A	0.0178 (5)	0.0129 (5)	0.0108 (5)	-0.0048 (4)	0.0044 (4)	-0.0063 (4)
O8A	0.0139 (5)	0.0090 (5)	0.0102 (5)	-0.0024 (4)	-0.0004(4)	-0.0029 (4)
09A	0.0122 (5)	0.0140 (5)	0.0111 (5)	-0.0017 (4)	-0.0043 (4)	-0.0027 (4)
O10A	0.0128 (5)	0.0098 (5)	0.0136 (5)	-0.0006 (4)	-0.0014 (4)	-0.0051 (4)

011A	0.0126 (5)	0.0116 (5)	0.0085 (5)	-0.0005 (4)	-0.0013 (4)	-0.0026 (4)
O12A	0.0148 (5)	0.0090 (5)	0.0111 (5)	-0.0003 (4)	-0.0034 (4)	-0.0037 (4)
O13A	0.0096 (5)	0.0124 (5)	0.0090 (5)	-0.0007 (4)	-0.0022 (4)	-0.0049 (4)
C1A	0.0101 (6)	0.0088 (6)	0.0083 (6)	0.0018 (5)	-0.0032 (5)	-0.0017 (5)
C2A	0.0105 (6)	0.0097 (6)	0.0094 (6)	-0.0016 (5)	-0.0003 (5)	-0.0035 (5)
C3A	0.0085 (6)	0.0090 (6)	0.0088 (6)	-0.0012 (5)	-0.0022 (5)	-0.0029 (5)
C4A	0.0089 (6)	0.0096 (6)	0.0098 (6)	-0.0004 (5)	-0.0010 (5)	-0.0027 (5)
C5A	0.0053 (6)	0.0101 (6)	0.0102 (6)	-0.0033 (5)	0.0019 (5)	-0.0029 (5)
C6A	0.0063 (6)	0.0111 (6)	0.0077 (6)	-0.0012 (5)	0.0024 (5)	-0.0021 (5)

Geometric parameters (Å, °)

Na1—O2W ⁱ	2.3901 (11)	O10—Na2 ^{ix}	2.4085 (10)
Na1—O10 ⁱⁱ	2.3618 (11)	O10—C6	1.2612 (17)
Na1—O11 ⁱⁱⁱ	2.4017 (10)	O11—Na1 ^x	2.4017 (10)
Na1—O7A	2.3207 (11)	O11—C5	1.2351 (17)
Na1—O8A ^{iv}	2.7499 (11)	O12—Na4 ^{vii}	2.7435 (11)
Na1—O9A ^v	2.3405 (11)	O12—C5	1.3027 (17)
Na2—O1W ^v	2.4765 (11)	O13—Na2 ^{ix}	2.5209 (11)
Na2—O8 ^{vi}	2.3917 (11)	O13—H16	0.83 (2)
Na2—O10 ^{vi}	2.4085 (10)	O13—C3	1.4158 (16)
Na2—O13 ^{vi}	2.5209 (11)	C1—C2	1.5127 (18)
Na2—O8A	2.4128 (11)	C2—H14	0.940 (18)
Na2—O10A	2.3995 (11)	C2—H15	0.982 (19)
Na2—O13A	2.4647 (11)	C2—C3	1.5282 (18)
Na3—O3W	2.4713 (11)	C3—C4	1.5533 (18)
Na3—O7 ^{vii}	2.3774 (11)	C3—C6	1.5572 (18)
Na3—O8	2.5820 (11)	C4—H17	0.997 (18)
Na3—O9 ^{viii}	2.3989 (10)	C4—H18	0.962 (17)
Na3—O10A ^{ix}	2.2918 (11)	C4—C5	1.5139 (18)
Na3—O11A ^{vii}	2.4512 (10)	O7A—C1A	1.2896 (17)
Na4—O1W	2.4397 (12)	O7A—H19A	1.20 (3)
Na4—O2W	2.3810 (12)	O8A—Na1 ^{iv}	2.7499 (11)
Na4—O3W	2.3430 (11)	O8A—Na4 ^v	2.3157 (10)
Na4—O9 ^{viii}	2.2851 (10)	O8A—C1A	1.2368 (17)
Na4—O12 ^{vii}	2.7435 (11)	O9A—Na1 ^v	2.3405 (11)
Na4—O8A ^v	2.3157 (10)	O9A—C6A	1.2588 (17)
O1W—Na2 ^v	2.4765 (11)	O10A—Na3 ^{vi}	2.2918 (11)
O1W—H1W	0.87 (3)	O10A—C6A	1.2528 (17)
O1W—H2W	0.81 (3)	O11A—Na3 ^{vii}	2.4512 (10)
O2W—Na1 ^{viii}	2.3902 (11)	O11A—C5A	1.2342 (17)
O2W—H3W	0.80 (3)	O12A—C5A	1.2997 (17)
O2W—H4W	0.84 (3)	O12A—H19	1.25 (3)
O3W—H5W	0.82 (3)	O13A—H16A	0.84 (2)
O3W—H6W	0.86 (2)	O13A—C3A	1.4157 (16)
O7—Na3 ^{vii}	2.3773 (11)	C1A—C2A	1.5112 (18)
O7—C1	1.2955 (17)	C2A—H14A	0.960 (18)
O7—H19	1.20 (3)	C2A—H15A	0.99 (2)

O8—Na2 ^{ix}	2.3917 (11)	C2A—C3A	1.5268 (18)
O8—C1	1.2357 (17)	C3A—C4A	1.5530 (18)
O9—Na3 ⁱ	2.3988 (10)	C3A—C6A	1.5626 (18)
O9—Na4 ⁱ	2.2851 (10)	C4A—H17A	0.971 (19)
O9—C6	1.2549 (17)	C4A—H18A	0.946 (18)
O10—Na1 ⁱⁱ	2.3618 (11)	C4A—C5A	1.5156 (18)
			()
O2W ⁱ —Na1—O11 ⁱⁱⁱ	156.26 (4)	C5—O11—Na1 ^x	131.75 (9)
O2W ⁱ —Na1—O8A ^{iv}	75.81 (4)	C5—O12—Na4 ^{vii}	152.04 (8)
O10 ⁱⁱ —Na1—O2W ⁱ	98.54 (4)	Na2 ^{ix} —O13—H16	90.8 (14)
O10 ⁱⁱ —Na1—O11 ⁱⁱⁱ	83.03 (4)	C3—O13—Na2 ^{ix}	106.96 (7)
O10 ⁱⁱ —Na1—O8A ^{iv}	87.71 (3)	C3—O13—H16	108.1 (14)
O11 ⁱⁱⁱ —Na1—O8A ^{iv}	80.60 (3)	O7—C1—C2	112.53 (11)
O7A—Na1—O2W ⁱ	97.21 (4)	O8—C1—O7	123.49 (12)
O7A—Na1—O10 ⁱⁱ	159.74 (4)	O8—C1—C2	123.98 (12)
O7A—Na1—O11 ⁱⁱⁱ	77.44 (4)	C1—C2—H14	105.8 (10)
O7A—Na1—O8A ^{iv}	83.87 (4)	C1—C2—H15	104.2 (11)
$07A$ —Na1— $09A^{v}$	95.46 (4)	C1—C2—C3	117.38 (11)
$O9A^{v}$ —Na1—O2W ⁱ	88.70 (4)	H14—C2—H15	107.8 (14)
$O9A^{v}$ —Na1—O10 ⁱⁱ	97.56 (4)	C3—C2—H14	111.4 (10)
$O9A^{v}$ —Na1—O11 ⁱⁱⁱ	114.69 (4)	C3-C2-H15	109.7 (10)
$O9A^{v}$ Na1 $O8A^{iv}$	164 25 (4)	013-C3-C2	107.07(10)
08^{vi} Na2 $01W^{v}$	87 53 (4)	013 - C3 - C4	111 32 (10)
08^{vi} Na2 010 ^{vi}	86 15 (4)	013 - C3 - C6	111.82 (10)
0.00^{vi} Na2-013 ^{vi}	73 84 (4)	C_{2} C_{3} C_{4}	10953(11)
08^{vi} Na2 015	169 75 (4)	$C_2 = C_3 = C_6$	110 59 (10)
08^{vi} Na2 0011	91 46 (4)	C_{4} C_{3} C_{6}	106 52 (10)
08^{vi} Na2 01011	114 69 (4)	C_{3} C_{4} H_{17}	100.52(10)
010^{vi} Na2 01311	88 39 (4)	$C_3 - C_4 - H_{18}$	109.0(10) 109.9(9)
010^{vi} Na2 010^{vi}	66 13 (3)	H_{17} $-C_{4}$ H_{18}	109.9(9)
010^{vi} Na2 013	94.93(4)	C_{5}	109.3(14) 111.88(11)
010^{vi} Na2 013^{vi}	122 23 (4)	C_{5} C_{4} H_{17}	106.8 (10)
$0.84 - N_{2}^{2} - 0.1W^{V}$	82 32 (4)	$C_{5} - C_{4} - H_{18}$	100.0(10) 109.3(9)
$O8A$ N ₂ 2 $O13^{vi}$	$115 \ 91 \ (4)$	011 C5 012	109.5(9)
08A = Na2 = 013A	73 28 (3)	011 - 05 - 012	122.07(12) 121.45(12)
0.00 Na2 0.00 Na2 0.00 Na2	75.28 (5) 81.00 (4)	012 C5 C4	121.43(12) 115.87(11)
$O10A = Na2 = O10^{vi}$	170.09(4)	012 - 010	113.87(11) 125.63(12)
$010A = N_{2}^{2} = 010^{10}$	170.09(4) 122.36(4)	09 - 00 - 010	125.05(12)
O10A = Na2 = O13	122.30 (4) 85 75 (4)	$0_{3}-0_{0}-0_{3}$	110.04(11) 118.32(11)
O10A = Na2 = O12A	63.73(4)	$C_{10} = C_{0} = C_{3}$	110.32(11)
O12A N=2 $O13A$	07.43(3)	CIA-O7A-Nai	142.00(9)
O12A No2 $O12Vi$	141.03(4)	$V_{12} = O_{12} = O$	117.2(13)
$O_{13}A_{Na2} O_{13}$	09.43(3)	Na2—OoA—Na1"	83.21(3)
O_{5} w — INa5 — O_{6}	02.11(3)	$\frac{1}{1}$	74.23 (3) 08 57 (4)
O_{1}^{m} Na3-O3W	90.24 (4) 01.42 (4)	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	98.37 (4)
0/ ^{···} —INa3— 08	91.42 (4)	$C1A = O8A = Na1^{\circ}$	120.62 (8)
$0/^{1}$ Na3 -0.11 1.11	84.85 (4)	C1A = O8A = Na2	135.06 (9)
	//.6/(4)	CIA-O8A-Na4 ^v	115.13 (8)
09 ^{vm} —Na3—O3W	86.33 (4)	C6A—O9A—Nal ^v	127.26 (9)

09 ^{viii} —Na3—08	167 85 (4)	Na3 ^{vi} —O10A—Na2	91 98 (4)
09^{viii} Na3-011A ^{vii}	108 24 (4)	C6A - O10A - Na2	109 60 (8)
$O10A^{ix}$ Na3 $O3W$	101 16 (4)	$C6A = O10A = Na3^{vi}$	141.08(9)
$010A^{ix}$ Na3 07^{vii}	160 52 (4)	$C54 - 0114 - Na3^{vii}$	12877(9)
$010A^{ix} - Na3 - 07$	89 27 (4)	$C_{5A} = O_{12A} = H_{19}$	120.77(0)
O10A = Na3 = O8	09.27(4)	$N_{12} = 0.12 A = 116 A$	111.2(13)
O10A - Na3 - O9	90.11 (4) 92.15 (4)	Na2 = 013A = HI0A	90.1(14)
OIIA - Na3 - OIIA	164 22 (4)	$C_{2A} = O_{12A} = U_{16A}$	108.01(7)
$OIIA^{m}$ Na3 $OIIA^{w}$	104.25(4)	$C_{A} = C_{A} = M_{A}$	108.5(13)
O11X No.4 $O12y$	62.12(5)	O/A = C1A = C2A	90.30 (8)
O1W - Na4 - O12	163.29 (4)	0/A - CIA - CZA	112.97 (11)
02W—Na4—OIW	99.15 (4)	08A - C1A - O/A	123.45 (12)
$O2W$ —Na4— $O12^{vn}$	68.41 (4)	O8A—CIA—C2A	123.57 (12)
O3W—Na4—O1W	94.02 (4)	C2A—C1A—Na4v	143.09 (9)
O3W—Na4—O2W	165.55 (5)	C1A—C2A—H14A	106.4 (10)
O3W—Na4—O12 ^{vii}	97.48 (4)	C1A—C2A—H15A	105.5 (11)
O9 ^{viii} —Na4—O1W	84.11 (4)	C1A—C2A—C3A	116.50 (11)
O9 ^{viii} —Na4—O2W	95.14 (4)	H14A—C2A—H15A	108.4 (15)
O9 ^{viii} —Na4—O3W	92.09 (4)	C3A—C2A—H14A	111.1 (10)
O9 ^{viii} —Na4—O12 ^{vii}	107.45 (4)	C3A—C2A—H15A	108.6 (11)
O9 ^{viii} —Na4—O8A ^v	169.12 (4)	O13A—C3A—C2A	107.23 (10)
O8A ^v —Na4—O1W	85.14 (4)	O13A—C3A—C4A	110.39 (10)
O8A ^v —Na4—O2W	84.91 (4)	O13A—C3A—C6A	111.81 (10)
O8Av—Na4—O3W	90.34 (4)	C2A—C3A—C4A	109.74 (11)
O8Av—Na4—O12vii	82.72 (3)	C2A—C3A—C6A	109.50 (11)
Na4—O1W—Na2 ^v	93.62 (4)	C4A—C3A—C6A	108.16 (10)
Na4—O2W—Na1 ^{viii}	102.60 (4)	C3A—C4A—H17A	108.9 (10)
Na4—O3W—Na3	88.36 (4)	C3A—C4A—H18A	109.7 (10)
C1—O7—Na3 ^{vii}	144.02 (9)	H17A—C4A—H18A	109.0 (14)
C1—O7—H19	116.4 (14)	C5A—C4A—C3A	111.23 (11)
Na2 ^{ix} —O8—Na3	85.37 (3)	С5А—С4А—Н17А	107.7 (10)
$C1 - O8 - Na2^{ix}$	135.12 (9)	C5A—C4A—H18A	110.2 (10)
C1	116.99 (8)	011A—C5A—012A	122.21 (12)
Na4 ⁱ -O9-Na3 ⁱ	91 51 (4)	011A-C5A-C4A	122.11(12)
$C6-O9-Na3^{i}$	129 89 (8)	012A - C5A - C4A	115.66(12)
$C6-O9-Na4^{i}$	119 94 (8)	09A - C6A - C3A	116.00(12)
Na1 ⁱⁱ $-$ O10 $-$ Na2 ^{ix}	92 19 (4)	0104 - C64 - 094	125 12 (12)
$C6 O10 Na1^{ii}$	140.73(8)	O10A = C6A = C3A	123.12(12) 118.60(12)
$C_{0} = 010 = 100$	140.73(8)	OTOA-COA-CJA	118.00 (12)
C0-010-Na2	110.33 (8)		
Na1 ^{iv} —Na2—O8A—Na4 ^v	93.28 (4)	08 ^{vi} —Na2—O10A—C6A	158.19 (9)
Na1 ^{iv} —Na2—O8A—C1A	-127.35 (13)	O8 ^{vi} —Na2—O13A—C3A	-117.77 (8)
Na1 ^{iv} —Na2—O10A—Na3 ^{vi}	-178.42(3)	08—Na3—O3W—Na4	-175.84 (4)
$Na1^{iv}$ $Na2$ $O10A$ $C6A$	-31.42(10)	08-01-02-03	-11.14 (19)
$Na1^{iv}$ $Na2$ $O13A$ $C3A$	103.13 (8)	$O9^{\text{viii}}$ Na3 $O3W$ Na4	9.53 (4)
$Na1^{viii}$ Na4 $O1W$ Na2v	-43 16 (3)	$O9^{\text{viii}}$ Na3 $O8$ Na2ix	138 10 (17)
$Na1^{viii}$ Na4 O3W Na3	161 99 (4)	09^{viii} Na3 08 C1	-827(2)
Na1 i $0.00000000000000000000000000000000000$	121 50 (14)	09^{viii} Na4 $01W$ Na2v	-173.86(A)
$Na1^{ii} = 010 = C6 = Na2^{ii}$	-123.30(17)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	155 76 (5)
Inai -010-00-INd4	123.34 (11)	07 - 104 - 02 W - 1041 - 02	155.70(5)

Na1 ⁱⁱ —O10—C6—O9	-99.84 (16)	O9 ^{viii} —Na4—O3W—Na3	-9.99 (4)
Na1 ⁱⁱ —O10—C6—C3	79.80 (16)	O10 ⁱⁱ —Na1—O7A—C1A	165.62 (14)
Na1 ^x —O11—C5—O12	8.17 (19)	O10 ^{vi} —Na2—O8A—Na1 ^{iv}	-10.14 (3)
Na1 ^x —O11—C5—C4	-173.27 (8)	O10 ^{vi} —Na2—O8A—Na4 ^v	83.14 (4)
Na1—O7A—C1A—Na4 ^v	177.29 (11)	O10 ^{vi} —Na2—O8A—C1A	-137.49(12)
Na1—07A—C1A—08A	-152.86(11)	$O10^{vi}$ —Na2—O13A—C3A	140.54 (7)
Na1—O7A—C1A—C2A	26.7 (2)	$O11^{iii}$ —Na1—O7A—C1A	-178.65(15)
Na1 ^{iv} —O8A—C1A—Na4 ^v	111.85 (10)	O12 ^{vii} —Na4—O1W—Na2 ^v	-39.06(15)
$Na1^{iv} - O8A - C1A - O7A$	65.38 (15)	$O12^{vii}$ Na4 $O2W$ Na1 viii	-97.49(5)
$Na1^{iv} - O8A - C1A - C2A$	-114.13(12)	$O12^{vii}$ Na4 $O3W$ Na3	-117.89(4)
$Na1^{v} - O9A - C6A - O10A$	91 30 (15)	013^{vi} Na2 024^{vi} Na1 ^{iv}	55 68 (4)
Nal v —O9A—C6A—C3A	-90.26(13)	013^{vi} Na2 $08A$ Na4 ^v	148 96 (4)
Na^{iv} Na1-07A-C1A	122.96 (14)	013^{vi} Na2 $08A$ $C1A$	-71.67(13)
$Na2^{ix}$ Na3 $O3W$ Na4	$-134\ 10\ (3)$	013^{vi} Na2 $010A$ Na 3^{vi}	-60.54(5)
$Na2^{ix}$ Na3 $O8$ $C1$	139 16 (10)	013^{vi} Na2 010A C6A	86 46 (9)
$Na2^{v}$ $Na4$ $O2W$ $Na1^{viii}$	28 21 (4)	013^{vi} Na2 0101 Cont	-177 81 (8)
$N_{2}^{v} N_{2}^{d} O_{3}^{w} N_{3}^{d}$	117.97(3)	013 - C3 - C4 - C5	62 49 (14)
$N_{2}^{ix} = 08 = 01 = 07$	172 37 (9)	$013 - C3 - C6 - Na^{2ix}$	-25.63.(9)
$N_{2}^{ix} = 08 - C1 - C7$	-73(2)	$013 - C3 - C6 - Na4^{i}$	-13659(11)
$N_{2}^{ix} = 0.0 - C_{1}^{iz} - C_{2}^{iz}$	(2)	$O_{13} = C_3 = C_6 = O_9$	-17647(11)
$N_{2}^{ix} = 010 = C_{0}^{ix} = 010$	113.17(3) 138.67(11)	013 - C3 - C6 - 010	3 86 (16)
$N_{2}^{ix} = 010 - C6 - C3$	-41.70(13)	$C_1 - C_2 - C_3 - O_{13}$	64.88(14)
$N_{2}^{ix} = 013 = 03 = 02$	-88.15(10)	$C_1 = C_2 = C_3 = C_4$	-17429(11)
$N_{2}^{ix} O_{13} C_{3} C_{4}^{ix}$	152 17 (8)	$C_1 = C_2 = C_3 = C_4$	-57.10(15)
Na2 = 013 = 03 = 04	132.17(6) 23.14(11)	$C_1 - C_2 - C_3 - C_0$	-5572(13)
$N_{a2} = 013 = 0.000$	-134.67(14)	$C_2 = C_3 = C_4 = C_3$	33.72(14)
$N_{a2} = 08A = C1A = 07A$	134.07(14)	$C_2 = C_3 = C_6 = N_2 4^{i}$	-17.26(18)
Na2 = O8A = C1A = C2A	-0.6(2)	$C_2 = C_3 = C_0 = N_0 4$	-17.30(18) -57.24(15)
Na2 = 00A = CIA = C2A	-0.0(2)	$C_2 = C_3 = C_0 = 0_9$	-37.24(13)
Na2 = 010A = C6A = 09A	130.03 (11)	$C_2 = C_3 = C_6 = 010$	123.09 (12)
Na2 = OIOA = COA = COA	-41.70(13)	$C_{3} = C_{4} = C_{5} = 011$	-83.03(13)
Na2 = O13A = C3A = C4A	-89.01(10)	$C_{3} - C_{4} - C_{5} - O_{12}$	93.01 (14)
Na2 = O13A = C3A = C4A	150.89 (8)	$C4 - C3 - C6 - Na2^{th}$	-14/.46(9)
Na2 - OI3A - C3A - C6A	30.44 (11)	$C4 - C3 - C6 - Na4^{\circ}$	101.58 (14)
$Na3^{*}$ $Na2$ $O8A$ $Na1^{*}$	1/8.64 (3)	C4 - C3 - C6 - 09	61.70(14)
$Na3^{*}$ $Na2$ $O8A$ $Na4^{*}$	-88.08 (4)	C4 - C3 - C6 - O10	-11/.96 (12)
$Na3^{\text{M}}$ — $Na2$ — $O8A$ — $C1A$	51.29 (13)	$C6^{vi}$ N2 $O8A$ Na ^{1v}	-1.39(4)
$Na3^{\text{M}}$ — $Na2$ — $O10A$ — $C6A$	147.00 (10)	$C6^{vi}$ —Na2—O8A—Na4 ^v	91.88 (4)
$Na3^{M}$ — $Na2$ — $O13A$ — $C3A$	-/8.33 (8)	$C6^{vi}$ —Na2—O8A—C1A	-128.75 (12)
$Na3^{v_{1}} - O/ - C1 - O8$	-148.29 (11)	$C6^{v_1}$ Na2—O10A—Na3 ^{v_1}	4.19 (12)
$Na3^{v_{II}} - O' - C1 - C2$	31.4 (2)	C6 ^{vi} —Na2—O10A—C6A	151.19 (11)
Na3—08—C1—07	59.85 (15)	C6 ^{vi} —Na2—O13A—C3A	166.14 (7)
Na3—08—C1—C2	-119.78 (11)	$C6^{vm}$ —Na4—O1W—Na2 ^v	-156.30 (5)
$Na3^{1}$ O9 C6 $Na2^{1x}$	146.76 (11)	$C6^{vm}$ —Na4—O2W—Na1 ^{vm}	141.70 (5)
Na31-09-C6-Na41	121.40 (13)	C6 ^{vm} —Na4—O3W—Na3	0.92 (5)
Na3 ¹ —O9—C6—O10	82.71 (16)	C6—C3—C4—C5	-175.35 (11)
Na31-09-C6-C3	-96.93 (12)	07A—C1A—C2A—C3A	164.94 (11)
Na3 ^{v1} —O10A—C6A—O9A	-103.39 (16)	O8A ^{iv} —Na1—O7A—C1A	99.65 (15)
Na3 ^{vi} —O10A—C6A—C3A	78.20 (17)	O8A—Na2—O10A—Na3 ^{vi}	-178.68(4)

Na3 ^{vii} —O11A—C5A—O12A	12.16 (18)	O8A—Na2—O10A—C6A	-31.68 (9)
Na3 ^{vii} —O11A—C5A—C4A	-169.68 (9)	O8A—Na2—O13A—C3A	55.33 (8)
Na4 ⁱ —Na1—O7A—C1A	63.79 (15)	O8A ^v —Na4—O1W—Na2 ^v	4.45 (4)
Na4 ^v —Na2—O8A—Na1 ^{iv}	-93.28 (4)	O8A ^v —Na4—O2W—Na1 ^{viii}	-13.32 (5)
Na4 ^v —Na2—O8A—C1A	139.37 (14)	O8A ^v —Na4—O3W—Na3	159.40 (4)
Na4 ^v —Na2—O10A—Na3 ^{vi}	141.48 (3)	O8A—C1A—C2A—C3A	-15.50 (19)
Na4 ^v —Na2—O10A—C6A	-71.52 (8)	O9A ^v —Na1—O7A—C1A	-64.53 (15)
Na4 ^v —Na2—O13A—C3A	38.47 (8)	O10A—Na2—O8A—Na1 ^{iv}	179.78 (3)
Na4 ⁱ —O9—C6—Na2 ^{ix}	25.4 (2)	O10A—Na2—O8A—Na4 ^v	-86.94 (4)
Na4 ⁱ O9C6O10	-38.70 (17)	O10A—Na2—O8A—C1A	52.43 (12)
Na4 ⁱ O9C6C3	141.66 (9)	O10A—Na2—O13A—C3A	-37.02 (7)
Na4 ^{vii} —O12—C5—O11	105.06 (18)	O10A ^{ix} —Na3—O3W—Na4	-88.02 (4)
Na4 ^{vii} —O12—C5—C4	-73.6 (2)	O10A ^{ix} —Na3—O8—Na2 ^{ix}	10.42 (4)
Na4 ^v —O8A—C1A—O7A	-46.47 (16)	O10A ^{ix} —Na3—O8—C1	149.57 (9)
Na4 ^v —O8A—C1A—C2A	134.02 (11)	O11A ^{vii} —Na3—O3W—Na4	167.43 (13)
Na4 ^v —C1A—C2A—C3A	39.8 (2)	O11Avii—Na3—O8—Na2ix	-72.77 (3)
O1W ^v —Na2—O8A—Na1 ^{iv}	-97.84 (4)	O11A ^{vii} —Na3—O8—C1	66.39 (9)
O1W ^v —Na2—O8A—Na4 ^v	-4.56 (4)	O13A—Na2—O8A—Na1 ^{iv}	112.08 (3)
O1W ^v —Na2—O8A—C1A	134.81 (12)	O13A—Na2—O8A—Na4 ^v	-154.64 (4)
O1W ^v —Na2—O10A—Na3 ^{vi}	98.48 (4)	O13A—Na2—O8A—C1A	-15.27 (12)
O1W ^v —Na2—O10A—C6A	-114.52 (9)	O13A—Na2—O10A—Na3 ^{vi}	-105.03 (4)
O1W ^v —Na2—O13A—C3A	2.52 (11)	O13A—Na2—O10A—C6A	41.97 (8)
O1W—Na4—O2W—Na1 ^{viii}	70.91 (5)	O13A—C3A—C4A—C5A	59.20 (14)
O1W—Na4—O3W—Na3	74.25 (4)	O13A—C3A—C6A—O9A	-171.79 (11)
O2W ⁱ —Na1—O7A—C1A	24.84 (15)	O13A—C3A—C6A—O10A	6.76 (16)
O2W—Na4—O1W—Na2 ^v	-79.59 (4)	C1A ^v —Na4—O1W—Na2 ^v	16.94 (5)
O2W—Na4—O3W—Na3	-130.03 (17)	C1Av—Na4—O2W—Na1viii	-32.71 (5)
O3W—Na3—O8—Na2 ^{ix}	111.76 (4)	C1A ^v —Na4—O3W—Na3	176.38 (4)
O3W—Na3—O8—C1	-109.08 (10)	C1A—C2A—C3A—O13A	65.52 (14)
O3W—Na4—O1W—Na2 ^v	94.45 (4)	C1A—C2A—C3A—C4A	-174.55 (11)
O3W—Na4—O2W—Na1 ^{viii}	-84.54 (18)	C1A—C2A—C3A—C6A	-55.98 (15)
O7 ^{vii} —Na3—O3W—Na4	93.76 (4)	C2A—C3A—C4A—C5A	-58.78 (14)
O7 ^{vii} —Na3—O8—Na2 ^{ix}	-150.11 (4)	C2A—C3A—C6A—O9A	-53.09 (15)
O7 ^{vii} —Na3—O8—C1	-10.96 (9)	C2A—C3A—C6A—O10A	125.46 (12)
O7—C1—C2—C3	169.19 (11)	C3A—C4A—C5A—O11A	-90.55 (15)
O8 ^{vi} —Na2—O8A—Na1 ^{iv}	-105.8 (2)	C3A—C4A—C5A—O12A	87.73 (14)
O8 ^{vi} —Na2—O8A—Na4 ^v	-12.5 (2)	C4A—C3A—C6A—O9A	66.46 (14)
O8 ^{vi} —Na2—O8A—C1A	126.9 (2)	C4A—C3A—C6A—O10A	-114.99 (13)
O8 ^{vi} —Na2—O10A—Na3 ^{vi}	11.19 (4)	C6A—C3A—C4A—C5A	-178.18 (11)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*-1, -*y*+2, -*z*+2; (iii) *x*, *y*-1, *z*+1; (iv) -*x*-1, -*y*+1, -*z*+2; (v) -*x*, -*y*+1, -*z*+2; (vi) *x*, *y*-1, *z*; (vii) -*x*, -*y*+2, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) *x*, *y*+1, *z*; (x) *x*, *y*+1, *z*-1.

(na2c_DFT)

Crystal data

$C_{12}H_{12}Na_4O_{14}(H_2O)_3$	<i>a</i> = 8.6713 Å
$M_r = 526.22$	<i>b</i> = 10.6475 Å
Triclinic, P1	c = 10.9961 Å

$\alpha = 68.4610^{\circ}$ $\beta = 79.6170^{\circ}$ $\gamma = 81.7990^{\circ}$	$V = 925.63 \text{ Å}^3$ Z = 2 T = 100 K
Data collection	
$h = \rightarrow$	$l = \rightarrow$
$k = \rightarrow$	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	1/	7	
No 1		y 0.67657	1 00252	0.01145*
Na1	-0.37343 -0.26307	0.07037	0.70858	0.01143*
Na2	-0.20397	1.08255	0.79030	0.01112*
Na5	0.08752	1.08233	0.08230	0.01112
Na4	0.34457	0.86390	0.85431	0.01460*
07	-0.16/82	0.95551	0.52502	0.01220*
08	-0.20053	1.04584	0.68290	0.01230*
09	-0.64112	1.06940	0.68/3/	0.01090*
010	-0.53712	1.16842	0.79941	0.010/0*
011	-0.4/290	1.51265	0.29363	0.01080*
012	-0.49766	1.32881	0.24827	0.01140*
013	-0.36072	1.31975	0.58091	0.00980*
H16	-0.42399	1.38378	0.62003	0.02300*
C1	-0.23465	1.04470	0.57867	0.00910*
C2	-0.35390	1.14280	0.49792	0.00920*
H14	-0.42355	1.08420	0.46821	0.00900*
H15	-0.28636	1.20526	0.40698	0.01500*
C3	-0.46003	1.23681	0.56155	0.00870*
C4	-0.58433	1.32299	0.47061	0.00940*
H17	-0.64219	1.39939	0.51186	0.01100*
H18	-0.67129	1.25721	0.47345	0.00600*
C5	-0.51420	1.39486	0.32859	0.00900*
C6	-0.55479	1.15096	0.69442	0.00870*
O7A	-0.33595	0.47056	1.05018	0.01370*
O8A	-0.32484	0.31834	0.95223	0.01120*
O9A	0.10266	0.30045	0.93971	0.01250*
O10A	0.00830	0.19041	0.83347	0.01180*
O11A	-0.01570	0.69714	0.48311	0.01120*
O12A	-0.01724	0.75439	0.65877	0.01140*
O13A	-0.15225	0.41596	0.68785	0.00990*
H16A	-0.08773	0.38671	0.61789	0.02900*
C1A	-0.27827	0.42098	0.95692	0.00950*
C2A	-0.15358	0.50329	0.85782	0.00990*
H14A	-0.08261	0.53524	0.91194	0.01100*
H15A	-0.21626	0.59489	0.79720	0.01900*
C3A	-0.05159	0.43504	0.76628	0.00870*
C4A	0.07944	0.52678	0.67668	0.00970*
H17A	0.14347	0.47918	0.60764	0.01400*
H18A	0.16142	0.53410	0.73772	0.01000*

C5A	0.01259	0.66803	0.59841	0.00880*	
C6A	0.02761	0.29683	0.85249	0.00910*	
H19A	-0.41226	0.40666	1.13119	0.07800*	
H19	-0.09903	0.87170	0.58711	0.06900*	
O1W	0.25806	0.99725	0.99158	0.01550*	
H1W	0.34046	1.05682	0.93555	0.04700*	
H2W	0.16299	1.05211	0.95978	0.03700*	
O2W	0.61368	0.82806	0.87514	0.01610*	
H3W	0.68826	0.89557	0.85395	0.04700*	
H4W	0.64281	0.78276	0.81112	0.06700*	
O3W	0.08969	0.85012	0.82260	0.01340*	
H5W	0.05984	0.80182	0.77073	0.03600*	
H6W	0.01544	0.82092	0.90413	0.02900*	

Bond lengths (Å)

Na1—O10 ⁱ	2.333	C1—C2	1.513
Na1—O11 ⁱⁱ	2.357	C2—H14	1.090
Nal—O7A	2.377	C2—H15	1.094
Na1—O8A ⁱⁱⁱ	2.741	C2—C3	1.536
Na1—O9A ^{iv}	2.344	C3—C4	1.561
Na1—O2W ^v	2.363	C3—C6	1.564
Na2—O8 ^{vi}	2.385	C4—H17	1.092
Na2—O10 ^{vi}	2.441	C4—H18	1.089
Na2—O13 ^{vi}	2.496	C4—C5	1.519
Na2—O8A	2.393	O7A—C1A	1.311
Na2—O10A	2.440	O7A—H19A	1.079
Na2—O13A	2.411	O8A—Na1 ⁱⁱⁱ	2.741
Na2—O1W ^{iv}	2.494	O8A—Na4 ^{iv}	2.292
Na3—O7 ^{vii}	2.424	O8A—C1A	1.239
Na3—O8	2.580	O9A—Na1 ^{iv}	2.344
Na3—O9 ^{viii}	2.348	O9A—C6A	1.267
Na3—O10A ^{ix}	2.304	O10A—Na3 ^{vi}	2.304
Na3—O11A ^{vii}	2.462	O10A—C6A	1.263
Na3—O3W	2.387	O11A—Na3 ^{vii}	2.462
Na4—O9 ^{viii}	2.284	O11A—C5A	1.251
Na4—O8A ^{iv}	2.292	O12A—C5A	1.293
Na4—O1W	2.391	O13A—H16A	0.986
Na4—O2W	2.349	O13A—C3A	1.413
Na4—O3W	2.331	C1A—C2A	1.506
O7—Na3 ^{vii}	2.424	C2A—H14A	1.090
O7—C1	1.312	C2A—H15A	1.092
O7—H19	1.079	C2A—C3A	1.535
O8—Na2 ^{ix}	2.385	C3A—C4A	1.556
O8—C1	1.239	C3A—C6A	1.568
O9—Na4 ^v	2.284	C4A—H17A	1.092
O9—Na3 ^v	2.348	C4A—H18A	1.090
O9—C6	1.255	C4A—C5A	1.523

O10—Na2 ^{ix}	2.441	O1W—Na2 ^{iv}	2.494
O10—Na1 ⁱ	2.333	O1W—H1W	0.988
O10—C6	1.273	O1W—H2W	0.980
O11—Na1 ^x	2.357	O2W—Na1 ^{viii}	2.363
O11—C5	1.254	O2W—H3W	0.972
O12—C5	1.295	O2W—H4W	0.971
O13—Na2 ^{ix}	2.496	O3W—H5W	0.981
O13—H16	0.987	O3W—H6W	0.979
O13—C3	1.410		

Symmetry codes: (i) -*x*-1, -*y*+2, -*z*+2; (ii) *x*, *y*-1, *z*+1; (iii) -*x*-1, -*y*+1, -*z*+2; (iv) -*x*, -*y*+1, -*z*+2; (v) *x*-1, *y*, *z*; (vi) *x*, *y*-1, *z*; (vii) -*x*, -*y*+2, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) *x*, *y*+1, *z*; (x) *x*, *y*+1, *z*-1.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
07 <i>A</i> —H19 <i>A</i> …O12	1.079	1.393	2.465	171.1
O7—H19…O12A	1.079	1.382	2.456	172.5
O13 <i>A</i> —H16 <i>A</i> ···O11 <i>A</i>	0.986	1.725	2.698	168.3
O13—H16…O11	0.987	1.760	2.743	173.4
O1 <i>W</i> —H1 <i>W</i> ···O10	0.988	1.806	2.772	165.0
O3 <i>W</i> —H5 <i>W</i> ···O12 <i>A</i>	0.981	1.751	2.714	165.9
O3 <i>W</i> —H6 <i>W</i> ···O9A	0.979	1.945	2.881	159.0
O1 <i>W</i> —H2 <i>W</i> ···O10A	0.980	2.122	3.067	161.4
O2 <i>W</i> —H4 <i>W</i> ···O12	0.971	2.171	2.877	128.5
O2 <i>W</i> —H3 <i>W</i> ···O8	0.972	2.146	2.946	138.6
O2 <i>W</i> —H3 <i>W</i> ···O1 <i>W</i>	0.972	2.503	3.166	125.3