research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and computational study of 2,4-di­chloro-N-[(E)-(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

CROSSMARK_Color_square_no_text.svg

aYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
*Correspondence e-mail: hbulbul@omu.edu.tr

Edited by S. Parkin, University of Kentucky, USA (Received 9 July 2016; accepted 19 July 2016; online 22 July 2016)

The title compound, C11H6Cl2N2O2S, is a Schiff base that incorporates an N-bound 2,4-di­chloro­phenyl and a C-bound 5-nitro­thio­phene ring. The mol­ecule is approximately planar, the maximum deviation from the mean plane being 0.233 (4) Å for the C=N N atom. The dihedral angle between the benzene and thio­phene rings is 9.7 (2)°. The C=N double bond has an E configuration. The crystal structure features C—H⋯O hydrogen bonds,forming sheets parallel to (10-1), and ππ stacking inter­actions between symmetry-related thio­phene and benzene rings, in which the distance between adjacent ring centroids is 3.707 (4) Å, forming a three-dimensional supramolecular structure. Geometric parameters from quantum-chemical calculations are in good agreement with experimental X-ray diffraction results.

1. Chemical context

Schiff bases, which contain C=N double bonds, are well known starting materials for the synthesis of many drugs (Aydoğan et al., 2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]) and often possess very important biological activities, such as anti-inflammatory and analgesic properties (Sondhi et al., 2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.]). In addition, nitro­thio­phene and its derivatives also exhibit many biological activities, including anti­bacterial and anti­fungal (Kalluraya et al., 1994[Kalluraya, B. D., Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017-1022.]; Kalluraya & Shetty, 1997[Kalluraya, B. & Shetty, S. N. (1997). Indian J. Heterocycl. Chem. 6, 287-290.]) properties. We report the synthesis, structural analysis and theoretical calculations of the title compound, C11H6Cl2N2O2S (I)[link], which is a new Schiff base that includes a nitro­thio­phene group.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is nearly planar, the maximum deviation from the mean plane of 0.233 (4) Å is for atom N2. Schiff bases that are derived from salicyl­aldehyde show thermochromism and photochromism properties that are dependent upon planarity or non-planarity of the mol­ecules (Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041-2051.]; Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). Since the dihedral angle between the benzene and thio­phene rings is 9.7 (2)°, the title compound may exhibit thermochromic features. The slight twist of the mol­ecule is caused by a steric repulsion of atoms H5 and H7. The C7=N2 double-bond distance is 1.267 (6)Å, which is comparable to those of reported structures (Özdemir Tarı & Işık, 2012[Özdemir Tarı, G. & Işık, Ş. (2012). Acta Cryst. E68, o415.]; Ceylan et al., 2012[Ceylan, Ü., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o2116.]). The C8—C7—N2—C6 torsion angle is 178.5 (5)°.

[Figure 1]
Figure 1
A view of (I)[link], with the atom-numbering scheme and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal structure there are weak C—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]) with atom O1 acting as a bifurcated acceptor from both C5 and C7 (x − 1, y, z − 1), creating an R21(7) motif, and forming sheets parallel to (10[\overline1]). ππ stacking inter­actions are present between the benzene (centroid Cg2) and thio­phene (centroid Cg1) rings of symmetry-related mol­ecules [Cg1⋯Cg2(x, [{3\over 2}] − y, [{1\over 2}] + z) = 3.707 (4) Å, forming a three-dimensional supramolecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.59 3.508 (8) 171
C7—H7⋯O1i 0.93 2.55 3.300 (8) 138
C2—H2⋯O2ii 0.93 2.56 3.360 (7) 144
Symmetry codes: (i) x-1, y, z-1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing view of (I)[link]. Dashed lines indicate the C—H⋯O hydrogen-bonding inter­actions

4. Theoretical Calculations

Quantum-chemical calculations were performed to compare with the experimental analysis. Ab initio Hartree–Fock (HF) and density functional DFT(B3LYP) methods were used with the standard basis set of 6-31+G(d) (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]; Schlegel, 1982[Schlegel, H. B. (1982). J. Comput. Chem. 3, 214-218.]; Peng et al., 1996[Peng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). J. Comput. Chem. 17, 49-56.]) using the Gaussian 03 software package (Frisch et al., 2004[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03, Gaussian Inc., Wallingford, CT, USA.]; Dennington et al., 2007[Dennington, R., Keith, T. & Millam, J. (2007). GaussView4.1. Semichem Inc., Shawnee Mission, KS, USA.]) to obtain the optimized mol­ecular structure. The computational results are consistent with experimental crystallographic data. The C7=N2 bond length was calculated to be 1.25 and 1.28 Å using HF and DFT(B3LYP) methods, respectively. The torsion angle C8—C7—N2—C6 was calculated to be −177.98 and −176.09° by HF and DFT(B3LYP) methods, respectively.

5. Synthesis and crystallization

The compound 2,4-di­chloro-N-[(E)-(5-nitro­thio­phen-2-yl)methyl­idene]aniline was prepared by refluxing a mixture of a solution containing 5-nitro-2-thio­phene­carboxaldehyde (0.0180 g, 0.114 mmol) in 20 ml ethanol and a solution containing 2,4-di­chloro­aniline (0.0185 g, 0.114 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1h under reflux. Crystals suitable for X-ray analysis were obtained from a solution in ethanol by slow evaporation (yield 65%; m.p 443–445 K).

IR (KBr/cm−1): 3102.59 (C—H), 1602.71 (C=N), 1503.00 (NO2), 1231.00 (C—N, methyl­ene), 1192.05 (C—N, thio­phene), 1039.60 (C—H, thio­phene), 1124.10 (C—H, methyl­ene), 957.96 (C—H, methyl­ene), 787.73 (C—H, 957.96)

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically with C—H = 0.93 Å and refined with using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C11H6Cl2N2O2S
Mr 301.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.5731 (9), 22.1795 (16), 8.3093 (16)
β (°) 117.967 (10)
V3) 1232.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.18 × 0.15 × 0.10
 
Data collection
Diffractometer Agilent SuperNova (Single source at offset) Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011)
Tmin, Tmax 0.712, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3059, 2201, 1119
Rint 0.033
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.138, 1.09
No. of reflections 2201
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

2,4-Dichloro-N-[(E)-(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C11H6Cl2N2O2SF(000) = 608
Mr = 301.14Dx = 1.623 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5731 (9) ÅCell parameters from 612 reflections
b = 22.1795 (16) Åθ = 3.2–28.4°
c = 8.3093 (16) ŵ = 0.69 mm1
β = 117.967 (10)°T = 293 K
V = 1232.7 (3) Å3Block, red
Z = 40.18 × 0.15 × 0.10 mm
Data collection top
Agilent SuperNova (Single source at offset) Eos
diffractometer
2201 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1119 reflections with I > 2σ(I)
Detector resolution: 16.0454 pixels mm-1Rint = 0.033
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 79
Tmin = 0.712, Tmax = 1.000k = 2712
3059 measured reflectionsl = 105
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.019P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2201 reflectionsΔρmax = 0.38 e Å3
163 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.4933 (2)0.69183 (7)0.38617 (19)0.0450 (4)
Cl10.3105 (3)0.89412 (7)0.2025 (2)0.0612 (5)
Cl20.2711 (3)0.95859 (7)0.4521 (2)0.0720 (6)
C60.0675 (8)0.8117 (2)0.0461 (7)0.0369 (14)
C70.1939 (9)0.7153 (3)0.0411 (7)0.0473 (16)
H70.11990.70420.08060.057*
C50.0926 (8)0.7988 (3)0.2169 (7)0.0443 (15)
H50.13070.75880.24720.053*
C20.0113 (9)0.9185 (3)0.1289 (7)0.0468 (16)
H20.04450.95880.09900.056*
C40.1955 (9)0.8429 (3)0.3414 (7)0.0446 (15)
H40.30050.83280.45450.053*
O10.8046 (7)0.6438 (2)0.7224 (6)0.0768 (15)
N20.1847 (7)0.7692 (2)0.0870 (6)0.0429 (12)
C100.4560 (10)0.5791 (3)0.3021 (8)0.0499 (16)
H100.47500.53760.31020.060*
N10.7237 (8)0.6023 (2)0.6127 (7)0.0538 (14)
C10.1141 (8)0.8726 (2)0.0056 (7)0.0395 (14)
O20.7734 (7)0.5493 (2)0.6444 (6)0.0761 (15)
C90.3146 (9)0.6094 (3)0.1475 (7)0.0495 (17)
H90.22880.59020.03930.059*
C110.5608 (9)0.6182 (3)0.4372 (8)0.0450 (15)
C80.3165 (9)0.6706 (3)0.1730 (7)0.0445 (15)
C30.1422 (9)0.9020 (3)0.2976 (7)0.0436 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0440 (10)0.0394 (9)0.0480 (9)0.0004 (8)0.0184 (8)0.0007 (7)
Cl10.0617 (12)0.0609 (11)0.0451 (9)0.0060 (9)0.0118 (9)0.0096 (8)
Cl20.0749 (15)0.0527 (10)0.0616 (11)0.0061 (10)0.0096 (11)0.0135 (9)
C60.041 (4)0.038 (3)0.036 (3)0.004 (3)0.022 (3)0.004 (3)
C70.051 (4)0.050 (4)0.037 (3)0.000 (3)0.017 (3)0.002 (3)
C50.037 (4)0.039 (3)0.046 (3)0.003 (3)0.009 (3)0.002 (3)
C20.051 (4)0.042 (4)0.053 (4)0.009 (3)0.029 (4)0.003 (3)
C40.041 (4)0.047 (4)0.033 (3)0.001 (3)0.007 (3)0.001 (3)
O10.069 (4)0.067 (3)0.060 (3)0.008 (3)0.001 (3)0.003 (3)
N20.042 (3)0.037 (3)0.045 (3)0.005 (2)0.016 (3)0.001 (2)
C100.064 (5)0.036 (3)0.060 (4)0.006 (3)0.038 (4)0.003 (3)
N10.049 (4)0.055 (4)0.061 (4)0.004 (3)0.029 (3)0.007 (3)
C10.037 (4)0.044 (4)0.036 (3)0.006 (3)0.016 (3)0.004 (3)
O20.086 (4)0.053 (3)0.082 (3)0.028 (3)0.033 (3)0.021 (2)
C90.052 (5)0.053 (4)0.036 (3)0.001 (3)0.014 (3)0.001 (3)
C110.049 (4)0.039 (3)0.049 (4)0.004 (3)0.025 (4)0.002 (3)
C80.042 (4)0.042 (3)0.046 (4)0.003 (3)0.018 (3)0.003 (3)
C30.041 (4)0.049 (4)0.033 (3)0.003 (3)0.011 (3)0.005 (3)
Geometric parameters (Å, º) top
S1—C111.703 (6)C2—C11.394 (7)
S1—C81.711 (6)C2—H20.9300
Cl1—C11.737 (5)C4—C31.370 (7)
Cl2—C31.732 (6)C4—H40.9300
C6—C51.397 (7)O1—N11.237 (6)
C6—C11.398 (7)C10—C111.344 (7)
C6—N21.407 (6)C10—C91.399 (7)
C7—N21.267 (6)C10—H100.9300
C7—C81.446 (7)N1—O21.226 (6)
C7—H70.9300N1—C111.445 (7)
C5—C41.371 (7)C9—C81.372 (7)
C5—H50.9300C9—H90.9300
C2—C31.386 (7)
C11—S1—C889.5 (3)C9—C10—H10124.6
C5—C6—C1116.3 (5)O2—N1—O1124.1 (6)
C5—C6—N2126.1 (5)O2—N1—C11118.8 (5)
C1—C6—N2117.6 (5)O1—N1—C11117.1 (5)
N2—C7—C8121.7 (5)C2—C1—C6122.5 (5)
N2—C7—H7119.2C2—C1—Cl1117.0 (4)
C8—C7—H7119.2C6—C1—Cl1120.4 (4)
C4—C5—C6122.5 (6)C8—C9—C10112.6 (5)
C4—C5—H5118.8C8—C9—H9123.7
C6—C5—H5118.8C10—C9—H9123.7
C3—C2—C1117.8 (5)C10—C11—N1125.2 (6)
C3—C2—H2121.1C10—C11—S1114.8 (5)
C1—C2—H2121.1N1—C11—S1120.0 (4)
C3—C4—C5119.3 (5)C9—C8—C7127.2 (6)
C3—C4—H4120.3C9—C8—S1112.2 (4)
C5—C4—H4120.3C7—C8—S1120.6 (5)
C7—N2—C6119.9 (5)C4—C3—C2121.6 (5)
C11—C10—C9110.8 (6)C4—C3—Cl2120.2 (4)
C11—C10—H10124.6C2—C3—Cl2118.2 (5)
C1—C6—C5—C42.0 (8)O1—N1—C11—C10179.9 (6)
N2—C6—C5—C4177.9 (5)O2—N1—C11—S1177.9 (5)
C6—C5—C4—C30.7 (9)O1—N1—C11—S12.2 (7)
C8—C7—N2—C6178.5 (5)C8—S1—C11—C100.3 (5)
C5—C6—N2—C722.1 (9)C8—S1—C11—N1177.9 (5)
C1—C6—N2—C7157.7 (5)C10—C9—C8—C7178.5 (5)
C3—C2—C1—C60.2 (8)C10—C9—C8—S10.6 (7)
C3—C2—C1—Cl1178.2 (4)N2—C7—C8—C9168.4 (6)
C5—C6—C1—C21.5 (8)N2—C7—C8—S113.8 (8)
N2—C6—C1—C2178.4 (5)C11—S1—C8—C90.2 (5)
C5—C6—C1—Cl1179.9 (3)C11—S1—C8—C7178.3 (5)
N2—C6—C1—Cl10.0 (7)C5—C4—C3—C21.2 (9)
C11—C10—C9—C80.8 (8)C5—C4—C3—Cl2179.6 (4)
C9—C10—C11—N1177.4 (5)C1—C2—C3—C41.6 (8)
C9—C10—C11—S10.6 (7)C1—C2—C3—Cl2180.0 (4)
O2—N1—C11—C100.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.593.508 (8)171
C7—H7···O1i0.932.553.300 (8)138
C2—H2···O2ii0.932.563.360 (7)144
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1/2, z+1/2.
 

References

First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCeylan, Ü., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o2116.  CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041–2051.  Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2007). GaussView4.1. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03, Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKalluraya, B. & Shetty, S. N. (1997). Indian J. Heterocycl. Chem. 6, 287–290.  CAS Google Scholar
First citationKalluraya, B. D., Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationÖzdemir Tarı, G. & Işık, Ş. (2012). Acta Cryst. E68, o415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). J. Comput. Chem. 17, 49–56.  CrossRef CAS Google Scholar
First citationSchlegel, H. B. (1982). J. Comput. Chem. 3, 214–218.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds