

Received 4 June 2016 Accepted 30 June 2016

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; isoxazolidine; hydrogen bonding.

CCDC reference: 1489217

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2-isopropyl-5,7'-dimethyl-1',3',3a',6',8a',8b'-hexahydrospiro[cyclohexane-1,6'-furo[3,4-d]imidazo[1,5-b]isoxazol]-8'(7'H)-one

Heithem Abda,^a* Khaireddine Ezzayani,^b Kaiss Aouadi,^a Taha Guerfel,^c Sebastien Vidal^d and Moncef Msaddek^a

^aUniversity of Monastir, Heterocyclic Chemistry Laboratory, Products, Natural and Reactivity, Faculty of Sciences of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia, ^bUniversity of Monastir, Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia, ^cLaboratory of Electrochemistry, Materials and Environment, Kairouan University, 3100 Kairouan, Tunisia, and ^dUniversity of Lyon CNRS, Institute of Chemistry and Biochemistry and Molecular Supramolecular, UMR 5246, Laboratoire de Chimie Organique 2-Glycochemistry, Curien Building, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France. *Correspondence e-mail: abda_he@hotmail.fr

In the title compound, $C_{17}H_{28}N_2O_3$, the isoxazolidine ring adopts an envelope conformation with the O atom deviating from the mean plane of the other four ring atoms by 0.617 (1) Å. In the crystal, molecules are linked *via* weak C-H···O hydrogen bonds, forming chains which extend along the *b*-axis direction.

1. Chemical context

The 1,3-dipolar cycloaddition of nitrones to alkenes has been applied to produce substituted isoxazolidines (Gothelf & Jørgensen, 1998). These compounds can be converted into β-amino alcohols (Padwa et al., 2002), β-lactams (Hanselmann et al., 2003) and α -amino acids (Aouadi et al., 2006), by reductive cleavage of the N-O bond. Consequently, isoxazolidines have been used as key intermediates for the synthesis of various natural products or antifungal, antiinflammatory, anti-mycobacterial, anti-tuberculosis and antiviral agents. The previously mentioned importance of the isoxazolidine substructure led us to investigate the cycloaddition of chiral nitrone [(5(S),6(S),9(R)-6-isopropy]-4,9dimethyl-3-oxo-1,4-diazaspiro[4.5]dec-1-ene-1-oxide] with 2,5-dihydrofuran. The present work reports the synthesis and the X-ray crystallographic study of this substituted isoxazolidine, the title compound, $C_{17}H_{28}N_2O_3$, (I).

Figure 1

The molecular conformation in the molecules of (I), showing the atom labelling. Displacement ellipsoids are drawn at the 35% probability level. H atoms have been omitted for clarity.

2. Structural commentary

In the title compound (I), the asymmetric unit comprises a single molecule (Fig. 1). Each molecule has six stereogenic centres (Abda *et al.*, 2014) although the absolute configuration

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H52\cdots O13^{i}$	0.97	2.57	3.536 (3)	172

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

for the molecule was not determined definitively in this analysis. The isoxazolidine ring (O1/N2/C7–C9) adopts an envelope conformation with atom O1 displaced by 0.617 (1) Å from the mean plane through atoms N2/C7–C9. The N–O bond lengths of the isoxazolidine rings O1–N2 = 1.482 (2) Å, close to values reported for related compounds (Loh *et al.*, 2010; Molander *et al.*, 2013).

3. Supramolecular features

In the crystal, the molecules are linked *via* non-classical weak $C5-H52\cdots O13^{i}$ hydrogen bonds, forming zigzag chains, which extend along the *b*-axis direction (Table 1 and Fig. 2).

4. Synthesis and crystallization

In a Biotage Initiator 10 ml vial, nitrone [(5(S),6(S),9(R)-6-isopropyl-4,9-dimethyl-3-oxo-1,4-diazaspiro[4.5]dec-1-ene-1-oxide] (1 eq.) in anhydrous toluene (4 ml) was introduced.

Figure 2

The $C-H \cdots O$ hydrogen-bonded chains extending along the *b* axis in the crystal structure of (I). Dashed lines indicate hydrogen bonds. Non-associated H atoms have been omitted.

research communications

Figure 3 The cycloaddition reaction in the synthesis of (I).

The vial was flushed with argon and 2,5-dihydrofuran (3 eq.) was added. The vial was sealed with a septum cap and was irradiated with microwaves (temperature: 373 K) (Fig. 3). TLC monitoring (EtOAc/PE 5/5) showed full conversion after 2 h. After the crude mixture was concentrated and purified by flash column chromatography (silica gel, EtOAc/PE 5/5), the desired isoxazolidine (I) was obtained (m.p. = 410-411 K).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were located in a difference map, but these were repositioned geometrically and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93–0.98 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom). These were subsequently refined with riding constraints (Cooper et al., 2010). Although not definitive for this chiral structure, the Flack (1983) absolute structure parameter obtained [0.60 (3) for 1261 Friedel pairs] gave C3(S), C7(S), C8(S), C9(S), C14(S), C20(R) assignments for the six arbitrarily named chiral centres in the molecule. The inverted structure gave a similarly high Flack factor.

Acknowledgements

The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for financial support.

References

- Abda, H., Aouadi, K., Perrin, L., Msaddek, M., Praly, J.-P. & Vidal, S. (2014). Eur. J. Org. Chem. pp. 6017-6024.
- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, 2006, 3299-3303.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{17}H_{28}N_2O_3$
$M_{ m r}$	308.42
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	150
a, b, c (Å)	7.7474 (6), 11.1404 (8), 19.208 (2)
$V(\dot{A}^3)$	1657.8 (2)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.68
Crystal size (mm)	$0.49 \times 0.43 \times 0.25$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur
Absorption correction	(Atlas, Gemini Ultra) Analytical [<i>CrysAlis PRO</i>
	(Aglient, 2013) based on expressions derived by Clark &
	Reid (1995); changes in illumi
	nated volume were kept to a
	minimum, and were taken into
T T	account (Gorbitz, 1999)]
I min, I max	0.782, 0.800
No. of measured, independent and observed $[I > 2.0\sigma(I)]$ reflections	10374, 2879, 2080
R _{int}	0.059
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.096, 1.03
No. of reflections	2866
No. of parameters	201
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.16, -0.17
Absolute structure	Flack (1983), 1261 Friedel pairs
Absolute structure parameter	0.6 (3)

Computer programs: CrvsAlis PRO (Agilent, 2013), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), Larson (1970), Prince (1982) and Watkin (1994).

- Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Gothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863-910.
- Hanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739-8741.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
- Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461-474.
- Molander, G. A., Cavalcanti, L. N. & García-García, C. (2013). J. Org. Chem. 78, 6427-6439.
- Padwa, A. & Pearson, W. H. (2002). Editors. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, pp. 1-81. Chichester: Wiley.
- Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2016). E72, 1150-1152 [https://doi.org/10.1107/S2056989016010641]

Crystal structure of 2-isopropyl-5,7'-dimethyl-1',3',3a',6',8a',8b'-hexahydro-spiro[cyclohexane-1,6'-furo[3,4-*d*]imidazo[1,5-*b*]isoxazol]-8'(7'*H*)-one

Heithem Abda, Khaireddine Ezzayani, Kaiss Aouadi, Taha Guerfel, Sebastien Vidal and Moncef Msaddek

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003).

(I)

Crystal data

$C_{17}H_{28}N_{2}O_{3}$ $M_{r} = 308.42$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 7.7474 (6) Å b = 11.1404 (8) Å c = 19.208 (2) Å V = 1657.8 (2) Å³ Z = 4

Data collection Oxford Diffraction Xcalibur (Atlas, Gemini Ultra) diffractometer Radiation source: Enhance Ultra (Cu) X-ray source Mirror monochromator Detector resolution: 10.4678 pixels mm⁻¹ ω scans

```
F(000) = 672

D_x = 1.236 \text{ Mg m}^{-3}

Cu K\alpha radiation, \lambda = 1.5418 \text{ Å}

Cell parameters from 5548 reflections

\theta = 4.5-66.7^{\circ}

\mu = 0.68 \text{ mm}^{-1}

T = 150 \text{ K}

Block, colorless

0.49 \times 0.43 \times 0.25 \text{ mm}
```

Absorption correction: analytical [CrysAlis PRO (Agilent, 2013) based on expressions derived by Clark & Reid (1995); changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999)] $T_{min} = 0.782$, $T_{max} = 0.866$ 10374 measured reflections 2879 independent reflections 2680 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 66.8^{\circ}$, $\theta_{min} = 11^{\circ}$ $h = -9 \rightarrow 8$ $k = -13 \rightarrow 12$ $l = -22 \rightarrow 21$ Refinement

Refinement on F^2	Method, part 1. Chebychey polynomial.
Least-squares matrix: full	(Watkin, 1994; Prince, 1982) [weight] =
$R[F^2 > 2\sigma(F^2)] = 0.042$	$1.0/[A_0*T_0(x) + A_1*T_1(x) + A_{n-1}]*T_{n-1}(x)]$
$wR(F^2) = 0.096$	where A _i are the Chebychev coefficients listed
S = 1.03	below and $x = F / Fmax$ Method = Robust
2866 reflections	Weighting (Prince, 1982) W = [weight] *
201 parameters	$[1-(deltaF/6*sigmaF)^2]^2$ A _i are: 0.124E + 04
0 restraints	$0.195E + 04 \ 0.105E + 04 \ 304.$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.0002$
direct methods	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: difference Fourier map	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: Larson (1970), Equation
•	22
	Extinction coefficient: 74 (4)
	Absolute structure: Flack (1983), 1261 Friedel pairs
	Absolute structure parameter: 0.6 (3)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1K.

Refinement. The analytical numeric absorption correction using a multi-faceted crystal model is based on expressions derived by Clark & Reid (1995). The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:nnn) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999).

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.3924 (2)	0.46528 (13)	0.43226 (8)	0.0295
N2	0.2276 (2)	0.48439 (15)	0.39468 (9)	0.0248
C3	0.2216 (3)	0.39172 (18)	0.33856 (11)	0.0253
N4	0.3084 (3)	0.44977 (16)	0.27929 (9)	0.0257
C5	0.3388 (3)	0.3911 (2)	0.21315 (11)	0.0309
H51	0.3934	0.4467	0.1812	0.0471*
Н53	0.2321	0.3682	0.1919	0.0466*
H52	0.4129	0.3213	0.2193	0.0470*
C6	0.3369 (3)	0.56800 (19)	0.28913 (11)	0.0269
C7	0.2626 (3)	0.60075 (18)	0.35923 (11)	0.0257
C8	0.3798 (3)	0.67280 (19)	0.40726 (12)	0.0279
С9	0.4274 (3)	0.5792 (2)	0.46276 (11)	0.0271
C10	0.3137 (4)	0.6110 (2)	0.52465 (12)	0.0372
O11	0.1969 (2)	0.70248 (16)	0.50158 (9)	0.0397
C12	0.2873 (3)	0.7679 (2)	0.44941 (13)	0.0352
H122	0.2094	0.8163	0.4202	0.0417*
H121	0.3689	0.8236	0.4714	0.0416*
H102	0.2495	0.5396	0.5410	0.0447*
H101	0.3821	0.6433	0.5635	0.0448*
H91	0.5499	0.5839	0.4753	0.0337*
H81	0.4758	0.7027	0.3812	0.0341*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H71	0.1551	0.6415	0.3518	0.0307*
013	0.4052 (2)	0.63710 (15)	0.24780 (8)	0.0357
C14	0.0307 (3)	0.3616 (2)	0.32135 (11)	0.0274
C15	-0.0806 (3)	0.4686 (2)	0.29604 (12)	0.0310
C16	-0.2129 (4)	0.4250 (3)	0.24307 (14)	0.0435
H162	-0.2845	0.4937	0.2288	0.0654*
H163	-0.1594	0.3903	0.2017	0.0653*
H161	-0.2850	0.3629	0.2652	0.0658*
C17	-0.1731 (4)	0.5369 (2)	0.35403 (14)	0.0406
H171	-0.2186	0.6122	0.3336	0.0606*
H173	-0.2672	0.4908	0.3721	0.0604*
H172	-0.0979	0.5542	0.3931	0.0602*
H151	-0.0031	0.5263	0.2711	0.0372*
C18	-0.0536 (3)	0.2924 (2)	0.38122 (13)	0.0346
C19	0.0460 (4)	0.1795 (2)	0.40142 (14)	0.0379
C20	0.2339 (3)	0.2100 (2)	0.41916 (12)	0.0327
C21	0.3154 (3)	0.27553 (19)	0.35817 (12)	0.0288
H211	0.3096	0.2212	0.3171	0.0339*
H212	0.4342	0.2949	0.3684	0.0350*
C22	0.3387 (4)	0.0976 (2)	0.43654 (13)	0.0429
H222	0.4583	0.1173	0.4469	0.0645*
H221	0.3358	0.0416	0.3963	0.0629*
H223	0.2912	0.0549	0.4787	0.0629*
H201	0.2358	0.2644	0.4599	0.0385*
H192	0.0469	0.1237	0.3607	0.0463*
H191	-0.0113	0.1390	0.4418	0.0451*
H182	-0.1724	0.2721	0.3658	0.0423*
H181	-0.0606	0.3469	0.4217	0.0410*
H141	0.0390	0.3055	0.2810	0.0325*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0344 (8)	0.0232 (7)	0.0308 (8)	0.0026 (7)	-0.0085 (7)	-0.0014 (6)
N2	0.0304 (10)	0.0202 (9)	0.0239 (9)	0.0002 (8)	-0.0028 (8)	0.0005 (7)
C3	0.0324 (12)	0.0197 (10)	0.0237 (10)	0.0008 (9)	0.0029 (9)	-0.0011 (9)
N4	0.0317 (9)	0.0218 (9)	0.0236 (9)	-0.0001 (8)	0.0035 (8)	-0.0015 (7)
C5	0.0377 (12)	0.0307 (11)	0.0242 (11)	-0.0039 (10)	0.0039 (9)	-0.0034 (9)
C6	0.0290 (11)	0.0233 (10)	0.0284 (11)	-0.0006 (9)	-0.0018 (9)	0.0016 (9)
C7	0.0302 (11)	0.0206 (11)	0.0262 (10)	0.0023 (10)	0.0024 (9)	0.0014 (8)
C8	0.0324 (12)	0.0204 (10)	0.0307 (12)	-0.0016 (9)	0.0028 (10)	-0.0014 (9)
C9	0.0313 (11)	0.0233 (10)	0.0267 (10)	0.0000 (9)	-0.0042 (9)	-0.0040 (9)
C10	0.0453 (14)	0.0361 (13)	0.0302 (12)	-0.0014 (12)	-0.0002 (11)	-0.0035 (10)
O11	0.0392 (10)	0.0387 (9)	0.0413 (9)	0.0061 (8)	0.0076 (8)	-0.0078 (8)
C12	0.0421 (15)	0.0257 (11)	0.0377 (13)	0.0022 (11)	-0.0016 (11)	-0.0076 (10)
013	0.0489 (10)	0.0280 (8)	0.0303 (8)	-0.0062 (8)	0.0057 (8)	0.0044 (6)
C14	0.0329 (11)	0.0228 (11)	0.0265 (11)	-0.0031 (9)	0.0021 (9)	-0.0005 (9)
C15	0.0295 (11)	0.0298 (12)	0.0335 (12)	-0.0022 (10)	-0.0007 (10)	0.0024 (9)

supporting information

C1(0.0420 (1.4)	0.0422 (14)	0.0452 (14)	0.005((12))	0.0100 (12)	0.0007 (10)
C16	0.0430 (14)	0.0423 (14)	0.0453 (14)	-0.0056 (13)	-0.0109 (13)	0.0027(12)
C17	0.0370 (13)	0.0368 (13)	0.0481 (15)	0.0038 (12)	0.0041 (12)	-0.0022 (11)
C18	0.0371 (13)	0.0322 (13)	0.0344 (12)	-0.0047 (11)	0.0039 (11)	0.0025 (10)
C19	0.0533 (16)	0.0238 (12)	0.0365 (13)	-0.0085 (11)	0.0037 (12)	0.0039 (10)
C20	0.0495 (15)	0.0209 (11)	0.0278 (11)	-0.0015 (11)	-0.0011 (11)	-0.0001 (9)
C21	0.0360 (12)	0.0211 (11)	0.0292 (11)	0.0013 (10)	0.0009 (10)	-0.0008 (9)
C22	0.0680 (19)	0.0239 (12)	0.0369 (13)	0.0025 (12)	-0.0068 (13)	0.0040 (10)

Geometric parameters (Å, °)

O1—N2	1.482 (2)	C14—C15	1.550 (3)
O1—C9	1.424 (3)	C14—C18	1.531 (3)
N2—C3	1.493 (3)	C14—H141	0.997
N2—C7	1.489 (3)	C15—C16	1.524 (3)
C3—N4	1.472 (3)	C15—C17	1.527 (3)
C3—C14	1.552 (3)	C15—H151	1.001
C3—C21	1.531 (3)	C16—H162	0.983
N4—C5	1.448 (3)	C16—H163	0.977
N4—C6	1.349 (3)	C16—H161	0.986
С5—Н51	0.969	C17—H171	0.991
С5—Н53	0.956	С17—Н173	0.957
С5—Н52	0.974	C17—H172	0.970
C6—C7	1.509 (3)	C18—C19	1.526 (4)
C6—O13	1.226 (3)	C18—H182	0.992
C7—C8	1.523 (3)	C18—H181	0.988
C7—H71	0.959	C19—C20	1.533 (4)
C8—C9	1.536 (3)	C19—H192	0.999
C8—C12	1.513 (3)	C19—H191	1.001
C8—H81	0.957	C20—C21	1.518 (3)
C9—C10	1.521 (3)	C20—C22	1.529 (3)
С9—Н91	0.980	C20—H201	0.990
C10—O11	1.433 (3)	C21—H211	0.996
C10—H102	0.989	C21—H212	0.966
C10—H101	0.983	C22—H222	0.972
O11—C12	1.423 (3)	C22—H221	0.995
C12—H122	0.985	C22—H223	1.009
C12—H121	0.981		
N2—O1—C9	103.68 (14)	C3—C14—C18	110.82 (19)
O1—N2—C3	106.18 (15)	C15—C14—C18	112.69 (19)
O1—N2—C7	100.99 (15)	C3—C14—H141	103.9
C3—N2—C7	106.11 (15)	C15—C14—H141	105.9
N2—C3—N4	103.92 (16)	C18—C14—H141	107.2
N2—C3—C14	109.41 (17)	C14—C15—C16	109.79 (19)
N4—C3—C14	111.43 (18)	C14—C15—C17	114.5 (2)
N2—C3—C21	113.10 (17)	C16—C15—C17	109.3 (2)
N4—C3—C21	110.18 (18)	C14—C15—H151	108.1
C14—C3—C21	108.77 (18)	C16—C15—H151	106.8

C3—N4—C5	123.70 (17)	C17—C15—H151	108.1
C3—N4—C6	113.29 (17)	C15—C16—H162	108.5
C5—N4—C6	122.47 (19)	C15—C16—H163	112.6
N4—C5—H51	109.8	H162—C16—H163	108.7
N4—C5—H53	110.8	C15—C16—H161	108.4
H51—C5—H53	106.1	H162—C16—H161	110.3
N4—C5—H52	110.4	H_{163} C_{16} H_{161}	108.3
$H_{51} - C_{5} - H_{52}$	109.2	C_{15} C_{17} H_{171}	107.4
H53_C5_H52	110.4	C15 - C17 - H173	110.8
N4 C6 C7	107 30 (18)	H171 C17 H173	100.1
N4 C6 O13	107.57(10) 126.4(2)	$C_{15} = C_{17} = H_{175}$	112.4
114-00-013	120.4(2) 126.2(2)	H171 C17 H172	112.4
C = C = C = C = C = C = C = C = C = C =	120.2(2) 105.48(16)	H1/1 - C1/-H1/2	106.5
C_{0} C_{1} C_{2}	105.48 (10)	H1/3 - C1/-H1/2	100.5
	116.15 (19)		113.0 (2)
$N_2 - C_1 - C_8$	106.89 (17)	C14—C18—H182	106.7
C6C/H/1	108.3	C19—C18—H182	110.9
N2—C7—H71	108.7	C14—C18—H181	107.8
С8—С7—Н71	111.0	C19—C18—H181	109.5
C7—C8—C9	101.88 (16)	H182—C18—H181	108.9
C7—C8—C12	114.2 (2)	C18—C19—C20	110.74 (19)
C9—C8—C12	102.57 (18)	C18—C19—H192	108.4
С7—С8—Н81	109.3	C20—C19—H192	107.8
С9—С8—Н81	114.4	C18—C19—H191	110.1
C12—C8—H81	113.9	C20-C19-H191	110.4
C8—C9—O1	105.88 (16)	H192—C19—H191	109.2
C8—C9—C10	104.18 (18)	C19—C20—C21	109.3 (2)
O1—C9—C10	114.75 (19)	C19—C20—C22	111.8 (2)
С8—С9—Н91	111.5	C21—C20—C22	110.0 (2)
O1—C9—H91	109.5	C19—C20—H201	109.0
С10—С9—Н91	110.8	C21—C20—H201	108.1
C9—C10—O11	106.84 (18)	C22—C20—H201	108.7
C9—C10—H102	110.7	C3-C21-C20	113.52 (19)
011 - C10 - H102	110.6	$C_3 - C_2 - H_2 = H_2 $	107.3
C9-C10-H101	111.5	C20—C21—H211	107.5
011 - C10 - H101	108.3	C_{3} C_{21} H_{212}	108.2
H_{102} C_{10} H_{101}	108.9	C_{20} C_{21} H_{212}	110.3
C10-011-C12	105 74 (19)	H211_C21_H212	109.9
$C_{10}^{8} = C_{12}^{12} = C_{12}^{11}$	103.74(19) 104.57(10)	C_{20} C_{22} H_{222}	109.9
$C_8 = C_{12} = U_{12}$	104.37 (19)	$C_{20} = C_{22} = H_{221}$	100 4
$C_0 - C_{12} - H_{122}$	111./	$U_{20} = U_{22} = U_{221}$	109.4
011—C12—H122	112.4	$H_{222} - C_{22} - H_{221}$	108.8
C8-C12-H121	111.6	C20—C22—H223	111.6
011—C12—H121	109.7	H222—C22—H223	106.8
H122—C12—H121	107.0	H221—C22—H223	108.7
C3—C14—C15	115.54 (18)		
C9—O1—N2—C3	156.12 (16)	C21—C3—C14—C18	53.8 (2)
C9—O1—N2—C7	45.58 (18)	N2-C3-C21-C20	64.1 (2)
N2-01-C9-C8	-40.8 (2)	N4—C3—C21—C20	179.91 (18)

N2-01-C9-C10	73.5 (2)	C14—C3—C21—C20	-57.7 (2)
C12—O11—C10—C9	-30.4(2)	O13—C6—C7—N2	-169.1 (2)
C10—O11—C12—C8	41.4 (2)	O13—C6—C7—C8	-51.0 (3)
O1—N2—C3—N4	-88.72 (18)	N4—C6—C7—N2	13.2 (2)
O1—N2—C3—C14	152.15 (15)	N4—C6—C7—C8	131.3 (2)
O1—N2—C3—C21	30.7 (2)	N2-C7-C8-C9	9.3 (2)
C7—N2—C3—N4	18.2 (2)	N2-C7-C8-C12	-100.5 (2)
C7—N2—C3—C14	-100.94 (18)	C6—C7—C8—C9	-108.1 (2)
C7—N2—C3—C21	137.64 (18)	C6—C7—C8—C12	142.1 (2)
O1—N2—C7—C6	91.23 (18)	C7—C8—C9—O1	19.2 (2)
O1—N2—C7—C8	-32.94 (19)	C7—C8—C9—C10	-102.2 (2)
C3—N2—C7—C6	-19.4 (2)	C12—C8—C9—O1	137.68 (18)
C3—N2—C7—C8	-143.56 (17)	C12—C8—C9—C10	16.3 (2)
C5—N4—C3—N2	177.7 (2)	C7—C8—C12—O11	74.2 (2)
C5—N4—C3—C14	-64.6 (3)	C9—C8—C12—O11	-35.1 (2)
C5—N4—C3—C21	56.2 (3)	O1—C9—C10—O11	-107.8 (2)
C6—N4—C3—N2	-10.6 (3)	C8—C9—C10—O11	7.6 (2)
C6—N4—C3—C14	107.2 (2)	C3—C14—C15—C16	146.3 (2)
C6—N4—C3—C21	-132.0 (2)	C3—C14—C15—C17	-90.4 (2)
C3—N4—C6—O13	-179.3 (2)	C18—C14—C15—C16	-84.9 (2)
C3—N4—C6—C7	-1.6 (3)	C18—C14—C15—C17	38.4 (3)
C5—N4—C6—O13	-7.4 (4)	C3—C14—C18—C19	-54.8 (3)
C5—N4—C6—C7	170.3 (2)	C15—C14—C18—C19	174.06 (19)
N2-C3-C14-C15	59.5 (2)	C14-C18-C19-C20	55.5 (3)
N2-C3-C14-C18	-70.2 (2)	C18—C19—C20—C21	-55.6 (3)
N4—C3—C14—C15	-54.8 (2)	C18—C19—C20—C22	-177.5 (2)
N4—C3—C14—C18	175.48 (17)	C19—C20—C21—C3	58.7 (2)
C21—C3—C14—C15	-176.47 (18)	C22—C20—C21—C3	-178.24 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H52…O13 ⁱ	0.97	2.57	3.536 (3)	172

Symmetry code: (i) -x+1, y-1/2, -z+1/2.