research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of [(Z)-N-(3-chloro­phen­yl)-O-methyl­thio­carbamato-κS](tri­phenyl­phosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 July 2016; accepted 4 July 2016; online 7 July 2016)

The title compound, [Au(C8H7ClNOS)(C18H15P)], is a monoclinic (P21/n, Z′ = 1; form β) polymorph of the previously reported triclinic form (P-1, Z′ = 1; form α) [Tadbuppa & Tiekink (2010[Tadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.]). Acta Cryst. E66, m664]. The mol­ecular structures of both forms feature an almost linear gold(I) coordination geometry [P—Au—S = 175.62 (5)° in the title polymorph], being coordinated by thiol­ate S and phosphane P atoms, a Z conformation about the C=N bond and an intra­molecular Au⋯O contact. The major conformational difference relates to the relative orientations of the residues about the Au—S bond: the P—Au—S—C torsion angles are −8.4 (7) and 106.2 (7)° in forms α and β, respectively. The mol­ecular packing of form β features centrosymmetric aggregates sustained by aryl-C—H⋯O inter­actions, which are connected into a three-dimensional network by aryl-C—H⋯π contacts. The Hirshfeld analysis of forms α and β shows many similarities with the notable exception of the influence of C—H⋯O inter­actions in form β.

1. Chemical context

Inter­est in the chemistry of phosphanegold(I) N-aryl-O-alkyl­thio­carbamates, i.e. compounds of general formula R3PAu[SC(OR′)=NR′′] (R, R′ = alkyl, aryl; R′′ = ar­yl) continues owing to their recently disclosed exciting biological activities. Thus, various tri­phenyl­phosphane derivatives display excellent cytotoxicity profiles against HT-29 colon cancer cells, a particularly virulent form of cancer, and mechanistic studies have shown these to induce both intrinsic and extrinsic pathways of cell death leading to apoptosis (Yeo, Ooi et al., 2013[Yeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24-38.]; Ooi et al., 2015[Ooi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855-873.]). Further, species with R′′ = p-tolyl have proven to exhibit impressive in vitro potency against Gram-positive bacteria (Yeo, Sim et al., 2013[Yeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145-152.]). It was during another synthesis of the title compound, (I)[link], for further biological studies, that crystals of a new polymorph were isolated from its methanol solution. This is called form β to distinguish it from the earlier triclinic form, form α (Tadbuppa & Tiekink, 2010[Tadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.]). Herein, the crystal and mol­ecular structures of form β of (I)[link] are described along with a comparison with the parameters characterizing form α. Further, a Hirshfeld surface analysis of both polymorphic forms of (I)[link] is presented.

2. Structural commentary

The mol­ecular structure of the new monoclinic form of (I)[link], form β, is shown in Fig. 1[link], and selected geometric parameters are collected in Table 1[link]. The gold(I) atom is coordinated in an approximately linear configuration by phosphane-P and thiol­ate-S atoms. Confirmation of the `thiol­ate' assignment is readily seen in the relatively long C1—S1 bond length and the significant π-character in the C1—N1 bond when the geometric parameters are compared with structures of related thio­carbamide mol­ecules (Ho et al., 2005[Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.]; Kuan et al., 2007[Kuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574-581.]); the crystal structure of the thio­carbamide precursor in (I)[link] is not available for comparison. As is invariably observed in this class of compound, the Au—S bond length is longer than the Au—P bond. The small deviation from ideal linearity for the P—Au—S bond is related to the close approach of the oxygen atom to the gold(I) atom, i.e. 3.052 (3) Å. The pattern of bond angles about the quaternary carbon atom, C1, follow the expected trends with the widest angle involving the sulfur and doubly bonded nitro­gen atom and with the narrowest angle involving the single-bonded atoms. The conformation about the formal C1=N1 bond, Table 1[link], is Z.

[Scheme 1]

Table 1
Geometric data (Å, °) for (I)[link], forms αa and β, and (II)b

Parameter (I): form α (I): form β (II)
Au—S1 2.2902 (13) 2.3070 (14) 2.3041 (9)
Au—P1 2.2416 (11) 2.2535 (14) 2.2588 (8)
C1—S1 1.760 (5) 1.764 (5) 1.759 (4)
C1—O1 1.355 (6) 1.362 (6) 1.356 (4)
C1—N1 1.241 (6) 1.274 (6) 1.265 (4)
Au⋯O1 2.988 (3) 3.052 (3) 2.967 (3)
S1—Au—P1 174.61 (4) 175.62 (5) 175.86 (3)
Au—S1—C1 102.46 (16) 101.78 (18) 103.15 (12)
C1—O1—C8 116.8 (4) 115.4 (4) 117.8 (3)
C1—N1—C2 120.4 (4) 120.8 (5) 119.6 (3)
S1—C1—O1 113.0 (3) 112.6 (4) 111.9 (2)
S1—C1—N1 126.6 (4) 127.7 (4) 127.7 (3)
O1—C1—N1 120.4 (4) 119.7 (5) 120.3 (3)
Notes: (a) Tadbuppa & Tiekink (2010[Tadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.]); (b) Tadbuppa & Tiekink (2009[Tadbuppa, P. P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1663.]).
[Figure 1]
Figure 1
The mol­ecular structure of polymorphic form β of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Form β crystallizes in the monoclinic space group P21/n with Z′ = 1. The earlier polymorph, by contrast, crystallizes in triclinic space group P[\overline{1}], also with Z′ = 1. A comparison of the key geometric parameters is given in Table 1[link]. From these data, it is clear that there is experimental inequivalence in the bond lengths involving the gold(I) atoms, with the Au—S and Au—P bond lengths in form β being marginally longer. The intra­molecular Au⋯O separation in form β is also longer than the comparable separation in form α, and this is correlated with a smaller deviation from a linear geometry about the gold(I) atom in β. By contrast, the bond angles are, by and large, equivalent within experimental error. A significant conformational difference is evident in the mol­ecular structures of forms α and β of (I)[link]. As seen from the overlay diagram shown in Fig. 2[link], this difference occurs as a result of a twist about the Au—S bond as seen in the values of the P1—Au—S1—C1 torsion angles of −8.4 (7) and 106.2 (7)° in forms α and β, respectively.

[Figure 2]
Figure 2
Overlay diagram of polymorphic forms α (blue image) and β (red) of the mol­ecular structures of (I)[link]. Mol­ecules have been overlapped so that the S1, O1 and N1 atoms are coincident.

3. Supra­molecular features

Supra­molecular dimers feature in the mol­ecular packing of form β of (I)[link], which are sustained by N-aryl-C—H⋯O(meth­oxy) inter­actions, Fig. 3[link]a and Table 2[link]. The dimers are connected into a three-dimensional architecture by a network of C—H⋯π inter­actions, Fig. 3[link]b and Table 2[link]. Within this arrangement, centrosymmetrically related Ph3P ligands align to form a so-called six-fold phenyl embrace (6PE) (Dance & Scudder, 1995[Dance, I. & Scudder, M. (1995). J. Chem. Soc. Chem. Commun. pp. 1039-1040.]) featuring edge-to-face phenyl-C—H⋯π(phen­yl) inter­actions, Fig. 3[link]c. While the inter­actions are too long to be considered as significant in terms of the criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), there are a number of such inter­actions, i.e. 2 × [3.22, 3.26 and 3.29 Å], that serve to reinforce the 6PE embrace with one pair of rings accepting two inter­actions each. In form α of (I)[link], the most prominent feature of the mol­ecular packing is the formation of supra­molecular chains mediated by C—H⋯π inter­actions (Tadbuppa & Tiekink, 2010[Tadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.]). Further analysis of the mol­ecular packing in polymorphic (I)[link] is given in the following Section.

Table 2
Hydrogen-bond geometry (Å, °)

Hydrogen-bond geometry (Å, °), form β, Cg1, Cg3 and Cg4 are the centroids of the C2–C7, C21–C26 and C31–C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.47 3.315 (7) 148
C5—H5⋯Cg4ii 0.95 2.85 3.492 (6) 126
C12—H12⋯Cg1ii 0.95 2.64 3.450 (6) 143
C14—H14⋯Cg3iii 0.95 2.80 3.570 (6) 139
C23—H23⋯Cg1iv 0.95 2.65 3.435 (6) 140
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Mol­ecular packing in form β of (I)[link]: (a) view of the supra­molecular dimer sustained by C—H⋯O contacts, shown as orange dashed lines, (b) view of the unit-cell contents shown in projection down the a axis, highlighting the C—H⋯π inter­actions as purple dashed lines, (c) image of the sixfold phenyl (6PE) between centrosymmetrically related Ph3P ligands, highlighted in space-filling mode.

4. Analysis of the Hirshfeld surfaces

The non-covalent inter­actions present in the pair of polymorphs of (I)[link], i.e. forms α and β, were studied through Hirshfeld surface analysis by mapping on the normalized contact distance (dnorm) upon computation of the inner (di) and outer (de) distances of the Hirshfeld surface to the nearest nucleus (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814-3816.]). All computation as well as generation of two-dimensional fingerprint plots were performed using Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). Distances involving hydrogen atoms were normalized by default to the standard neutron-diffraction bond lengths.

As evident from Fig. 4[link] and Table 3[link], forms α and β of (I)[link] exhibit relatively similar percentage contributions of the indicated inter­molecular inter­actions to their Hirshfeld surfaces. However, the specific contributions to their inter­action profiles are distinct as evidenced from the overall and decomposed two-dimensional fingerprint plots shown in Fig. 5[link]. As mentioned above in Supra­molecular features, C—H⋯π inter­actions feature in both structures. To a first approximation the decomposed fingerprint plots look similar, as seen from Fig. 5[link]b. However, relatively shorter contacts are found in form β cf. form α, i.e. 2.62 vs 2.68 Å. The clear distinction between the two forms is readily noted from the decomposed fingerprint plots for the O⋯H/H⋯O contacts with very distinct spikes evident for form β, Fig. 5[link]c, correlating with the C—H⋯O inter­actions leading to dimer formation. While beyond the sum of their respective van der Waals radii (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Cl⋯H/H⋯Cl inter­actions make contributions to the Hirshfeld surfaces of both forms α and β, with the contacts, again, being shorter in form β, i.e. 2.76 vs 3.00 Å, leading to more the distinct forceps in Fig. 5[link]d.

Table 3
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface in forms α and β of (I)

Contact % Contribution form α % Contribution form β
Au⋯Cl 0.2 0.6
Au⋯C 0.3 0.2
Au⋯H 4.2 2.8
Cl⋯C 2.7 0.3
Cl⋯H 7.6 9.8
Cl⋯S 0.0 0.2
S⋯C 0.1 0.0
S⋯H 6.6 6.3
O⋯H 2.5 3.2
N⋯H 1.9 1.7
N⋯C 0.0 0.3
C⋯C 0.4 0.8
C⋯H 27.8 30.6
H⋯H 45.6 43.2
Total 99.9 100
[Figure 4]
Figure 4
Percentage contribution of different close contacts to the Hirshfeld surface of forms α and β of (I)[link].
[Figure 5]
Figure 5
Comparison of the (a) complete Hirshfeld surface and full fingerprint plots between form α and form β polymorphs (top row) and the corresponding dnorm surfaces and two-dimensional plots associated with (b) C⋯H/H⋯C, (c) O⋯H/H⋯O and (d) Cl⋯H/H⋯Cl contacts.

In general, the observation of generally shorter contacts in form β may indicate greater crystal-packing efficiency (Lloyd et al., 2005[Lloyd, G. O., Bredenkamp, M. W. & Barbour, L. J. (2005). Chem. Commun. pp. 4053-4055.]). Table 4[link] collates various mol­ecular/crystal structure descriptors for the polymorphic forms. Immediately evident is that the calculated unit-cell densities are identical but the crystal-packing efficiency (KPI; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) for form β is marginally greater. Computation on the area-to-volume ratio between forms α and β revealed very little difference as did the globularity (G) and asphericity (Ω) indices. All these indicators suggest that the polymorphs arise as a result of a simple inter­play between mol­ecular conformation and crystal-packing effects.

Table 4
Physiochemical properties for forms α and β of (I)

Parameter Form α Form β
Volume, V3) 596.42 596.78
Surface area, A2) 518.92 511.11
A:V−1) 0.87 0.86
Globularity, G 0.660 0.671
Asphericity, Ω 0.165 0.172
Density (g cm−1) 1.805 1.805
Packing index (%) 66.9 67.4

5. Database survey

The most closely related structure to (I)[link] in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), is the R′ = OEt analogue, i.e. (II), (Tadbuppa & Tiekink, 2009[Tadbuppa, P. P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1663.]). Key geometric parameters for this structure are also included in Table 1[link]. Non-systematic variations in parameters are noted, e.g. the Au—S bond length in (II) is inter­mediate between those found in the polymorphic forms of (I)[link], and the Au—P bond length is the longest of the three structures. However, differences are small and probably can be ascribed to the influences of crystal-packing effects.

As indicated in the Chemical context, biological considerations motivate ongoing investigations into the chemistry of phosphanegold(I) N-aryl-O-alkyl­thio­carbamates. This notwithstanding, the relative ease of growing crystals have prompted several crystal engineering studies. Thus, correlations between Au⋯Au (aurophilic) and solid-state luminescence responses have been made for the series of compounds, R3PAu[SC(OMe)=NC6H4NO2-p] (R = Et, Cy and Ph), and bidentate phosphane analogues, Ph2P–(CH2)n–PPh2 for n = 1–4 and when the bridge is Fc (ferrocen­yl) (Ho et al., 2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]). In another study, the influence of R and Y substituents upon the mol­ecular packing of compounds of the general formula [(Ph2P(CH2)4PPh2){AuSC(OR′)=NC6H4Y-p}2] for R′ = Me, Et or iPr and Y = H, NO2 or Me was undertaken (Ho & Tiekink, 2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]). Besides the anti­cipated linear P—Au—S configuration, a common feature of all the analysed structures until then was the presence of intra­molecular Au⋯O inter­actions, as illustrated in Fig. 1[link]. This changed in another systematic study, this time of R3PAu[SC(OMe)=NR′′], for R = Ph, o-tol, m-tol or p-tol, and R′' = Ph, o-tol, m-tol, p-tol or C6H4NO2-p, where it proved possible to induce a conformational change in the mol­ecule so that an intra­molecular Au⋯π inter­action formed rather than Au⋯O (Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]); Au⋯π inter­actions are well documented in the crystallographic literature (Tiekink & Zukerman-Schpector, 2009[Tiekink, E. R. T. & Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176-1186.]; Caracelli et al., 2013[Caracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2013). Gold Bull. 46, 81-89.]). For example, having R = R′′ = p-tol simultaneously activated the gold atom, making it amenable to form an Au⋯π inter­action with the comparatively electron-rich aryl ring. Recently, bipodal forms of the thio­carbamide ligands were prepared and complexed with phosphanegold(I) species yielding binuclear mol­ecules also with intra­molecular Au⋯π inter­actions (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]). Computational chemistry showed the Au⋯π inter­actions to be more favourable, by ca 12 kcal mol−1, than the putative Au⋯O inter­action (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.]).

Such inter­play between substituents in crystal engineering endeavours, along with the observation that biological activities are acutely sensitive to substitution patterns, ensures this area of research will continue to attract significant attention.

6. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification. All reactions were carried out under ambient conditions. Melting points were determined on a Biobase auto melting point apparatus MP300. IR spectra were obtained on a Perkin Elmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to 400 cm−1; abbreviation: s, strong.

Preparation of (I)[link]: NaOH (Merck; 0.25 mmol, 0.01 g) in MeOH (Merck; 1 ml) was added to a suspension of Ph3PAuCl (0.25 mmol, 0.12 g) in MeOH (Merck; 15 ml), followed by addition of the thio­carbamide, MeOC(=S)N(H)C6H4Cl3 (0.25 mmol, 0.05 g), prepared following literature precedents (Ho et al., 2005[Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.]), in MeOH (15 ml). The resulting mixture was stirred for 2 h at 323 K. The solution mixture was left for slow evaporation at room temperature, yielding colourless prisms of the title compound after 3 weeks. Yield: 0.134 g (81%). M.p. 431–433 K. IR (cm−1): 1434 (s) ν(C=N), 1180 (s) ν(C—O), 1098 (s) ν(C—S).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.04 and 1.06 e Å−3, respectively, were located 1.01 and 0.77 Å from the Au atom.

Table 5
Experimental details

Crystal data
Chemical formula [Au(C8H7ClNOS)(C18H15P)]
Mr 659.89
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.0078 (4), 17.4732 (7), 15.5641 (7)
β (°) 97.595 (4)
V3) 2428.22 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.34
Crystal size (mm) 0.10 × 0.05 × 0.03
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.570, 0.833
No. of measured, independent and observed [I > 2σ(I)] reflections 18211, 5613, 4470
Rint 0.065
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.05
No. of reflections 5613
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.04, −1.06
Computer programs: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[(Z)-N-(3-Chlorophenyl)-O-methylthiocarbamato-κS](triphenylphosphane-κP)gold(I) top
Crystal data top
[Au(C8H7ClNOS)(C18H15P)]F(000) = 1280
Mr = 659.89Dx = 1.805 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0078 (4) ÅCell parameters from 5344 reflections
b = 17.4732 (7) Åθ = 2.3–27.5°
c = 15.5641 (7) ŵ = 6.34 mm1
β = 97.595 (4)°T = 100 K
V = 2428.22 (18) Å3Prism, colourless
Z = 40.10 × 0.05 × 0.03 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
5613 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4470 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.065
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 119
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2222
Tmin = 0.570, Tmax = 0.833l = 1720
18211 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5613 reflectionsΔρmax = 2.04 e Å3
290 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.19155 (2)0.79563 (2)0.43242 (2)0.02135 (8)
Cl10.35621 (18)1.26890 (8)0.33228 (10)0.0342 (4)
P10.11209 (17)0.67786 (8)0.46382 (9)0.0209 (3)
S10.25415 (18)0.91846 (8)0.39637 (9)0.0263 (3)
O10.3390 (4)0.9118 (2)0.5632 (2)0.0231 (8)
N10.2776 (5)1.0330 (2)0.5172 (3)0.0238 (10)
C10.2894 (6)0.9623 (3)0.4991 (3)0.0206 (11)
C20.2162 (7)1.0859 (3)0.4530 (4)0.0240 (12)
C30.3063 (6)1.1426 (3)0.4247 (3)0.0222 (12)
H30.41071.14380.44420.027*
C40.2408 (7)1.1975 (3)0.3675 (4)0.0237 (12)
C50.0901 (7)1.1990 (3)0.3373 (4)0.0231 (12)
H50.04891.23710.29750.028*
C60.0000 (7)1.1425 (3)0.3670 (4)0.0270 (13)
H60.10461.14230.34780.032*
C70.0618 (6)1.0863 (3)0.4249 (4)0.0262 (13)
H70.00071.04840.44520.031*
C80.3796 (7)0.9450 (3)0.6480 (3)0.0294 (13)
H8A0.40770.90420.69030.044*
H8B0.29410.97350.66470.044*
H8C0.46450.97980.64660.044*
C110.0850 (6)0.6656 (3)0.4249 (3)0.0208 (12)
C120.1829 (7)0.7251 (3)0.4386 (4)0.0258 (13)
H120.14480.77110.46570.031*
C130.3350 (7)0.7173 (3)0.4127 (4)0.0316 (14)
H130.40140.75750.42280.038*
C140.3908 (7)0.6504 (3)0.3719 (4)0.0301 (14)
H140.49530.64510.35440.036*
C150.2952 (7)0.5923 (3)0.3569 (4)0.0289 (13)
H150.33400.54740.32770.035*
C160.1436 (6)0.5982 (3)0.3838 (3)0.0252 (12)
H160.07880.55690.37470.030*
C210.2049 (5)0.6011 (3)0.4174 (3)0.0157 (11)
C220.2091 (6)0.6018 (3)0.3269 (3)0.0222 (12)
H220.16370.64310.29350.027*
C230.2778 (6)0.5437 (3)0.2856 (4)0.0261 (13)
H230.28040.54580.22480.031*
C240.3423 (6)0.4830 (3)0.3338 (4)0.0251 (12)
H240.38790.44270.30570.030*
C250.3412 (6)0.4803 (3)0.4227 (4)0.0258 (13)
H250.38680.43860.45540.031*
C260.2729 (6)0.5389 (3)0.4639 (4)0.0243 (12)
H260.27250.53660.52480.029*
C310.1333 (6)0.6589 (3)0.5800 (3)0.0197 (11)
C320.0283 (6)0.6151 (3)0.6158 (3)0.0233 (12)
H320.05690.59510.58040.028*
C330.0503 (7)0.6009 (3)0.7051 (4)0.0274 (13)
H330.02070.57090.73030.033*
C340.1734 (7)0.6299 (3)0.7572 (4)0.0293 (14)
H340.18830.61920.81760.035*
C350.2751 (7)0.6748 (3)0.7201 (4)0.0318 (14)
H350.35870.69610.75570.038*
C360.2558 (7)0.6890 (3)0.6314 (4)0.0286 (13)
H360.32650.71920.60630.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02540 (14)0.01827 (12)0.02023 (13)0.00202 (8)0.00242 (9)0.00004 (8)
Cl10.0355 (9)0.0266 (7)0.0414 (9)0.0078 (6)0.0081 (7)0.0040 (6)
P10.0232 (8)0.0201 (7)0.0192 (7)0.0002 (6)0.0027 (6)0.0008 (5)
S10.0387 (9)0.0204 (7)0.0198 (7)0.0048 (6)0.0033 (6)0.0002 (5)
O10.025 (2)0.022 (2)0.022 (2)0.0015 (16)0.0009 (16)0.0001 (15)
N10.023 (3)0.021 (2)0.027 (3)0.0022 (19)0.003 (2)0.0017 (19)
C10.018 (3)0.024 (3)0.020 (3)0.002 (2)0.004 (2)0.000 (2)
C20.031 (3)0.014 (3)0.026 (3)0.001 (2)0.004 (2)0.003 (2)
C30.020 (3)0.022 (3)0.025 (3)0.002 (2)0.004 (2)0.005 (2)
C40.026 (3)0.020 (3)0.026 (3)0.000 (2)0.007 (2)0.001 (2)
C50.031 (3)0.020 (3)0.019 (3)0.006 (2)0.005 (2)0.000 (2)
C60.026 (3)0.026 (3)0.028 (3)0.002 (2)0.002 (2)0.003 (2)
C70.024 (3)0.023 (3)0.033 (3)0.005 (2)0.006 (3)0.000 (2)
C80.033 (4)0.030 (3)0.023 (3)0.001 (3)0.001 (3)0.003 (2)
C110.023 (3)0.022 (3)0.016 (3)0.002 (2)0.001 (2)0.002 (2)
C120.029 (3)0.023 (3)0.025 (3)0.002 (2)0.006 (3)0.002 (2)
C130.030 (4)0.034 (3)0.032 (3)0.009 (3)0.005 (3)0.000 (3)
C140.019 (3)0.046 (4)0.023 (3)0.006 (3)0.004 (2)0.004 (3)
C150.029 (3)0.033 (3)0.023 (3)0.005 (3)0.000 (2)0.003 (2)
C160.024 (3)0.024 (3)0.026 (3)0.001 (2)0.000 (2)0.004 (2)
C210.007 (3)0.019 (3)0.019 (3)0.009 (2)0.005 (2)0.006 (2)
C220.022 (3)0.021 (3)0.023 (3)0.003 (2)0.001 (2)0.003 (2)
C230.028 (3)0.031 (3)0.020 (3)0.005 (3)0.004 (2)0.002 (2)
C240.025 (3)0.018 (3)0.032 (3)0.002 (2)0.006 (2)0.006 (2)
C250.027 (3)0.019 (3)0.030 (3)0.002 (2)0.001 (3)0.007 (2)
C260.027 (3)0.024 (3)0.022 (3)0.001 (2)0.002 (2)0.002 (2)
C310.020 (3)0.016 (3)0.023 (3)0.002 (2)0.005 (2)0.005 (2)
C320.027 (3)0.015 (3)0.026 (3)0.002 (2)0.003 (2)0.000 (2)
C330.031 (3)0.026 (3)0.026 (3)0.001 (3)0.005 (3)0.002 (2)
C340.039 (4)0.026 (3)0.021 (3)0.001 (3)0.000 (3)0.003 (2)
C350.030 (4)0.040 (3)0.024 (3)0.013 (3)0.004 (3)0.002 (3)
C360.031 (4)0.033 (3)0.023 (3)0.004 (3)0.006 (3)0.001 (2)
Geometric parameters (Å, º) top
Au—P12.2535 (14)C13—H130.9500
Au—S12.3070 (14)C14—C151.372 (8)
Cl1—C41.756 (6)C14—H140.9500
P1—C211.783 (5)C15—C161.378 (8)
P1—C111.811 (6)C15—H150.9500
P1—C311.824 (5)C16—H160.9500
S1—C11.764 (5)C21—C261.402 (7)
O1—C11.362 (6)C21—C221.413 (7)
O1—C81.443 (6)C22—C231.390 (7)
N1—C11.274 (6)C22—H220.9500
N1—C21.418 (7)C23—C241.383 (7)
C2—C31.389 (8)C23—H230.9500
C2—C71.402 (8)C24—C251.386 (8)
C3—C41.387 (7)C24—H240.9500
C3—H30.9500C25—C261.394 (7)
C4—C51.378 (8)C25—H250.9500
C5—C61.395 (8)C26—H260.9500
C5—H50.9500C31—C361.379 (7)
C6—C71.398 (7)C31—C321.389 (7)
C6—H60.9500C32—C331.399 (7)
C7—H70.9500C32—H320.9500
C8—H8A0.9800C33—C341.380 (8)
C8—H8B0.9800C33—H330.9500
C8—H8C0.9800C34—C351.389 (8)
C11—C121.398 (8)C34—H340.9500
C11—C161.409 (7)C35—C361.391 (8)
C12—C131.383 (8)C35—H350.9500
C12—H120.9500C36—H360.9500
C13—C141.391 (8)
P1—Au—S1175.62 (5)C15—C14—C13120.2 (6)
C21—P1—C11105.5 (2)C15—C14—H14119.9
C21—P1—C31105.8 (2)C13—C14—H14119.9
C11—P1—C31106.2 (2)C14—C15—C16120.8 (5)
C21—P1—Au114.80 (17)C14—C15—H15119.6
C11—P1—Au111.17 (17)C16—C15—H15119.6
C31—P1—Au112.75 (17)C15—C16—C11119.8 (5)
C1—S1—Au101.78 (18)C15—C16—H16120.1
C1—O1—C8115.4 (4)C11—C16—H16120.1
C1—N1—C2120.8 (5)C26—C21—C22117.0 (5)
N1—C1—O1119.7 (5)C26—C21—P1124.8 (4)
N1—C1—S1127.7 (4)C22—C21—P1118.2 (4)
O1—C1—S1112.6 (4)C23—C22—C21121.8 (5)
C3—C2—C7119.6 (5)C23—C22—H22119.1
C3—C2—N1119.9 (5)C21—C22—H22119.1
C7—C2—N1120.1 (5)C24—C23—C22119.4 (5)
C4—C3—C2118.8 (5)C24—C23—H23120.3
C4—C3—H3120.6C22—C23—H23120.3
C2—C3—H3120.6C23—C24—C25120.6 (5)
C5—C4—C3123.2 (5)C23—C24—H24119.7
C5—C4—Cl1118.5 (4)C25—C24—H24119.7
C3—C4—Cl1118.2 (4)C24—C25—C26119.8 (5)
C4—C5—C6117.6 (5)C24—C25—H25120.1
C4—C5—H5121.2C26—C25—H25120.1
C6—C5—H5121.2C25—C26—C21121.5 (5)
C5—C6—C7120.8 (5)C25—C26—H26119.3
C5—C6—H6119.6C21—C26—H26119.3
C7—C6—H6119.6C36—C31—C32120.8 (5)
C6—C7—C2119.9 (5)C36—C31—P1118.4 (4)
C6—C7—H7120.0C32—C31—P1120.7 (4)
C2—C7—H7120.0C31—C32—C33118.8 (5)
O1—C8—H8A109.5C31—C32—H32120.6
O1—C8—H8B109.5C33—C32—H32120.6
H8A—C8—H8B109.5C34—C33—C32121.0 (5)
O1—C8—H8C109.5C34—C33—H33119.5
H8A—C8—H8C109.5C32—C33—H33119.5
H8B—C8—H8C109.5C33—C34—C35119.1 (5)
C12—C11—C16119.0 (5)C33—C34—H34120.5
C12—C11—P1118.1 (4)C35—C34—H34120.5
C16—C11—P1122.9 (4)C34—C35—C36120.7 (5)
C13—C12—C11120.2 (5)C34—C35—H35119.7
C13—C12—H12119.9C36—C35—H35119.7
C11—C12—H12119.9C31—C36—C35119.5 (5)
C12—C13—C14120.0 (6)C31—C36—H36120.2
C12—C13—H13120.0C35—C36—H36120.2
C14—C13—H13120.0
C2—N1—C1—O1175.5 (5)C12—C11—C16—C150.8 (8)
C2—N1—C1—S16.8 (8)P1—C11—C16—C15179.0 (4)
C8—O1—C1—N12.1 (7)C11—P1—C21—C26110.0 (5)
C8—O1—C1—S1176.0 (4)C31—P1—C21—C262.3 (5)
Au—S1—C1—N1153.4 (5)Au—P1—C21—C26127.3 (4)
Au—S1—C1—O128.7 (4)C11—P1—C21—C2269.0 (4)
C1—N1—C2—C3113.5 (6)C31—P1—C21—C22178.7 (4)
C1—N1—C2—C773.4 (7)Au—P1—C21—C2253.7 (4)
C7—C2—C3—C41.4 (8)C26—C21—C22—C230.2 (7)
N1—C2—C3—C4174.6 (5)P1—C21—C22—C23179.3 (4)
C2—C3—C4—C50.3 (8)C21—C22—C23—C240.8 (8)
C2—C3—C4—Cl1180.0 (4)C22—C23—C24—C251.1 (8)
C3—C4—C5—C60.7 (8)C23—C24—C25—C260.7 (8)
Cl1—C4—C5—C6179.0 (4)C24—C25—C26—C210.1 (8)
C4—C5—C6—C70.6 (8)C22—C21—C26—C250.2 (8)
C5—C6—C7—C20.6 (8)P1—C21—C26—C25178.8 (4)
C3—C2—C7—C61.6 (8)C21—P1—C31—C3690.7 (5)
N1—C2—C7—C6174.7 (5)C11—P1—C31—C36157.5 (4)
C21—P1—C11—C12169.0 (4)Au—P1—C31—C3635.5 (5)
C31—P1—C11—C1279.0 (5)C21—P1—C31—C3289.3 (5)
Au—P1—C11—C1244.0 (5)C11—P1—C31—C3222.4 (5)
C21—P1—C11—C1612.7 (5)Au—P1—C31—C32144.4 (4)
C31—P1—C11—C1699.3 (5)C36—C31—C32—C331.1 (8)
Au—P1—C11—C16137.7 (4)P1—C31—C32—C33179.0 (4)
C16—C11—C12—C130.6 (8)C31—C32—C33—C340.2 (8)
P1—C11—C12—C13177.7 (4)C32—C33—C34—C351.1 (9)
C11—C12—C13—C140.8 (9)C33—C34—C35—C361.7 (9)
C12—C13—C14—C150.3 (9)C32—C31—C36—C350.6 (9)
C13—C14—C15—C161.7 (9)P1—C31—C36—C35179.5 (5)
C14—C15—C16—C111.9 (8)C34—C35—C36—C310.8 (9)
Hydrogen-bond geometry (Å, º) top
Hydrogen-bond geometry (Å, °) for (I), Form β, Cg1, Cg3 and Cg4 are the centroids of the C2–C7, C21–C26 and C31–C36 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.473.315 (7)148
C5—H5···Cg4ii0.952.853.492 (6)126
C12—H12···Cg1ii0.952.643.450 (6)143
C14—H14···Cg3iii0.952.803.570 (6)139
C23—H23···Cg1iv0.952.653.435 (6)140
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x1, y, z; (iv) x+1/2, y1/2, z+1/2.
Geometric data (Å, °) for (I), forms αa and β, and (II)b top
Parameter(I): form α(I): form β(II)
Au—S12.2902 (13)2.3070 (14)2.3041 (9)
Au—P12.2416 (11)2.2535 (14)2.2588 (8)
C1—S11.760 (5)1.764 (5)1.759 (4)
C1—O11.355 (6)1.362 (6)1.356 (4)
C1—N11.241 (6)1.274 (6)1.265 (4)
Au···O12.988 (3)3.052 (3)2.967 (3)
S1—Au—P1174.61 (4)175.62 (5)175.86 (3)
Au—S1—C1102.46 (16)101.78 (18)103.15 (12)
C1—O1—C8116.8 (4)115.4 (4)117.8 (3)
C1—N1—C2120.4 (4)120.8 (5)119.6 (3)
S1—C1—O1113.0 (3)112.6 (4)111.9 (2)
S1—C1—N1126.6 (4)127.7 (4)127.7 (3)
O1—C1—N1120.4 (4)119.7 (5)120.3 (3)
Notes: (a) Tadbuppa & Tiekink (2010); (b) Tadbuppa & Tiekink (2009).
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface in forms α and β of (I) top
Contact% Contribution form α% Contribution form β
Au···Cl0.20.6
Au···C0.30.2
Au···H4.22.8
Cl···C2.70.3
Cl···H7.69.8
Cl···S0.00.2
S···C0.10.0
S···H6.66.3
O···H2.53.2
N···H1.91.7
N···C0.00.3
C···C0.40.8
C···H27.830.6
H···H45.643.2
Total99.9100
Physiochemical properties for forms α and β of (I) top
ParameterForm αForm β
Volume, V3)596.42596.78
Surface area, A2)518.92511.11
A:V-1)0.870.86
Globularity, G0.6600.671
Asphericity, Ω0.1650.172
Density (g cm-1)1.8051.805
Packing index (%)66.967.4
 

Acknowledgements

Intensity data were provided by the University of Malaya Crystallographic Laboratory.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2013). Gold Bull. 46, 81–89.  Web of Science CrossRef CAS Google Scholar
First citationDance, I. & Scudder, M. (1995). J. Chem. Soc. Chem. Commun. pp. 1039–1040.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHo, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationLloyd, G. O., Bredenkamp, M. W. & Barbour, L. J. (2005). Chem. Commun. pp. 4053–4055.  Web of Science CSD CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOoi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855–873.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadbuppa, P. P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTadbuppa, P. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2009). CrystEngComm, 11, 1176–1186.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401–41411.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24–38.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145–152.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds