

Received 8 June 2016 Accepted 10 June 2016

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; 1,3-cyclohexadiene; conformation.

CCDC reference: 1484412

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of dimethyl 3,4,5,6-tetraphenylcyclohexa-3,5-diene-1,2-dicarboxylate

Fred H. Greenberg and Alexander Y. Nazarenko*

Chemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA. *Correspondence e-mail: nazareay@buffalostate.edu

In the title compound, $C_{34}H_{28}O_4$, the cyclohexadiene ring has a screw-boat conformation with a torsion angle between the double bonds being on average ca 15° [15.2 (3) and -15.3 (3) in the two independent molecules]. All four phenyl rings in both molecules are arranged in a propeller-like conformation. The two molecules exhibit S,*R*- and *R*,*S*- chirality, respectively, and are connected *via* C-H···O intermolecular interactions. In turn, these weakly bound dimers form the molecular crystal.

1. Chemical context

Addition reactions of tetraphenylcyclopentadienone, often abbreviated to 'tetracyclone', were reviewed by Allen (1945, 1962). Tetracyclone reacts with unsaturated anhydrides, acids and esters, forming a number of polyfunctional carbonylbridge compounds. These species easily loose carbon monoxide to form dihydrobenzene (cyclohexadiene) derivatives. It was found that the use of maleic and fumaric esters yields various stereoisomers. The photochemical behavior of these compounds was studied (Fuchs & Yankelievich, 1968), showing a number of products including dimethyl tetraphenylphthalate. The relative simplicity of these reactions and the rich organic chemistry and spectroscopy of appropriate products make them attractive for use in undergraduate organic chemistry teaching laboratories.

This study provides an opportunity to investigate the geometry of 1,3-cyclohexadiene rings surrounded by bulky substituents with no strong intermolecular interactions.

2. Database survey

Conjugation of two double bonds favors a coplanar π -system with a dihedral angle close to zero. However, in cyclic 1,3-

OPEN 🔂 ACCESS

research communications

C132 C108 C133 131 C134 0102010 C130 C107 C129 C110 C101 C106 C124 C125 0103 0104 C123 C109 C126 C105 C102 C127 C128 C103 C104 C117 C111 C116 C118 C115 C119 C122 C112 C113 C120 C114 C121

Figure 1

Numbering scheme of the title compound with 50% probability elipsoids (S,R-isomer).

cyclohexadiene molecules angle strain and steric effects promote a non-planar structure (Rabideau & Sygula, 1989). Even for non-cyclic systems, because of steric effects, the geometry of the higher energy non-trans conformer of 1,3-butadiene in the gas phase is non-planar *s-gauche* (De Maré *et al.*, 1997). Addition of bulky substituents to the 1,3butadiene molecule changes the conformational preference from *trans* to *gauche* even in the ground state.

The geometry of unsubstituted 1,3-cyclohexadiene was studied using electron diffraction in the gas phase (Traetteberg, 1968; Rabideau & Sygula, 1989) showing a dihedral angle of around 18°. The crystal structure of solid unsubstituted 1,3-cyclohexadiene is not reported. However, the 1,3-cyclohexadiene molecule has been incorporated into microporous vanadium benzenedicarboxylate (Wang et al., 2011) showing an almost flat conformation with a dihedral angle of 3.9° (refcode IXODUV). There are a large number of known 1,3-cyclohexadiene complexes with various metals, all with a mostly planar diene fragment. There are seventeen reported hexasubstituted 1,3-cyclohexadiene structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016). Of these structures, nine show a practically flat butadiene fragment with dihedral angles less than 3°. Two more (refcodes ONIWUE and TESNIT) show dihedral angles of 4.5 and 4.7°, respectively. Only four structures demonstrate dihedral angles similar to that of free 1,3-cyclohexadiene in the gas phase: GABGEQ (18.8°) , HEUZOX (22.5°), JEKFUB (18.6°) and PUBMEG (20.1°). This last structure of *trans*-dimethyl 3,4,5,6-tetramethylcyclo-hexa-3,5-diene-1,2-dicarboxylate (Takahashi *et al.*, 1998) is the closest to the title compound, with a *cis* conformation as for the title compound.

Figure 3 Overlay of the two independent molecules, after inversion.

Table 1Deviation from the mean plane of cyclohexadiene ring (Å).

C1	-0.269 (2)	C101	-0.286 (2)
C2	+0.280(2)	C102	+0.298 (2)
C3	-0.089(2)	C103	-0.096(2)
C4	-0.112(2)	C104	-0.114(2)
C5	+0.126(2)	C105	+0.131(2)
C6	+0.064 (2)	C106	+0.067 (2)

Table 2 Selected torsio

Selected torsion angles (°).

C4-C3-C2-C1	-35.7 (3)	C105-C104-C103-C102	-5.2(3)
C4-C5-C6-C1	0.7 (3)	C5-C4-C3-C2	4.3 (3)
C3-C4-C5-C6	15.2 (3)	C5-C6-C1-C2	-32.9(3)
C3-C2-C1-C6	48.2 (2)	C106 - C101 - C102 - C103	-51.3(2)
C101-C102-C103-C104	38.2 (3)	C102-C101-C106-C105	35.2 (3)
C104-C105-C106-C101	-1.3 (3)	C103 - C104 - C105 - C106	-15.3 (3)

3. Structural commentary

There are two independent molecules (Figs. 1 and 2) in the asymmetric unit of the title compound, with S,R-chirality and R,S-chirality, respectively (Figs. 1, 2). After inversion they demonstrate a good overlay (Fig. 3) with an average deviation of 0.14 Å.

The cyclohexadiene rings (see Fig. 4, Table 1) are nonplanar in a screw-boat conformation (Boeyens, 1978) with puckering parameters (C1–C6) Q = 0.437 (2) Å, $\theta = 115.8$ (3)° and $\varphi = 213.1$ (3); (C101–C106) Q = 0.463 (2) Å, $\theta = 63.7$ (2)° and $\varphi = 33.5$ (3)°.

Torsion angles between Csp^3 atoms indicate a *gauche* conformation; the dihedral angles between the two double bonds are 15.2 (3) and -15.3 (3) for the two independent molecules (see Table 2). These values are practically the same as observed for free 1,3-cyclohexadiene in the gas phase: one can argue that the much lower values reported for 1,3-cyclohexadienes in the crystal state are caused by intermolecular interactions which may favor a flat butadiene fragment.

All six substituents are practically flat. Both ester fragments are almost perpendicular to the mean plane of the cyclohexadiene ring (Table 3). All four phenyl rings in both molecules are arranged in a propeller-like formation with angles between 46 and 74° (see Table 3 for exact numbers) from the mean plane of the cyclohexadiene ring. This propeller-like

Figure 4 Cyclohexadiene ring with 50% probability elipsoids.

Dihedral	angles	between	cyclohexadiene	mean	plane	and	substituent
mean pla	nes (°)						

Atoms	angle	atoms	angle
C8/O2/C7/O1	79.35 (9)	C108-O101	71.07 (10)
C10/O4/C9/O3	97.38 (13)	C110-O104	97.82 (14)
C11-C16	59.72 (8)	C111-C116	57.22 (8)
C17-C22	46.53 (7)	C117-C122	46.12 (8)
C23-C28	56.38 (8)	C123-C128	56.89 (8)
C29-C34	69.88 (8)	C129–C134	73.46 (8)

Table 4			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C101-H101···O2	0.99 (3)	2.39 (3)	3.384 (3)	176 (2)
C102-H102···O4	0.96 (3)	2.48 (3)	3.242 (3)	136 (2)
C16-H16···O4	0.95	2.59	3.407 (3)	145
C116-H116···O104	0.95	2.54	3.388 (3)	148

formation is probably inherited from the precursor tetracyclone molecule (refcode KIKTUT02; Pal *et al.*, 2014). Because of the large angles between the planes of the double bonds and each phenyl ring, very little conjugation may be expected. Therefore, substituents serve mainly as bulky decoration, protecting the cyclohexadiene ring from external steric influences.

4. Supramolecular features

There are no usual hydrogen-bonding or stacking interactions in this structure.

Two hydrogen atoms of the cyclohexadiene group (H101 and H102) form short contacts (Desiraju & Steiner, 1999) with carbonyl oxygen atoms of another molecule (Table 4, Fig. 5).

Figure 5 Short $C-H\cdots O$ contacts connecting two molecules into a weakly bonded dimer in the crystal.

research communications

 Table 5

 Experimental details.

Crystal data	
Chemical formula	$C_{34}H_{28}O_4$
$M_{\rm r}$	500.56
Crystal system, space group	Trigonal, P3 ₂
Temperature (K)	173
<i>a</i> , <i>c</i> (Å)	10.8330 (12), 39.169 (5)
$V(Å^3)$	3980.8 (12)
Z	6
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	0.65
Crystal size (mm)	$0.59 \times 0.34 \times 0.13$
Data collection	
Diffractometer	Bruker Photon-100 CMOS
Absorption correction	Multi-scan (SADABS; Bruker,2014/5)
T_{\min}, T_{\max}	0.669, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	53613, 10773, 10345
R _{int}	0.043
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.637
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.091, 1.05
No. of reflections	10773
No. of parameters	702
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.19, -0.15
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.38 (16)
-	

Computer programs: APEX2 and SAINT (Bruker, 2013), XT (Sheldrick, 2015), XL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

The corresponding hydrogen atoms of the other molecule (H1 and H2) do not have acceptors available for such bonding. These intermolecular interactions, however weak they are, keep together a pair of molecules with opposite chirality. Two short intramolecular $C-H\cdots O$ contacts within each molecule are also observed and may influence the molecular conformation. There are no other bonding short contacts between the weakly bound dimers and they form a usual molecular crystal.

5. Synthesis and crystallization

The title compound was obtained by reaction of tetraphenylcyclopentadienone (common name tetracyclone) with dimethylmaleate following Allen & Sheps (1934). GC–MS analysis of the colorless crystalline product dissolved in dichloromethane shows one main compound with a parent peak at 500 which is consistent with the formula weight of the title compound. Because all precursor compounds were non-chiral and synthetic conditions should not induce chirality, we expected to see a racemic product. Crystallization from acetonitrile resulted in several hexagonal flakes, mostly with intergrown smaller crystals. Several crystals were tested, all resulting in essentially the same chiral trigonal structure. The highest quality structure, from a partial racemically twinned crystal, is reported here.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The structure was refined as a twocomponent inversion twin. Cyclohexadiene hydrogen atoms H1, H2, H101 and H102 were refined in isotropic approximation with $U_{iso} = 1.2U_{iso}(C)$. All aromatic hydrogen atoms were refined with riding coordinates with C-H = 0.95-0.98 Å and $U_{iso} = 1.2U_{iso}(C)$. Idealized methyl groups were refined as rotating groups with $U_{iso} = 1.5U_{iso}(C)$.

Acknowledgements

Financial support from the State University of New York for the acquisition and maintenance of X-ray diffractometer is gratefully acknowledged.

References

- Allen, C. F. H. (1945). Chem. Rev. 37, 209-268.
- Allen, C. F. H. (1962). Chem. Rev. 62, 653-664.
- Allen, C. F. H. & Sheps, L. J. (1934). Can. J. Res. 11, 171-179.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Maré, G. R., Panchenko, Y. N. & Vander Auwera, J. (1997). J. Phys. Chem. A, 101, 3998–4004.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press Inc.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fuchs, B. & Yankelevich, S. (1968). Isr. J. Chem. 6, 511-515.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Pal, R., Mukherjee, S., Chandrasekhar, S. & Guru Row, T. N. (2014). *J. Phys. Chem. A*, **118**, 3479–3489.
- Rabideau, P. W. & Sygula, A. (1989). *The conformational analysis of cyclohexenes, cyclohexadienes and related hydroaromatic compounds*, edited by P. W. Rabideau, pp. 67–53. New York: VCH.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
- Takahashi, T., Xi, Z., Yamazaki, A., Liu, Y., Nakajima, K. & Kotora, M. (1998). J. Am. Chem. Soc. 120, 1672–1680.
- Traetteberg, M. (1968). Acta Chem. Scand. 22, 2305–2312.
- Wang, X., Eckert, J., Liu, L. & Jacobson, A. J. (2011). Inorg. Chem. 50, 2028–2036.

Acta Cryst. (2016). E72, 947-950 [https://doi.org/10.1107/S2056989016009403]

Crystal structure of dimethyl 3,4,5,6-tetraphenylcyclohexa-3,5-diene-1,2-dicarboxylate

Fred H. Greenberg and Alexander Y. Nazarenko

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *XT* (Sheldrick, 2015); program(s) used to refine structure: *XL* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(I)

Crystal data $C_{34}H_{28}O_4$ $M_r = 500.56$ Trigonal, $P3_2$ a = 10.8330 (12) Å c = 39.169 (5) Å $V = 3980.8 (12) Å^3$ Z = 6F(000) = 1584

Data collection

Bruker Photon-100 CMOS
diffractometer
Radiation source: sealedtube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker,2014/5)
$T_{\min} = 0.669, \ T_{\max} = 0.754$
53613 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.091$ S = 1.0510773 reflections 702 parameters 1 restraint Hydrogen site location: mixed $D_x = 1.253 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9883 reflections $\theta = 3.4-78.4^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.59 \times 0.34 \times 0.13 \text{ mm}$

10773 independent reflections 10345 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 79.0^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -13 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -48 \rightarrow 48$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 0.4031P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.38 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

1. Twinned data refinement Scales: 0.62 (16) 0.38 (16) 2. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 3.a Aromatic/amide H refined with riding coordinates: C21(H21), C34(H34), C18(H18), C30(H30), C134(H134), C24(H24), C22(H22), C12(H12), C133(H133), C16(H16), C112(H112), C130(H130), C28(H28), C124(H124), C113(H113), C119(H119), C19(H19), C131(H131), C15(H15), C118(H118), C120(H120), C31(H31), C114(H114), C116(H116), C25(H25), C27(H27), C121(H121), C122(H122), C128(H128), C13(H13), C20(H20), C132(H132), C26(H26), C14(H14), C33(H33), C32(H32), C126(H126), C127(H127), C115(H115), C125(H125) 3.b Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C110(H11A,H11B,H11C), C10(H10A,H10B,H10C), C108(H10D,H10E, H10F)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	0.79329 (17)	0.30493 (18)	0.54107 (4)	0.0438 (4)	
O101	0.96274 (18)	0.63537 (17)	0.51401 (4)	0.0443 (4)	
O103	1.02631 (18)	0.4316 (2)	0.41723 (4)	0.0475 (4)	
O2	0.56790 (17)	0.38169 (16)	0.51915 (4)	0.0434 (4)	
01	0.3803 (2)	0.25072 (18)	0.48545 (4)	0.0458 (4)	
03	0.64592 (18)	0.29005 (17)	0.58294 (4)	0.0452 (4)	
O102	1.09927 (18)	0.5677 (2)	0.48612 (5)	0.0540 (4)	
O104	1.03157 (19)	0.27494 (18)	0.45336 (5)	0.0508 (4)	
C9	0.6769 (2)	0.2477 (2)	0.55396 (5)	0.0345 (4)	
C123	0.7593 (2)	0.5516 (2)	0.37918 (6)	0.0363 (4)	
C29	0.2698 (2)	0.2158 (2)	0.56419 (5)	0.0329 (4)	
C7	0.4665 (2)	0.2687 (2)	0.51152 (5)	0.0355 (4)	
C4	0.4035 (2)	-0.0443 (2)	0.58720 (5)	0.0346 (4)	
C3	0.5035 (2)	-0.0149 (2)	0.56313 (5)	0.0340 (4)	
C23	0.2515 (2)	0.0341 (2)	0.62110 (5)	0.0354 (4)	
C109	0.9775 (2)	0.3424 (2)	0.44350 (6)	0.0356 (4)	
C101	0.8547 (2)	0.4732 (2)	0.46876 (5)	0.0327 (4)	
H101	0.772 (3)	0.452 (3)	0.4837 (7)	0.039*	
C104	0.6822 (2)	0.3191 (2)	0.41216 (5)	0.0333 (4)	
C105	0.7663 (2)	0.4780 (2)	0.41074 (5)	0.0328 (4)	
C107	0.9869 (2)	0.5616 (2)	0.49006 (5)	0.0362 (4)	
C5	0.3298 (2)	0.0406 (2)	0.58914 (5)	0.0333 (4)	
C106	0.8498 (2)	0.5531 (2)	0.43712 (5)	0.0318 (4)	
C102	0.8425 (2)	0.3301 (2)	0.45915 (5)	0.0327 (4)	
H102	0.829 (3)	0.276 (3)	0.4797 (7)	0.039*	
C2	0.5490 (2)	0.1126 (2)	0.53935 (5)	0.0335 (4)	
H2	0.586 (3)	0.095 (3)	0.5182 (7)	0.040*	
C6	0.3366 (2)	0.1245 (2)	0.56296 (5)	0.0322 (4)	
C129	0.9408 (2)	0.7112 (2)	0.43578 (6)	0.0342 (4)	
C11	0.5749 (2)	-0.1004 (2)	0.55719 (6)	0.0371 (4)	
C21	0.4450 (3)	-0.2535 (3)	0.65930 (7)	0.0527 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H21	0.5199	-0.2513	0.6724	0.063*
C34	0.3107 (3)	0.3209 (2)	0.58899 (6)	0.0397 (5)
H34	0.3819	0.3349	0.6052	0.048*
C18	0.2271 (3)	-0.2583 (2)	0.62137 (6)	0.0418 (5)
H18	0.1516	-0.2602	0.6086	0.050*
C103	0.7127 (2)	0.2471 (2)	0.43591 (5)	0.0337 (4)
C111	0.6241 (2)	0.0917 (2)	0.44298 (6)	0.0359 (4)
C30	0.1673 (2)	0.1994 (3)	0.54024 (6)	0.0434 (5)
H30	0.1397	0.1294	0.5228	0.052*
C134	1.0485 (2)	0.7733 (2)	0.41147 (6)	0.0401 (5)
H134	1.0651	0.7145	0.3963	0.048*
C1	0.4199 (2)	0.1303 (2)	0.53089 (5)	0.0326 (4)
H1	0.357 (3)	0.052 (3)	0.5158 (7)	0.039*
C17	0.3680 (2)	-0.1561 (2)	0.61388 (5)	0.0375 (4)
C24	0.1072 (3)	-0.0091(2)	0.62101 (7)	0.0448 (5)
H24	0.0548	-0.0382	0.6003	0.054*
C22	0.4763 (3)	-0.1550(3)	0.63322 (6)	0.0440 (5)
H22	0.5728	-0.0861	0.6286	0.053*
C12	0.4937(3)	-0.2481(2)	0.55401 (6)	0.0440 (5)
H12	0 3930	-0.2941	0.5563	0.053*
C133	1,1322 (3)	0.9209 (3)	0.40914(7)	0.0529 (6)
H133	1.2055	0.9623	0.3925	0.063*
C117	0.5695 (2)	0.2447(2)	0.38556 (6)	0.0371 (4)
C16	0.3090(2) 0.7221(3)	-0.0358(3)	0.55332(7)	0.0479 (5)
H16	0.7221 (3)	0.0649	0.5551	0.057*
C112	0.4757(2)	0.0265 (2)	0.44520 (6)	0.037
H112	0.4305	0.0203 (2)	0.4403	0.0367 (1)
C130	0.1303 0.9202(3)	0 7994 (2)	0.45808 (6)	0.0429(5)
H130	0.8489	0.7587	0.4752	0.051*
C28	0.3746(3)	0.7387 0.0744 (3)	0.65205.(6)	0.031
H28	0.4232	0.1038	0.6526	0.056*
C124	0.1232 0.7148(3)	0.6522 (2)	0.38033(7)	0.020 0.0473(5)
H124	0.6850	0.6725	0.4014	0.057*
C113	0.3038(3)	-0.1154(3)	0.45445(6)	0.027 0.0458 (5)
H113	0.2931	-0.1580	0.4557	0.055*
C119	0.2991 0.3685 (3)	0.1300 0.2182(3)	0.35267(7)	0.0509 (6)
H119	0.2984	0.2446	0.3485	0.0505 (0)
C19	0.1960 (3)	-0.3573(3)	0.64730(7)	0.0493 (6)
H19	0.0997	-0.4267	0.6520	0.059*
C131	1.0040(3)	0.4207 0.9472 (3)	0.45532 (8)	0.0554(7)
H131	0.9885	1 0071	0.4703	0.0554 (7)
C15	0.7860 (3)	-0.1173(3)	0.54693 (8)	0.0566 (7)
H15	0.8866	-0.0720	0.54655 (0)	0.0500 (7)
C118	0.4674(2)	0 2838 (2)	0 37867 (6)	0.000
H118	0.4654	0.2650 (2)	0.37007(0)	0.0422 (3)
C120	0 3710 (3)	0.3303 0 1143 (3)	0.3919	0.051
H120	0.3/19(3)	0.11+3 (3)	0.33279(7)	0.0559(7)
C31	0.3049	0.0701	0.5140 0.54172(9)	0.007°
031	0.1032(3)	0.2030 (3)	0.341/3(8)	0.0554(/)

H31	0.0353	0.2732	0.5254	0.066*
C114	0.4573 (3)	-0.1955 (3)	0.46184 (8)	0.0539 (6)
H114	0.4010	-0.2924	0.4685	0.065*
C116	0.6871 (3)	0.0096 (3)	0.45039 (8)	0.0498 (6)
H116	0.7878	0.0514	0.4493	0.060*
C25	0.0393 (3)	-0.0097 (3)	0.65115 (9)	0.0627 (8)
H25	-0.0591	-0.0381	0.6508	0.075*
C27	0.2558 (4)	0.0723 (3)	0.68193 (7)	0.0617 (8)
H27	0.3071	0.1000	0.7028	0.074*
C121	0.4727 (3)	0.0754 (3)	0.33914 (7)	0.0529 (6)
H121	0.4751	0.0043	0.3254	0.063*
C8	0.4058 (4)	0.3808 (3)	0.46891 (7)	0.0588 (7)
H8A	0.3398	0.3574	0.4497	0.088*
H8B	0.5041	0.4326	0.4605	0.088*
H8C	0.3909	0.4403	0.4853	0.088*
C122	0.5707 (3)	0.1388 (2)	0.36532 (6)	0.0439 (5)
H122	0.6391	0.1101	0.3696	0.053*
C128	0.8006 (3)	0.5232 (3)	0.34810 (6)	0.0479 (5)
H128	0.8302	0.4543	0.3468	0.058*
C13	0.5581(3)	-0.3293(3)	0.54756 (7)	0.0509 (6)
H13	0.5012	-0.4300	0.5456	0.061*
C20	0.3049(4)	-0.3547(3)	0.66614(7)	0.0543(7)
H20	0.2837	-0.4225	0.6838	0.065*
C132	1,1094 (3)	1,0066 (3)	0.43078 (8)	0.0598 (8)
H132	1.1662	1 1073	0.4289	0.072*
C26	0 1132 (4)	0.0303 (3)	0.68154 (8)	0.072
H26	0.0660	0.0290	0.7021	0.081*
C14	0.7037(3)	-0.2644(3)	0 54406 (8)	0.0543 (6)
H14	0.7477	-0.3199	0.5397	0.065*
C33	0.7479(3)	0.9199	0.59917(7)	0.005
Н33	0.2762	0.4768	0.6072	0.062*
C32	0.2702 0.1450(3)	0.3866 (3)	0.56682(8)	0.052
H32	0.1015	0.4440	0.5680	0.0502 (7)
C110	1 1609 (3)	0.4582(4)	0.40345(8)	0.067
H11A	1.1830	0.5166	0.3828	0.0021(7)
H11R	1.1551	0.3673	0.3978	0.093*
HIIC	1.1351	0.5087	0.4204	0.093*
C10	0.7575(3)	0.4261 (3)	0.59574 (8)	0.055
H10A	0.7695	0.5023	0.59074 (0)	0.0378(7)
H10R	0.8472	0.3023	0.5802	0.087*
H10C	0.7314	0.4246	0.6185	0.087*
C126	0.7514 0.7558 (3)	0.4435	0.0105 0.32010 (0)	0.037 0.0718 (10)
H126	0.7545	0.0930 (4)	0.32010 ())	0.0718(10)
C127	0.7345	0.7419	0.3000	0.080
U127	0.7991 (3)	0.5750	0.2075	0.0004 (9)
C115	0.0204	-0.1221(2)	0.2975	0.000°
U115	0.0030 (3)	-0.1892	0.45741 (7)	0.0014(7)
C108	0.0477	-0.1002	0.4040	0.0/4
U100	1.0602 (4)	0.7347(3)	0.33338 (8)	0.0040(8)

H10D	1.1554	0.8085	0.5181	0.097*
H10E	1.1296	0.6840	0.5441	0.097*
H10F	1.0572	0.7792	0.5511	0.097*
C125	0.7142 (3)	0.7225 (3)	0.35077 (10)	0.0658 (9)
H125	0.6846	0.7915	0.3518	0.079*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0354 (8)	0.0405 (8)	0.0537 (9)	0.0178 (7)	0.0057 (7)	0.0050 (7)
O101	0.0495 (9)	0.0365 (8)	0.0416 (8)	0.0175 (7)	-0.0063 (7)	-0.0078 (6)
O103	0.0415 (9)	0.0614 (11)	0.0440 (8)	0.0289 (8)	0.0093 (7)	0.0128 (8)
O2	0.0400 (8)	0.0322 (8)	0.0563 (9)	0.0169 (7)	0.0008 (7)	0.0066 (7)
01	0.0583 (10)	0.0419 (8)	0.0412 (8)	0.0280 (8)	-0.0065 (7)	0.0010 (7)
O3	0.0464 (9)	0.0379 (8)	0.0429 (8)	0.0148 (7)	0.0022 (7)	-0.0064 (6)
O102	0.0349 (9)	0.0540 (10)	0.0670 (11)	0.0177 (8)	-0.0096 (8)	-0.0159 (9)
O104	0.0415 (9)	0.0425 (9)	0.0731 (11)	0.0245 (8)	0.0025 (8)	0.0080 (8)
C9	0.0395 (11)	0.0308 (10)	0.0378 (10)	0.0210 (9)	0.0015 (8)	0.0038 (8)
C123	0.0285 (9)	0.0275 (9)	0.0447 (11)	0.0079 (8)	-0.0063 (8)	0.0014 (8)
C29	0.0314 (10)	0.0299 (9)	0.0387 (11)	0.0162 (8)	0.0053 (8)	0.0043 (8)
C7	0.0397 (11)	0.0367 (11)	0.0360 (10)	0.0234 (9)	0.0049 (8)	0.0009 (8)
C4	0.0363 (10)	0.0277 (9)	0.0409 (10)	0.0169 (8)	-0.0010 (8)	-0.0003 (8)
C3	0.0368 (10)	0.0275 (9)	0.0407 (10)	0.0183 (8)	0.0017 (8)	0.0001 (8)
C23	0.0407 (11)	0.0270 (9)	0.0424 (10)	0.0199 (8)	0.0063 (9)	0.0054 (8)
C109	0.0333 (10)	0.0300 (10)	0.0405 (10)	0.0136 (8)	-0.0048 (8)	-0.0036 (8)
C101	0.0309 (10)	0.0283 (9)	0.0352 (10)	0.0120 (8)	0.0012 (8)	-0.0001 (7)
C104	0.0298 (9)	0.0275 (9)	0.0386 (10)	0.0113 (8)	-0.0011 (8)	-0.0011 (8)
C105	0.0297 (9)	0.0271 (9)	0.0391 (10)	0.0123 (8)	-0.0010 (8)	0.0006 (8)
C107	0.0366 (11)	0.0293 (10)	0.0372 (10)	0.0122 (8)	-0.0012 (8)	0.0024 (8)
C5	0.0320 (9)	0.0275 (9)	0.0403 (10)	0.0148 (8)	0.0005 (8)	-0.0008 (8)
C106	0.0285 (9)	0.0267 (9)	0.0390 (10)	0.0129 (8)	0.0015 (8)	0.0013 (7)
C102	0.0317 (10)	0.0280 (9)	0.0352 (10)	0.0127 (8)	-0.0014 (8)	0.0018 (8)
C2	0.0366 (10)	0.0293 (10)	0.0371 (10)	0.0185 (9)	0.0029 (8)	0.0003 (8)
C6	0.0297 (9)	0.0285 (9)	0.0379 (10)	0.0141 (8)	-0.0003 (8)	-0.0017 (7)
C129	0.0310 (9)	0.0279 (9)	0.0407 (11)	0.0124 (8)	-0.0076 (8)	-0.0002 (8)
C11	0.0409 (11)	0.0331 (10)	0.0435 (11)	0.0231 (9)	0.0053 (9)	0.0023 (8)
C21	0.0789 (19)	0.0489 (14)	0.0456 (13)	0.0434 (14)	-0.0060 (12)	-0.0020 (11)
C34	0.0435 (11)	0.0334 (10)	0.0439 (11)	0.0206 (9)	0.0057 (9)	0.0020 (8)
C18	0.0512 (13)	0.0328 (10)	0.0444 (11)	0.0232 (10)	0.0078 (10)	0.0023 (9)
C103	0.0296 (9)	0.0273 (9)	0.0407 (10)	0.0117 (8)	-0.0004 (8)	-0.0021 (8)
C111	0.0333 (10)	0.0287 (10)	0.0399 (10)	0.0111 (8)	-0.0013 (8)	-0.0005 (8)
C30	0.0386 (11)	0.0473 (12)	0.0462 (12)	0.0230 (10)	-0.0007 (9)	0.0023 (10)
C134	0.0330 (10)	0.0325 (11)	0.0479 (12)	0.0111 (9)	-0.0018 (9)	0.0046 (9)
C1	0.0341 (10)	0.0282 (9)	0.0362 (10)	0.0162 (8)	0.0013 (8)	0.0001 (8)
C17	0.0475 (12)	0.0311 (10)	0.0413 (11)	0.0253 (9)	0.0055 (9)	0.0008 (8)
C24	0.0429 (12)	0.0338 (11)	0.0601 (14)	0.0211 (10)	0.0096 (10)	0.0063 (10)
C22	0.0540 (13)	0.0405 (12)	0.0479 (12)	0.0314 (11)	-0.0010 (10)	-0.0019 (9)
C12	0.0470 (13)	0.0328 (11)	0.0551 (13)	0.0221 (10)	0.0115 (10)	0.0026 (9)

C133	0.0401 (13)	0.0383 (12)	0.0644 (16)	0.0076 (10)	-0.0075 (11)	0.0143 (11)
C117	0.0306 (10)	0.0291 (9)	0.0405 (10)	0.0065 (8)	-0.0004 (8)	0.0038 (8)
C16	0.0426 (12)	0.0359 (11)	0.0693 (16)	0.0228 (10)	0.0041 (11)	0.0035 (11)
C112	0.0350 (10)	0.0323 (11)	0.0439 (11)	0.0132 (9)	-0.0009 (9)	0.0015 (9)
C130	0.0483 (13)	0.0372 (11)	0.0466 (12)	0.0240 (10)	-0.0086 (10)	-0.0053 (9)
C28	0.0597 (15)	0.0412 (12)	0.0442 (12)	0.0284 (11)	0.0031 (11)	0.0043 (10)
C124	0.0358 (11)	0.0352 (11)	0.0671 (15)	0.0149 (10)	-0.0128 (10)	0.0014 (10)
C113	0.0353 (11)	0.0368 (12)	0.0510 (13)	0.0072 (9)	-0.0015 (10)	0.0045 (10)
C119	0.0336 (11)	0.0499 (14)	0.0525 (13)	0.0083 (10)	-0.0045 (10)	0.0143 (11)
C19	0.0654 (16)	0.0325 (11)	0.0494 (13)	0.0240 (11)	0.0166 (11)	0.0035 (9)
C131	0.0707 (18)	0.0381 (12)	0.0644 (16)	0.0325 (13)	-0.0281 (14)	-0.0136 (11)
C15	0.0479 (14)	0.0536 (15)	0.0787 (18)	0.0331 (13)	0.0109 (13)	0.0082 (13)
C118	0.0325 (10)	0.0364 (11)	0.0482 (12)	0.0100 (9)	-0.0028 (9)	0.0057 (9)
C120	0.0425 (13)	0.0533 (15)	0.0414 (12)	0.0010 (11)	-0.0077 (10)	0.0037 (11)
C31	0.0486 (14)	0.0681 (17)	0.0632 (16)	0.0395 (13)	0.0062 (12)	0.0192 (14)
C114	0.0485 (14)	0.0295 (11)	0.0682 (16)	0.0079 (10)	-0.0093 (12)	0.0084 (10)
C116	0.0372 (12)	0.0345 (12)	0.0738 (17)	0.0150 (10)	-0.0039 (11)	0.0053 (11)
C25	0.0582 (16)	0.0410 (13)	0.093 (2)	0.0279 (12)	0.0374 (16)	0.0202 (14)
C27	0.099 (2)	0.0475 (14)	0.0420 (13)	0.0394 (16)	0.0096 (14)	0.0059 (11)
C121	0.0499 (14)	0.0384 (12)	0.0451 (12)	0.0032 (11)	0.0017 (11)	-0.0038 (10)
C8	0.079 (2)	0.0536 (15)	0.0515 (14)	0.0394 (15)	-0.0100 (13)	0.0079 (11)
C122	0.0402 (12)	0.0330 (11)	0.0464 (12)	0.0093 (9)	-0.0002 (9)	-0.0011 (9)
C128	0.0423 (12)	0.0469 (13)	0.0429 (12)	0.0136 (11)	-0.0050 (9)	-0.0004 (10)
C13	0.0634 (16)	0.0358 (12)	0.0622 (15)	0.0314 (12)	0.0172 (12)	0.0056 (11)
C20	0.090 (2)	0.0389 (12)	0.0417 (12)	0.0383 (14)	0.0087 (12)	0.0054 (10)
C132	0.0591 (16)	0.0268 (11)	0.0795 (19)	0.0111 (11)	-0.0274 (14)	0.0048 (12)
C26	0.102 (3)	0.0474 (15)	0.0592 (17)	0.0412 (16)	0.0416 (18)	0.0158 (13)
C14	0.0666 (17)	0.0505 (14)	0.0664 (16)	0.0446 (14)	0.0177 (13)	0.0105 (12)
C33	0.0654 (16)	0.0380 (12)	0.0602 (15)	0.0322 (12)	0.0197 (13)	0.0059 (11)
C32	0.0607 (16)	0.0552 (15)	0.0737 (17)	0.0447 (14)	0.0236 (14)	0.0229 (13)
C110	0.0464 (14)	0.082 (2)	0.0612 (16)	0.0350 (14)	0.0173 (12)	0.0150 (14)
C10	0.0629 (17)	0.0386 (12)	0.0589 (15)	0.0156 (12)	-0.0056 (12)	-0.0118 (11)
C126	0.0500 (16)	0.0654 (19)	0.0699 (19)	0.0064 (14)	-0.0224 (14)	0.0262 (15)
C127	0.0517 (15)	0.074 (2)	0.0434 (13)	0.0089 (15)	-0.0114 (11)	0.0078 (13)
C115	0.0510 (15)	0.0342 (12)	0.096 (2)	0.0194 (11)	-0.0111 (14)	0.0103 (13)
C108	0.0704 (19)	0.0515 (15)	0.0595 (16)	0.0213 (15)	-0.0239 (14)	-0.0203 (13)
C125	0.0434 (14)	0.0411 (14)	0.103 (3)	0.0135 (12)	-0.0251 (15)	0.0133 (14)

Geometric parameters (Å, °)

O4—C9	1.203 (3)	С133—Н133	0.9500	
O101—C107	1.340 (3)	C133—C132	1.368 (5)	
O101—C108	1.443 (3)	C117—C118	1.395 (3)	
O103—C109	1.327 (3)	C117—C122	1.400 (3)	
O103—C110	1.442 (3)	C16—H16	0.9500	
O2—C7	1.204 (3)	C16—C15	1.389 (4)	
O1—C7	1.331 (3)	C112—H112	0.9500	
O1—C8	1.446 (3)	C112—C113	1.385 (3)	

0. 2 G0	1 222 (2)	C100 11100	0.0.500
03-09	1.329 (3)	С130—Н130	0.9500
O3—C10	1.451 (3)	C130—C131	1.396 (4)
O102—C107	1.196 (3)	C28—H28	0.9500
O104—C109	1.206 (3)	C28—C27	1.382 (4)
C9—C2	1.537 (3)	C124—H124	0.9500
C123—C105	1.493 (3)	C124—C125	1.388 (4)
C123—C124	1.395 (3)	С113—Н113	0.9500
C123—C128	1.383 (3)	C113—C114	1.380 (4)
С29—С6	1.489 (3)	С119—Н119	0.9500
C29—C34	1.390 (3)	C119—C118	1.389 (3)
C29—C30	1,396 (3)	C119—C120	1.384 (5)
C7—C1	1.524 (3)	C19—H19	0.9500
C4-C3	1.349(3)	C_{19} C_{20}	1 381 (4)
C4-C5	1 491 (3)	C131—H131	0.9500
$C_4 C_{17}$	1.496 (3)	C_{131} C_{132}	1 381 (5)
C_{1}^{3}	1.529 (3)	C15 H15	0.9500
$C_3 = C_1$	1.329(3) 1.402(2)	$C_{15} = C_{14}$	1.399(4)
	1.492 (3)	C119_U119	1.388 (4)
C23—C5	1.494 (3)	C118—H118	0.9500
C23—C24	1.390 (3)	C120—H120	0.9500
C23—C28	1.393 (3)	C120—C121	1.376 (4)
C109—C102	1.529 (3)	C31—H31	0.9500
C101—H101	0.99 (3)	C31—C32	1.375 (5)
C101—C107	1.514 (3)	C114—H114	0.9500
C101—C106	1.527 (3)	C114—C115	1.381 (4)
C101—C102	1.536 (3)	C116—H116	0.9500
C104—C105	1.493 (3)	C116—C115	1.390 (4)
C104—C103	1.356 (3)	С25—Н25	0.9500
C104—C117	1.497 (3)	C25—C26	1.378 (5)
C105—C106	1.346 (3)	С27—Н27	0.9500
C5—C6	1.348 (3)	C27—C26	1.374 (5)
C106—C129	1.490 (3)	C121—H121	0.9500
C102—H102	0.96 (3)	C121—C122	1.386 (4)
C102—C103	1.533 (3)	C8—H8A	0.9800
С2—Н2	0.98 (3)	C8—H8B	0.9800
C2-C1	1.539 (3)	C8—H8C	0.9800
C6C1	1 530 (3)	С122—Н122	0.9500
C129-C134	1 391 (3)	C128—H128	0.9500
C_{12}^{12} C_{13}^{13}	1.391(3)	C128 C127	1 394 (4)
$C_{12} = C_{130}$	1.392(3) 1 304(3)	$C_{120} - C_{127}$	0.0500
C_{11} C_{12}	1.394(3) 1.202(2)	$C_{13}^{13} = C_{14}^{14}$	1.376(4)
	1.393 (3)	C13—C14	1.570 (4)
C21—H21	0.9500	C122—H20	0.9500
C21—C22	1.391 (4)	C132—H132	0.9500
C21—C20	1.585 (4)	C26—H26	0.9500
C34—H34	0.9500	C14—H14	0.9500
C34—C33	1.388 (3)	С33—Н33	0.9500
C18—H18	0.9500	C33—C32	1.376 (4)
C18—C17	1.397 (3)	С32—Н32	0.9500
C18—C19	1.391 (3)	C110—H11A	0.9800

C103—C111	1.489 (3)	C110—H11B	0.9800
C111—C112	1.398 (3)	C110—H11C	0.9800
C111—C116	1.396 (3)	C10—H10A	0.9800
С30—Н30	0.9500	C10—H10B	0.9800
C30—C31	1,393 (4)	C10—H10C	0.9800
C134—H134	0.9500	C126—H126	0.9500
C134—C133	1.392 (3)	C126—C127	1.368 (6)
C1—H1	0.98(3)	C126—C125	1 373 (6)
C17—C22	1 392 (3)	C127—H127	0.9500
C24—H24	0.9500	C115—H115	0.9500
C_{24} C_{25}	1 389 (4)	C108—H10D	0.9800
C22—H22	0.9500	C108—H10E	0.9800
C12_H12	0.9500	C108—H10E	0.9800
C12 - C13	1 392 (3)	C125_H125	0.9800
012-013	1.592 (5)	C125—11125	0.9500
C107—O101—C108	115.4 (2)	C15—C16—C11	120.6 (2)
C109—O103—C110	115.50 (19)	C15—C16—H16	119.7
C7—O1—C8	115.0 (2)	C111—C112—H112	119.5
C9—O3—C10	114.9 (2)	C113—C112—C111	120.9 (2)
O4—C9—O3	124.1 (2)	C113—C112—H112	119.5
O4—C9—C2	123.3 (2)	C129—C130—H130	119.9
O3—C9—C2	112.58 (18)	C129—C130—C131	120.2 (2)
C124—C123—C105	121.3 (2)	C131—C130—H130	119.9
C128—C123—C105	120.1 (2)	C23—C28—H28	119.5
C128—C123—C124	118.6 (2)	C27—C28—C23	120.9 (3)
C34—C29—C6	120.32 (19)	C27—C28—H28	119.5
C34—C29—C30	118.8 (2)	C123—C124—H124	120.0
C30—C29—C6	120.9 (2)	C125—C124—C123	120.0 (3)
O2—C7—O1	123.8 (2)	C125—C124—H124	120.0
O2—C7—C1	124.2 (2)	C112—C113—H113	119.7
O1—C7—C1	112.05 (18)	C114—C113—C112	120.6 (2)
C3—C4—C5	120.32 (19)	C114—C113—H113	119.7
C3—C4—C17	122.02 (19)	C118—C119—H119	119.9
C5—C4—C17	117.58 (18)	C120—C119—H119	119.9
C4—C3—C2	119.78 (18)	C120—C119—C118	120.1 (3)
C4—C3—C11	124.55 (19)	C18—C19—H19	120.0
C11—C3—C2	115.66 (18)	C20—C19—C18	120.0 (3)
C24—C23—C5	122.0 (2)	C20—C19—H19	120.0
C24—C23—C28	118.4 (2)	C130—C131—H131	120.0
C28—C23—C5	119.6 (2)	C132—C131—C130	120.0 (3)
O103—C109—C102	112.96 (17)	C132—C131—H131	120.0
O104—C109—O103	123.5 (2)	C16—C15—H15	119.8
O104—C109—C102	123.5 (2)	C14—C15—C16	120.4 (3)
C107—C101—H101	106.2 (15)	C14—C15—H15	119.8
C107—C101—C106	112.23 (17)	C117—C118—H118	119.6
C107—C101—C102	110.49 (17)	C119—C118—C117	120.8 (2)
C106—C101—H101	109.1 (15)	C119—C118—H118	119.6
C106—C101—C102	111.29 (17)	C119—C120—H120	120.2

a a		a	
C102—C101—H101	107.2 (16)	C121—C120—C119	119.7 (2)
C105—C104—C117	117.26 (18)	C121—C120—H120	120.2
C103—C104—C105	120.32 (18)	C30—C31—H31	120.0
C103—C104—C117	122.36 (19)	C32—C31—C30	120.0 (3)
C104—C105—C123	118.82 (18)	C32—C31—H31	120.0
C106—C105—C123	120.74 (18)	C113—C114—H114	120.4
C106—C105—C104	120.42 (18)	C113—C114—C115	119.2 (2)
O101—C107—C101	110.97 (18)	C115—C114—H114	120.4
O102—C107—O101	123.7 (2)	C111—C116—H116	119.8
0102 - C107 - C101	1254(2)	C115—C116—C111	120.5(2)
C4-C5-C23	118 71 (18)	C115—C116—H116	119.8
C6-C5-C4	120 79 (19)	C_{24} C_{25} H_{25}	119.0
C6 $C5$ $C23$	120.79(19) 120.48(18)	$C_{24} = C_{25} = C_{24}$	119.7 120.6(3)
$C_{105} = C_{106} = C_{101}$	120.40(10) 118.03(18)	$C_{20} = C_{20} = C_{24}$	120.0(3)
$C_{105} = C_{106} = C_{101}$	110.95(10) 121.72(19)	$C_{20} = C_{23} = H_{23}$	119.7
C103 - C106 - C101	121.75(10) 110.21(17)	$C_{28} = C_{27} = H_{27}$	119.9 120.2(2)
C129 - C100 - C101	119.51 (17)	$C_{20} = C_{27} = C_{28}$	120.5 (5)
C109 - C102 - C101	114.49 (17)	$C_{26} - C_{27} - H_{27}$	119.9
C109—C102—H102	103.6 (16)	C120—C121—H121	119.6
C109—C102—C103	111.72 (17)	C120—C121—C122	120.7 (3)
C101—C102—H102	108.5 (16)	C122—C121—H121	119.6
C103—C102—C101	109.15 (17)	O1—C8—H8A	109.5
C103—C102—H102	109.1 (16)	O1—C8—H8B	109.5
С9—С2—Н2	103.9 (16)	O1—C8—H8C	109.5
C9—C2—C1	113.86 (16)	H8A—C8—H8B	109.5
C3—C2—C9	111.29 (17)	H8A—C8—H8C	109.5
С3—С2—Н2	108.7 (16)	H8B—C8—H8C	109.5
C3—C2—C1	109.97 (17)	C117—C122—H122	119.8
C1—C2—H2	108.8 (16)	C121—C122—C117	120.4 (2)
C29—C6—C1	118.19 (17)	C121—C122—H122	119.8
C5—C6—C29	122.85 (18)	C123—C128—H128	119.7
C5—C6—C1	118.93 (18)	C123—C128—C127	120.6 (3)
C134—C129—C106	119.5 (2)	C127—C128—H128	119.7
C134-C129-C130	118.7 (2)	С12—С13—Н13	119.9
C130-C129-C106	1217(2)	C_{14} C_{13} C_{12}	120.3(2)
C_{12} C_{12} C_{12} C_{13} C	121.7(2) 1201(2)	C14-C13-H13	119.9
C16-C11-C3	120.1(2) 121 59 (19)	C_{21} C_{20} H_{20}	120.0
C_{16} C_{11} C_{12}	121.39(19) 118.3(2)	C_{19} C_{20} C_{21} C_{21}	120.0(2)
$C_{10} = C_{11} = C_{12}$	120.0	$C_{19} = C_{20} = C_{21}$	120.0 (2)
$C_{22} = C_{21} = H_{21}$	120.0	$C_{12} = C_{20} = C_{120}$	120.0 120.2(2)
C_{20} C_{21} C_{22}	120.0	$C_{122} = C_{122} = U_{122}$	120.2(2)
$C_{20} = C_{21} = C_{22}$	120.0 (5)	С135—С132—П132	119.9
C29—C34—H34	119.9	C131 - C132 - H132	119.9
C33—C34—C29	120.2 (2)	C25—C26—H26	120.2
С33—С34—Н34	119.9	C27—C26—C25	119.6 (2)
C1/—C18—H18	119.6	C2/—C26—H26	120.2
C19—C18—H18	119.6	C15—C14—H14	120.3
C19—C18—C17	120.8 (2)	C13—C14—C15	119.5 (2)
C104—C103—C102	119.08 (18)	C13—C14—H14	120.3
C104—C103—C111	124.94 (19)	С34—С33—Н33	119.7

C111—C103—C102	115.87 (18)	C32—C33—C34	120.6 (2)
C112—C111—C103	120.8 (2)	С32—С33—Н33	119.7
C116—C111—C103	120.99 (19)	C31—C32—C33	120.0 (2)
C116—C111—C112	118.0 (2)	C31—C32—H32	120.0
С29—С30—Н30	119.8	C33—C32—H32	120.0
C31—C30—C29	120.4 (2)	O103—C110—H11A	109.5
С31—С30—Н30	119.8	O103—C110—H11B	109.5
C129—C134—H134	119.8	O103—C110—H11C	109.5
C129—C134—C133	120.5 (2)	H11A—C110—H11B	109.5
C133—C134—H134	119.8	H11A—C110—H11C	109.5
C7—C1—C2	110.82 (17)	H11B—C110—H11C	109.5
C7—C1—C6	110.29 (16)	O3—C10—H10A	109.5
C7—C1—H1	107.3 (16)	O3-C10-H10B	109.5
C2-C1-H1	107.5 (16)	O3-C10-H10C	109.5
C6-C1-C2	111 88 (17)	H10A—C10—H10B	109.5
C6-C1-H1	108.9 (16)	H10A - C10 - H10C	109.5
C18 - C17 - C4	121.7(2)	H10B-C10-H10C	109.5
C^{22} C^{17} C^{4}	121.7(2) 1199(2)	C127—C126—H126	120.2
$C_{22} = C_{17} = C_{18}$	119.9(2) 118.3(2)	C127 - C126 - C125	119.6(3)
C_{23} C_{24} H_{24}	110.9 (2)	C_{125} C_{126} H_{126}	120.2
$C_{25} = C_{24} = C_{23}$	120.2(3)	C128—C127—H127	119.8
$C_{25} = C_{24} = H_{24}$	119.9	C126 - C127 - C128	120.4(3)
C_{21} C_{22} C_{21} C_{22} C_{17}	120.8 (3)	C126 - C127 - H127	119.8
$C_{21} = C_{22} = C_{17}$	119.6	C114 - C115 - C116	120.8(2)
C17 - C22 - H22	119.6	C114—C115—H115	119.6
$C_{11} - C_{12} - H_{12}$	119.6	C116—C115—H115	119.6
C_{13} C_{12} C_{11}	120.9(2)	0101 - C108 - H10D	109.5
C13 - C12 - H12	119.6	0101 - C108 - H10E	109.5
C134—C133—H133	119.9	0101 - C108 - H10E	109.5
C_{132} C_{133} C_{134}	120.3 (3)	H10D-C108-H10E	109.5
C132—C133—H133	119.9	H10D—C108—H10F	109.5
$C_{118} - C_{117} - C_{104}$	121.9(2)	H10F $C108$ $H10F$	109.5
$C_{118} - C_{117} - C_{122}$	121.9(2) 118.2(2)	C124 - C125 - H125	119.6
C122 - C117 - C104	110.2(2) 119.8(2)	$C_{126} - C_{125} - C_{124}$	120.8 (3)
$C_{11} - C_{16} - H_{16}$	119.7	$C_{126} - C_{125} - H_{125}$	119.6
	117.7		119.0
04 - C9 - C2 - C3	112.9(2)	C102—C103—C111—C116	-42.2(3)
04-C9-C2-C1	-1221(2)	C_{2} C_{3} C_{11} C_{12}	-129.8(2)
0103 - C109 - C102 - C101	-52.7(2)	$C_2 = C_3 = C_{11} = C_{16}$	47.6 (3)
0103 - C109 - C102 - C103	72.0(2)	C6-C29-C34-C33	-1797(2)
$0^{2}-C^{7}-C^{1}-C^{2}$	-44.6(3)	C6-C29-C30-C31	179.8(2)
02 - C7 - C1 - C6	79.8 (3)	C129-C134-C133-C132	0.0(4)
01 - C7 - C1 - C2	136 50 (18)	C129 - C130 - C131 - C132	-11(4)
01 - C7 - C1 - C6	-991(2)	$C_{11} = C_{3} = C_{2} = C_{9}$	-894(2)
03-C9-C2-C3	-64.5(2)	$C_{11} - C_{3} - C_{2} - C_{1}$	143,46 (19)
O3-C9-C2-C1	60.5 (2)	C11-C12-C13-C14	-0.3(4)
O104—C109—C102—C101	129.4 (2)	C11—C16—C15—C14	0.5 (4)
O104—C109—C102—C103	-105.9(2)	C34—C29—C6—C5	59.7 (3)

C9—C2—C1—C7	46.1 (2)	C34—C29—C6—C1	-118.4 (2)
C9—C2—C1—C6	-77.4 (2)	C34—C29—C30—C31	-1.3 (3)
C123—C105—C106—C101	-179.44 (18)	C34—C33—C32—C31	-1.0 (4)
C123—C105—C106—C129	-1.4 (3)	C18—C17—C22—C21	0.2 (3)
C123—C124—C125—C126	0.6 (4)	C18—C19—C20—C21	0.1 (4)
C123—C128—C127—C126	-0.5(4)	C103—C104—C105—C123	163.0 (2)
C29—C6—C1—C7	21.4 (3)	C103—C104—C105—C106	-15.3 (3)
C29—C6—C1—C2	145.28 (18)	C103—C104—C117—C118	132.3 (2)
C29—C34—C33—C32	-0.2 (4)	C103—C104—C117—C122	-51.8(3)
C29—C30—C31—C32	0.2 (4)	C103—C111—C112—C113	-174.8(2)
C4-C3-C2-C9	91.4 (2)	C103—C111—C116—C115	175.3 (3)
C4-C3-C2-C1	-35.7(3)	C111—C112—C113—C114	0.3 (4)
C4-C3-C11-C12	494(3)	$C_{111} - C_{116} - C_{115} - C_{114}$	-1.2(5)
C4-C3-C11-C16	-133.2(3)	C_{30} C_{29} C_{6} C_{5}	-121.4(2)
C4-C5-C6-C29	-17745(19)	C_{30} C_{29} C_{6} C_{1}	60 5 (3)
C4-C5-C6-C1	0.7 (3)	C_{30} C_{29} C_{34} C_{33}	1.4(3)
C4-C17-C22-C21	176 8 (2)	C_{30} C_{31} C_{32} C_{33}	10(4)
$C_{3}-C_{4}-C_{5}-C_{23}$	-1631(2)	C_{134} C_{129} C_{130} C_{131}	1.7(3)
C_{3} C_{4} C_{5} C_{6}	15 2 (3)	C_{134} C_{133} C_{132} C_{131}	0.6(4)
C_{3} C_{4} C_{17} C_{18}	-1323(2)	C17-C4-C3-C2	-172.26(19)
C_{3} C_{4} C_{17} C_{22}	51.2 (3)	C17 - C4 - C3 - C11	8.6 (3)
$C_{3}-C_{2}-C_{1}-C_{7}$	171.79 (17)	C17 - C4 - C5 - C23	13.6(3)
$C_3 - C_2 - C_1 - C_6$	48.2 (2)	C17 - C4 - C5 - C6	-168.1(2)
C3-C11-C12-C13	178.3 (2)	C17-C18-C19-C20	0.4 (3)
$C_3 - C_{11} - C_{16} - C_{15}$	-178.3(2)	C_{24} C_{23} C_{5} C_{4}	-122.2(2)
C23—C5—C6—C29	0.8 (3)	C_{24} C_{23} C_{5} C_{6}	59.5 (3)
C_{23} C_{5} C_{6} C_{1}	178.93 (18)	C_{24} C_{23} C_{28} C_{27}	-0.3(3)
C_{23} C_{24} C_{25} C_{26}	-0.9(4)	C_{24} C_{25} C_{26} C_{27}	0.5 (4)
C_{23} C_{28} C_{27} C_{26}	-0.1(4)	C_{22} C_{21} C_{20} C_{19}	-0.5(4)
C109-C102-C103-C104	-89.5(2)	C_{12} C_{11} C_{16} C_{15}	-0.9(4)
C109—C102—C103—C111	94.1 (2)	C12-C13-C14-C15	-0.1(4)
C101—C106—C129—C134	115.8 (2)	$C_{117} - C_{104} - C_{105} - C_{123}$	-14.3(3)
C101—C106—C129—C130	-64.9(3)	C117—C104—C105—C106	167.5 (2)
C101—C102—C103—C104	38.2 (3)	C117—C104—C103—C102	171.84 (19)
C101—C102—C103—C111	-138.24 (19)	C117—C104—C103—C111	-12.1 (3)
C104—C105—C106—C101	-1.3 (3)	C16—C11—C12—C13	0.8 (4)
C104—C105—C106—C129	176.77 (18)	C16—C15—C14—C13	0.1 (4)
C104—C103—C111—C112	-43.7 (3)	C112—C111—C116—C115	0.5 (4)
C104—C103—C111—C116	141.7 (2)	C112—C113—C114—C115	-1.0 (4)
C104—C117—C118—C119	176.6 (2)	C130—C129—C134—C133	-1.2(3)
C104—C117—C122—C121	-175.8(2)	C130—C131—C132—C133	-0.1 (4)
C105—C123—C124—C125	177.7 (2)	C28—C23—C5—C4	58.8 (3)
C105—C123—C128—C127	-177.8 (2)	C28—C23—C5—C6	-119.5 (2)
C105—C104—C103—C102	-5.2 (3)	C28—C23—C24—C25	0.8 (3)
C105—C104—C103—C111	170.81 (19)	C28—C27—C26—C25	0.0 (4)
C105—C104—C117—C118	-50.5 (3)	C124—C123—C105—C104	122.2 (2)
C105—C104—C117—C122	125.3 (2)	C124—C123—C105—C106	-59.6 (3)
C105—C106—C129—C134	-62.2 (3)	C124—C123—C128—C127	0.7 (3)

C105—C106—C129—C130	117.1 (2)	C113—C114—C115—C116	1.4 (5)
C107—C101—C106—C105	159.64 (19)	C119—C120—C121—C122	0.2 (4)
C107—C101—C106—C129	-18.4 (3)	C19—C18—C17—C4	-177.1 (2)
C107—C101—C102—C109	-50.6 (2)	C19—C18—C17—C22	-0.6 (3)
C107—C101—C102—C103	-176.70 (17)	C118—C117—C122—C121	0.2 (3)
C5—C4—C3—C2	4.3 (3)	C118—C119—C120—C121	0.7 (4)
C5-C4-C3-C11	-174.8 (2)	C120-C119-C118-C117	-1.2 (4)
C5—C4—C17—C18	51.0 (3)	C120—C121—C122—C117	-0.6 (4)
C5—C4—C17—C22	-125.4 (2)	C116—C111—C112—C113	-0.1 (3)
C5—C23—C24—C25	-178.2 (2)	C8—O1—C7—O2	-7.3 (3)
C5—C23—C28—C27	178.7 (2)	C8—O1—C7—C1	171.6 (2)
C5-C6-C1-C7	-156.78 (19)	C122—C117—C118—C119	0.7 (3)
C5-C6-C1-C2	-32.9 (3)	C128—C123—C105—C104	-59.4 (3)
C106—C101—C107—O101	91.5 (2)	C128—C123—C105—C106	118.9 (2)
C106—C101—C107—O102	-87.5 (3)	C128—C123—C124—C125	-0.7 (3)
C106—C101—C102—C109	74.7 (2)	C20-C21-C22-C17	0.4 (4)
C106—C101—C102—C103	-51.3 (2)	C110—O103—C109—O104	-7.8 (3)
C106—C129—C134—C133	178.2 (2)	C110—O103—C109—C102	174.3 (2)
C106—C129—C130—C131	-177.7 (2)	C10—O3—C9—O4	9.6 (3)
C102—C101—C107—O101	-143.65 (18)	C10—O3—C9—C2	-173.1 (2)
C102—C101—C107—O102	37.3 (3)	C127—C126—C125—C124	-0.4 (4)
C102—C101—C106—C105	35.2 (3)	C108—O101—C107—O102	5.3 (3)
C102—C101—C106—C129	-142.85 (18)	C108-0101-C107-C101	-173.7 (2)
C102—C103—C111—C112	132.4 (2)	C125—C126—C127—C128	0.3 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	$D \cdots A$	D—H···A
С101—Н101…О2	0.99 (3)	2.39 (3)	3.384 (3)	176 (2)
C102—H102····O4	0.96 (3)	2.48 (3)	3.242 (3)	136 (2)
C16—H16…O4	0.95	2.59	3.407 (3)	145
C116—H116…O104	0.95	2.54	3.388 (3)	148