research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of ruizite, Ca2Mn3+2[Si4O11(OH)2](OH)2·2H2O

CROSSMARK_Color_square_no_text.svg

aUniversity of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA
*Correspondence e-mail: kfendrich@email.arizona.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 April 2016; accepted 6 June 2016; online 14 June 2016)

The crystal structure of ruizite, ideally Ca2Mn3+2[Si4O11(OH)2](OH)2·2H2O [dicalcium dimanganese(III) tetra­silicate tetra­hydroxide dihydrate] was first determined in space group A2 with an isotropic displacement parameter model (R = 5.6%) [Hawthorne (1984[Hawthorne, F. C. (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135-146.]). Tschermaks Mineral. Petrogr. Mitt. 33, 135–146]. A subsequent refinement in space group C2/m with anisotropic displacement parameters for non-H atoms converged with R = 8.4% [Moore et al. (1985[Moore, P. B., Shen, J. & Araki, T. (1985). Am. Mineral. 70, 171-181.]). Am. Mineral. 70, 171–181]. The current study reports a redetermination of the ruizite structure by means of single-crystal X-ray diffraction data of a natural sample from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa. Our data (R1 = 3.0%) confirm that the space group of ruizite is that of the first study rather than C2/m. This work improves upon the structure reported by Hawthorne (1984[Hawthorne, F. C. (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135-146.]) in that all non-H atoms were refined with anisotropic displacement parameters and all hydrogen atoms were located. The crystal structure consists of [010] chains of edge-sharing MnO6 octa­hedra flanked by finite [Si4O11(OH)2] chains. The Ca2+ cations are situated in the cavities of this arrangement and exhibit a coordination number of seven.

1. Mineralogical and crystal-chemical context

Ruizite from the Christmas mine, Gila County, Arizona, USA, was originally described by Williams & Duggan (1977[Williams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429-432.]) with monoclinic symmetry in the space group P21/c and unit-cell parameters a = 11.95, b = 6.17, c = 9.03 Å, β = 91.38° based on rotation and Weissenberg photographs. Ideal chemistry was proposed as CaMn(SiO3)2(OH)·2H2O. Wilson & Dunn (1978[Wilson, W. E. & Dunn, P. J. (1978). Miner. Rec. 9, 137-153.]) reported a second occurrence of ruizite from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa, with the same chemical formula as that given by Williams & Duggan (1977[Williams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429-432.]).

To date, ruizite has been found at five different localities (Table 1[link]): Christmas mine, Gila County, Arizona, USA (Williams & Duggan, 1977[Williams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429-432.]); Wessels mine (Wilson & Dunn, 1978[Wilson, W. E. & Dunn, P. J. (1978). Miner. Rec. 9, 137-153.]) and N'Chwaning mines (Moore et al., 1985[Moore, P. B., Shen, J. & Araki, T. (1985). Am. Mineral. 70, 171-181.]) in the Northern Cape Province, South Africa; Cornwall mine, Lebanon County, Pennsylvania, USA (Kearns & Kearns, 2008[Kearns, L. E. & Kearns, C. A. (2008). Mineral. News, 24, 8-9.]); and the Cerchiara mine, Liguria, Italy (Balestra et al., 2009[Balestra, C., Kolitsch, U., Blass, G., Callegari, A. M., Boiocchi, M., Armellino, G., Ciriotti, M. E., Ambrino, P. & Bracco, R. (2009). Micro, 1-2009, 78-99.]). It is a product of retrograde metamorphism and oxidation during cooling of calc-silicate rocks formed via contact metamorphism of limestones (Williams & Duggan, 1977[Williams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429-432.]). The secondary mineralization of ruizite at the type locality may have occurred during the Cretaceous or sometime thereafter (Peterson & Swanson, 1956[Peterson, N. P. & Swanson, R. W. (1956). U. S. Geol. Surv. Bull. 1027-H, 351-373.]).

Table 1
Chemical composition and unit-cell parameters (Å, Å3) of different ruizite samples

Chemistry a b c β V Space group Reference and locality
(Ca1.90Sr0.06Mg0.04)(Mn3+1.88Fe3+0.07Al0.05)Si4.01O11(OH)4·2H2O 9.0360 (3) 6.1683 (2) 11.9601 (4) 91.433 (2) 666.41 (4) C2 Present study R130787, Wessels mine
(Ca1.96Mg0.02)Σ=1.98(Mn3+1.97Fe3+0.04Al0.01)Σ=2.02Si4O11(OH)4·2H2O 9.0476 (6) 6.1774 (3) 11.9707 (8) 91.344 (3) 668.9 (1) C2 R140132, Cornwall mine
(Ca1.98Mg0.03)Σ=2.01(Mn3+1.95Fe3+0.08V3+0.01)Σ=2.04Si3.96O11(OH)4·2H2O 9.056 (5) 6.170 (3) 11.92 (1) 91.30 (4) 666.1 (3)   R060930, Christmas mine
Ca2Mn3+2(OH)2[Si4O11(OH)2]·2H2O 9.064 (1) 6.171 (2) 11.976 (3) 91.38 (2) 669.7 (4) C2/m Moore et al. (1985[Moore, P. B., Shen, J. & Araki, T. (1985). Am. Mineral. 70, 171-181.]), N'Chwaning mine
Ca2Mn3+2[Si4O11(OH)2](OH)2(H2O)2 11.974 (3) 6.175 (2) 9.052 (2) 91.34 (2) 669.1 (4) A2 Hawthorne (1984[Hawthorne, F. C. (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135-146.]), Wessels mine
Ca1.89Mn3+2.13[Si3.96O11(OH)2](OH)2·2H2O*             Wilson & Dunn (1978[Wilson, W. E. & Dunn, P. J. (1978). Miner. Rec. 9, 137-153.]), Wessels mine
Ca1.06Mn3+0.86(SiO3)1.89(OH)1.03·2.06H2O 11.95 6.17 9.03 91.38 665.6 P21/c Williams & Duggan (1977[Williams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429-432.]), Christmas mine
* Recalculated based on 17 O atoms, as in the currently accepted formula.

The structure of ruizite was first determined by Hawthorne (1984[Hawthorne, F. C. (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135-146.]) on the basis of space group A2, in the same setting as reported by Williams & Duggan (1977[Williams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429-432.]), using a crystal from the Wessels mine. The structure refinement yielded an R factor of 5.6% for an isotropic displacement model in which positions of three of the four hydrogen atoms were located. Refinement of anisotropic displacement parameters was not successful. The ideal chemical formula was revised to Ca2MnIII2[Si4O11(OH)2](OH)2(H2O)2. Moore et al. (1985[Moore, P. B., Shen, J. & Araki, T. (1985). Am. Mineral. 70, 171-181.]) re-examined the ruizite structure using a sample from the N'Chwaning mine and reported space group C2/m, a cell setting different from that adopted by Hawthorne (1984[Hawthorne, F. C. (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135-146.]). The structure was refined with anisotropic displacement parameters for non-H atoms, yielding an R factor of 8.4%; no hydrogen atoms were located. However, most of the resulting displacement ellipsoids were unreasonable or non-positive definite. Moore et al. (1985[Moore, P. B., Shen, J. & Araki, T. (1985). Am. Mineral. 70, 171-181.]) presented a disclaimer that `the anisotropic thermal parameters for these crystals are more likely manifestations of inter­growths and domain disorder, rather than descriptions of true thermal motions'.

The current study reports a redetermination of the ruizite structure by means of single-crystal X-ray diffraction data of a natural sample from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa (Fig. 1[link]).

[Figure 1]
Figure 1
Photograph of the ruizite specimen analyzed in this study.

2. Structural commentary

The structure of ruizite is characterized by chains of edge-sharing MnO6 octa­hedra extending along [010], which are linked by corner-sharing with SiO4 tetra­hedra that form short [Si4O11(OH)2] chains, giving rise to a three-dimensional network (Fig. 2[link]). The finite [Si4O11(OH)2] chain in ruizite is the only reported silicate chain of this type. The relatively large Ca2+ cations occupy the inter­stitial cavities and exhibit a coordination number of seven [Ca—O bond-length range 2.348 (4)–2.606 (3) Å]. The Mn3+ cations are bonded to four O atoms (O3, O4, and two O1 atoms) and two OH groups (O8—H2), resulting in a distorted MnO6 octa­hedron, with an octa­hedral angle variance of 27.35 and a quadratic elongation index of 1.015 (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The Si1O4 tetra­hedron is more distorted than Si2O4, as indicated by angular variances (26.37 vs 10.18) and quadratic elongation indices (1.007 vs 1.003). Both average Si1—Onbr and Si2—Onbr bond lengths (nbr = non-bridging) are 1.618 Å. The Si2—O7 separation (1.642 Å) is longer than the average Si2—Onbr length because O7 is the hydroxyl group that is also bonded to a Ca2+ cation. The O5 atom is located on a twofold rotation axis and bridges the two Si2 atoms with a Si—O bond length of 1.6031 (13) Å, which is most likely a result of the considerably large Si2—O5—Si2 angle [162.9 (3)°] when compared to the Si1—O2—Si2 angle [128.27 (18)°] (Gibbs et al., 1994[Gibbs, G. V., Downs, J. W. & Boisen, M. B. (1994). Rev. Min. Geochem. 29, 332-368.]).

[Figure 2]
Figure 2
The crystal structure of ruizite as reported in this paper, viewed down b. Pink and gray ellipsoids represent O and Ca atoms, respectively. SiO4 tetra­hedra are shown in green and MnO6 octa­hedra in yellow. Hydrogen atoms are represented by small dark-blue spheres.

The hydrogen-bonding scheme in ruizite is presented in Table 2[link]. The O9 atom is bonded to atoms H3 and H4, forming a water mol­ecule whereas the O7 and O8 atoms are bonded to H1 and H2, respectively, to form two distinct OH groups. The bond-valence calculations (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) confirm the model (Table 3[link]). The O6 atom is markedly underbonded because it is an acceptor for both H1 and H3, and consequently it is associated with the shortest Si—O and Ca—O bond lengths. It is inter­esting to note that all hydrogen bonds in ruizite are shorter than 2.85 Å (Table 2[link]). Nevertheless, the Raman spectrum shows a relatively sharp band at 3570 cm−1 (see below). According to Libowitzky (1999[Libowitzky, E. (1999). Monatsh. Chem. 130, 1047-1059.]), this band would correspond to a hydrogen bond length (O⋯O) of 3.1–3.3 Å. Perhaps O7—H1 forms a bifurcated hydrogen bond, where H1 is bonded to both O6 and O5. The O7⋯O5 distance is 3.354 Å, which could explain the band at 3570 cm−1 (Libowitzky, 1999[Libowitzky, E. (1999). Monatsh. Chem. 130, 1047-1059.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O6i 0.73 (6) 1.94 (6) 2.662 (4) 168 (8)
O8—H2⋯O9 0.64 (6) 2.28 (6) 2.842 (4) 149 (9)
O9—H3⋯O6 0.74 (8) 2.06 (8) 2.737 (6) 153 (7)
O9—H4⋯O8 0.72 (6) 2.14 (6) 2.842 (4) 167 (9)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1].

Table 3
Bond-valence sums

  O1 O2 O3 O4 O5 O6 O7 O8 O9 ΣM
Ca 0.203 0.178 0.292 0.284   0.357 0.272   0.322 2.014
Mn 0.317×2↓   0.674 0.668       0.599×2   3.173
Si1 1.044 0.898 0.971 1.036           3.949
Si2   0.957     1.058×2↓ 1.087 0.953     4.055
ΣO 1.881 2.033 1.937 1.988 2.116 1.444 1.225 1.198 0.322  

Fig. 3[link] is a plot of the Raman spectrum of ruizite. A tentative assignment of the major Raman bands is as follows: The bands between 2800 and 3600 cm−1 are due to the O—H stretching vibrations. The short H2⋯H4 distance (1.58 Å) may be a result of disordering of one of the hydrogen atoms, which may also explain the considerably broad O—H stretching band in the Raman spectrum around 2940 cm−1. The bands in the 1050–800 cm−1 region can be attributed to the Si—O stretching vibrations within the SiO4 groups and those in the range of 670–520 cm−1 to the O—Si—O bending vibrations within the SiO4 tetra­hedra. The bands below 500 cm−1 are mainly associated with the rotational and translational modes of SiO4 tetra­hedra, and the MnO6 and CaO7 polyhedral inter­actions.

[Figure 3]
Figure 3
Broad-scan Raman spectrum of an unoriented ruizite specimen (R130787).

3. Synthesis and crystallization

The ruizite crystal used in this study is from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa (Fig. 1[link]) and is in the collection of the RRUFF project (https://rruff.info/R130787). Its chemical composition was measured using a CAMECA SX 100 electron microprobe at the conditions of 15 keV, 20 nA and a beam size <1 µm. The composition, calculated on the basis of 17 oxygen atoms and an estimation of H2O by difference is (Ca1.90Sr0.06Mg0.04)(Mn3+1.88Fe3+0.07Al0.05)Si4.01O11(OH)4·2H2O.

The Raman spectrum of ruizite was collected from a randomly oriented crystal at 100% power of 150 mW on a Thermo Almega microRaman system, using a solid-state laser with a wavelength of 532 nm, and a thermoelectrically cooled CCD detector. The laser was partially polarized with 4 cm−1 resolution and a spot size of 1 µm.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The crystal structure was solved and refined based on space group C2 because it yielded better refinement statistics than in C2/m in terms of bond lengths and angles, atomic displacement parameters, and R factors. The crystal under investigation was twinned by inversion (Table 4[link]). Electron microprobe analysis revealed that the ruizite sample studied contains small amounts of Sr, Mg, Fe, and Al. However, the overall effects of minor and trace amounts of these elements are negligible; therefore, the ideal chemical formula Ca2Mn3+2[Si4O11(OH)2](OH)2·2H2O was assumed during refinement. The H atoms were located from difference Fourier syntheses and confirmed by bond valence sum calculations. Their positions were refined with a fixed isotropic displacement parameter (Uiso = 0.04). The maximum residual electron density in the difference Fourier map, 0.60 e Å−3, was located at 0.85 Å from O8 and the minimum density at 0.17Å from H4.

Table 4
Experimental details

Crystal data
Chemical formula Ca2Mn3+2[Si4O11(OH)2](OH)2·2H2O
Mr 582.46
Crystal system, space group Monoclinic, C2
Temperature (K) 293
a, b, c (Å) 9.0360 (3), 6.1683 (2), 11.9601 (4)
β (°) 91.433 (2)
V3) 666.41 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.13
Crystal size (mm) 0.06 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 4997, 2038, 1732
Rint 0.029
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.065, 1.06
No. of reflections 2038
No. of parameters 127
No. of restraints 1
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.60, −0.53
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.18 (5)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Dicalcium dimanganese(III) tetrasilicate tetrahydroxide dihydrate top
Crystal data top
Ca2H8Mn2O17Si4F(000) = 580
Mr = 582.46Dx = 2.903 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 9.0360 (3) ÅCell parameters from 1284 reflections
b = 6.1683 (2) Åθ = 8.0–63.1°
c = 11.9601 (4) ŵ = 3.13 mm1
β = 91.433 (2)°T = 293 K
V = 666.41 (4) Å3Prismatic, brown
Z = 20.06 × 0.04 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1732 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
φ and ω scanθmax = 32.6°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
k = 98
4997 measured reflectionsl = 1818
2038 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.6718P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.60 e Å3
2038 reflectionsΔρmin = 0.53 e Å3
127 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.18 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.29482 (8)0.9839 (2)0.73974 (6)0.01019 (15)
Mn0.74915 (13)0.7373 (2)0.99906 (10)0.00679 (12)
Si10.96440 (10)0.9873 (3)0.84877 (8)0.00607 (18)
Si20.89549 (12)1.0016 (3)0.60450 (9)0.0084 (2)
O10.1260 (3)0.9855 (9)0.9082 (2)0.0088 (5)
O21.0076 (3)0.9891 (10)0.71434 (19)0.0094 (5)
O30.8652 (5)0.7699 (7)0.8692 (4)0.0096 (9)
O40.1302 (4)0.2031 (7)0.1276 (3)0.0070 (9)
O51.00001.0402 (7)0.50000.0169 (11)
O60.7769 (4)1.1913 (6)0.6146 (3)0.0121 (8)
O70.8183 (4)0.7611 (6)0.5947 (3)0.0152 (9)
O80.6317 (3)0.9886 (9)0.9535 (2)0.0096 (5)
O90.5570 (4)0.9743 (11)0.7213 (3)0.0201 (8)
H10.792 (8)0.760 (12)0.536 (6)0.040*
H20.617 (7)1.029 (13)0.905 (5)0.040*
H30.594 (7)1.041 (13)0.679 (6)0.040*
H40.586 (6)0.967 (18)0.778 (5)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0129 (4)0.0101 (3)0.0076 (3)0.0017 (6)0.0017 (3)0.0006 (6)
Mn0.0074 (2)0.0068 (2)0.0062 (2)0.00026 (19)0.00176 (17)0.00027 (18)
Si10.0063 (4)0.0071 (4)0.0049 (4)0.0002 (8)0.0009 (3)0.0002 (8)
Si20.0101 (5)0.0100 (6)0.0051 (4)0.0020 (7)0.0008 (4)0.0003 (7)
O10.0071 (11)0.0098 (10)0.0094 (12)0.001 (2)0.0006 (9)0.002 (2)
O20.0094 (12)0.0142 (11)0.0045 (11)0.001 (2)0.0012 (9)0.000 (2)
O30.007 (2)0.010 (2)0.012 (2)0.0012 (16)0.0025 (18)0.0024 (17)
O40.009 (2)0.007 (2)0.005 (2)0.0014 (16)0.0018 (17)0.0005 (15)
O50.019 (2)0.025 (3)0.007 (2)0.0000.0043 (17)0.000
O60.0127 (18)0.0138 (17)0.0096 (17)0.0018 (14)0.0006 (14)0.0011 (13)
O70.021 (2)0.0131 (17)0.0112 (19)0.0035 (16)0.0054 (16)0.0001 (15)
O80.0113 (12)0.0087 (10)0.0088 (12)0.001 (2)0.0006 (10)0.003 (2)
O90.0172 (16)0.0221 (19)0.0213 (17)0.006 (2)0.0042 (13)0.001 (3)
Geometric parameters (Å, º) top
Ca—O6i2.348 (4)Mn—O1vii2.184 (4)
Ca—O92.386 (4)Mn—O1viii2.187 (4)
Ca—O3ii2.422 (5)Si1—O1ix1.608 (3)
Ca—O4iii2.433 (4)Si1—O4x1.611 (4)
Ca—O7ii2.449 (4)Si1—O31.635 (5)
Ca—O12.557 (2)Si1—O21.664 (2)
Ca—O2iv2.606 (3)Si2—O61.593 (4)
Mn—O31.906 (4)Si2—O51.6031 (13)
Mn—O4v1.909 (4)Si2—O21.640 (3)
Mn—O81.949 (5)Si2—O71.642 (4)
Mn—O8vi1.951 (5)
O3—Mn—O4v179.1 (3)O1vii—Mn—O1viii179.1 (2)
O3—Mn—O889.73 (16)O1ix—Si1—O4x114.1 (2)
O4v—Mn—O889.97 (16)O1ix—Si1—O3115.0 (3)
O3—Mn—O8vi90.51 (17)O4x—Si1—O3110.88 (13)
O4v—Mn—O8vi89.81 (16)O1ix—Si1—O2101.23 (13)
O8—Mn—O8vi179.1 (2)O4x—Si1—O2107.6 (3)
O3—Mn—O1vii87.33 (17)O3—Si1—O2107.0 (3)
O4v—Mn—O1vii91.84 (15)O6—Si2—O5111.1 (2)
O8—Mn—O1vii99.16 (17)O6—Si2—O2112.1 (2)
O8vi—Mn—O1vii81.73 (17)O5—Si2—O2105.51 (11)
O3—Mn—O1viii92.99 (16)O6—Si2—O7112.6 (2)
O4v—Mn—O1viii87.85 (16)O5—Si2—O7109.7 (2)
O8—Mn—O1viii81.70 (17)O2—Si2—O7105.5 (3)
O8vi—Mn—O1viii97.41 (16)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1; (vi) x+3/2, y1/2, z+2; (vii) x+1/2, y1/2, z; (viii) x+1, y, z+2; (ix) x+1, y, z; (x) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O6xi0.73 (6)1.94 (6)2.662 (4)168 (8)
O8—H2···O90.64 (6)2.28 (6)2.842 (4)149 (9)
O9—H3···O60.74 (8)2.06 (8)2.737 (6)153 (7)
O9—H4···O80.72 (6)2.14 (6)2.842 (4)167 (9)
Symmetry code: (xi) x+3/2, y1/2, z+1.
Chemical composition and unit cell parameters (Å, Å3) of different ruizite samples top
ChemistryabcβVSpace groupReference and locality
(Ca1.90Sr0.06Mg0.04)(Mn3+1.88Fe3+0.07Al0.05)Si4.01O11(OH)4·2H2O9.0360 (3)6.1683 (2)11.9601 (4)91.433 (2)666.41 (4)C2Present study R130787, Wessels mine
(Ca1.96Mg0.02)Σ=1.98(Mn3+1.97Fe3+0.04Al0.01)Σ=2.02Si4O11(OH)4·2H2O9.0476 (6)6.1774 (3)11.9707 (8)91.344 (3)668.9 (1)C2R140132, Cornwall mine
(Ca1.98Mg0.03)Σ=2.01(Mn3+1.95Fe3+0.08V3+0.01)Σ=2.04Si3.96O11(OH)4·2H2O9.056 (5)6.170 (3)11.92 (1)91.30 (4)666.1 (3)R060930, Christmas mine
Ca2Mn3+2(OH)2[Si4O11(OH)2]·2H2O9.064 (1)6.171 (2)11.976 (3)91.38 (2)669.7 (4)C2/mMoore et al. (1985), N'Chwaning mine
Ca2Mn3+2[Si4O11(OH)2](OH)2(H2O)211.974 (3)6.175 (2)9.052 (2)91.34 (2)669.1 (4)A2Hawthorne (1984), Wessels mine
Ca1.89Mn3+2.13[Si3.96O11(OH)2](OH)2·2H2O*Wilson & Dunn (1978), Wessels mine
Ca1.06Mn3+0.86(SiO3)1.89(OH)1.03·2.06H2O11.956.179.0391.38665.6P21/cWilliams & Duggan (1977), Christmas mine
* Recalculated based on 17 O atoms, as in the currently accepted formula.
Bond-valence sums top
O1O2O3O4O5O6O7O8O9ΣM
Ca0.2030.1780.2920.2840.3570.2720.3222.014
Mn0.317×2&darr;0.6740.6680.599×23.173
Si11.0440.8980.9711.0363.949
Si20.9571.058×2&darr;1.0870.9534.055
ΣO1.8812.0331.9371.9882.1161.4441.2251.1980.322
 

Acknowledgements

The authors gratefully acknowledge support of this study from the Arizona Science Foundation and NASA NNX11AP82A, Mars Science Laboratory Investigations. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

References

First citationBalestra, C., Kolitsch, U., Blass, G., Callegari, A. M., Boiocchi, M., Armellino, G., Ciriotti, M. E., Ambrino, P. & Bracco, R. (2009). Micro, 1–2009, 78–99.  Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowns, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.  CrossRef CAS Google Scholar
First citationGibbs, G. V., Downs, J. W. & Boisen, M. B. (1994). Rev. Min. Geochem. 29, 332–368.  Google Scholar
First citationHawthorne, F. C. (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135–146.  CrossRef CAS Web of Science Google Scholar
First citationKearns, L. E. & Kearns, C. A. (2008). Mineral. News, 24, 8–9.  Google Scholar
First citationLibowitzky, E. (1999). Monatsh. Chem. 130, 1047–1059.  Web of Science CrossRef CAS Google Scholar
First citationMoore, P. B., Shen, J. & Araki, T. (1985). Am. Mineral. 70, 171–181.  CAS Google Scholar
First citationPeterson, N. P. & Swanson, R. W. (1956). U. S. Geol. Surv. Bull. 1027–H, 351–373.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, S. A. & Duggan, M. (1977). Mineral. Mag. 41, 429–432.  CrossRef CAS Web of Science Google Scholar
First citationWilson, W. E. & Dunn, P. J. (1978). Miner. Rec. 9, 137–153.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds