CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 July 2016
Accepted 26 July 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrothermal synthesis; polynitrile anions; molecular structure; hydrogen bonding.

CCDC reference: 1496221

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of [tris(4,4'-bipyridine)]diium bis(1,1,3,3-tetracyano-2-ethoxypropenide) trihydrate

Fatima Setifi, ${ }^{\text {a }}$ Arto Valkonen, ${ }^{\text {b }}$ Zouaoui Setifi, ${ }^{\text {a }}$ Sami Nummelin, ${ }^{\text {c }}$ Rachid Touzani ${ }^{\mathrm{d}, \mathrm{e}_{*}}$ and Christopher Glidewell ${ }^{\mathrm{f}}{ }^{*}$

${ }^{\text {a }}$ Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, ${ }^{\text {b }}$ Department of Chemistry, University of Jyvaskyla, PO Box 35, FI-40014 Jyvaskyla, Finland, ${ }^{\text {c Biohybrid }}$ Materials, Department of Biotechnology and Chemical Technology, Aalto University, Fl-02150 Espoo, Finland,
dLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, ${ }^{\text {e }}$ Faculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco, and ${ }^{\text {f School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland. }{ }^{*} \text { Correspondence e-mail: }}$ fat_setifi@yahoo.fr, touzanir@yahoo.fr, cg@st-andrews.ac.uk

The title hydrated salt, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, was obtained as an unexpected product from the hydrothermal reaction between potassium 1,1,3,3-tetracyano-2-ethoxypropenide, 4,4'-bipyridine and iron(II) sulfate heptahydrate. The cation lies across a twofold rotation axis in the space group $I 2 / a$ with the other components all in general positions. In the cation, the H atom linking the pyridine units is disordered over two adjacent sites having occupancies of $0.66(4)$ and $0.36(4)$, i.e. as $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N} \cdots \mathrm{H}-\mathrm{N}$. The water molecules of crystallization are each disordered over two sets of atomic sites, having occupancies of 0.522 (6) and 0.478 (6) for one, and 0.34 (3) and 0.16 (3) for the other, and it was not possible to reliably locate the H atoms associated with these partial-occupancy sites. In the crystal, four independent $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the ionic components into a three-dimensional network.

1. Chemical context

In recent years, the use of polynitrile anions as coordinating ligands for the construction of polymeric architectures with interesting properties has been a burgeoning subject in materials and coordination chemistry (Thétiot et al., 2003; Benmansour et al., 2007; Atmani et al., 2008). These anions are versatile structural components, leading to many different architectures in zero, one, two or three dimensions, and incorporating most of the $3 d$ transition metals (Benmansour et al., 2008, 2010, 2012; Yuste et al., 2009; Setifi, Domasevitch et al., 2013; Setifi, Setifi et al., 2013; Setifi, Lehchili et al., 2014). This versatility is based on two main properties of these ligands: (i) the ability to act as bridges, given the linear and rigid geometry of the cyano groups, and (ii) the possibility of functionalization with different potentially coordinating groups that leads to a high variety of coordination modes. To take advantage of this behaviour we have been using these organic anions in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics of the resulting complexes, particularly with reference to molecular materials exhibiting interesting magnetic exchange coupling behaviour. During the course of attempts to prepare such complexes with $4,4^{\prime}$-bipyridine, we isolated the title compound (I) (Fig. 1 and Scheme 1), whose structure is reported here.

2. Structural commentary

The structure of compound (I) consists of a [tris(4, 4^{\prime}-bipyridine)]diium dication, [(4, 4^{\prime}-bipy)-H-(4, 4^{\prime}-bipy)-H-(4, 4^{\prime} bipy) $]^{2+}$, two 1,1,3,3-tetracyano-2-ethoxypropenide anions, $\left[(\mathrm{NC})_{2} \mathrm{CC}(\mathrm{OEt}) \mathrm{C}(\mathrm{CN})_{2}\right]^{-}$, and three water molecules. The cation lies across a twofold rotation axis, selected for the reference cation as that along ($0.25, y, 0.5$), while the other components all lie in general positions. Within the cation, the H atom linking the $4,4^{\prime}$-bipy units is disordered over two adjacent sites having occupancies of 0.66 (4) and 0.36 (4), and the two independent water molecules are also disordered, both over two atomic sites, with one having occupancies of 0.522 (6) and 0.478 (6) and the other having occupancies of 0.34 (3) and 0.16 (3).

Scheme 1
In the cation, the dihedral angle between the two symmetryrelated rings of the central unit is $37.60(4)^{\circ}$, the dihedral angle between the rings containing atoms N 11 and N 21 is $85.96(5)^{\circ}$ and that between the rings containing atoms N21 and N31 is $29.33(3)^{\circ}$ (cf. Fig. 1). In the anion, the corresponding pairs of
bond distances and bond angles associated with the two $\mathrm{C}-$ $\mathrm{C}(\mathrm{CN})_{2}$ units containing the atoms C 41 and C 43 are very similar. In addition, the $\mathrm{C}-\mathrm{C}$ distances in the $\mathrm{C}(\mathrm{CN})_{2}$ fragments are all short for their type [mean value (Allen et al., 1987) $1.431 \AA$, lower quartile value $1.425 \AA$], while the $C-N$ distances are all long for their type (mean value $1.136 \AA$, upper quartile value $1.142 \AA$). These observations indicate that there is considerable delocalization of the negative charge within the anion, not just over the central propenide fragment, resonance forms (a) and (b) (see Scheme 2), but also onto the N atoms of the four cyano substituents, forms (c)-(f). Despite this, the core skeleton of the anion is not planar, as the two $\mathrm{C}(\mathrm{CN})_{2}$ units are rotated in conrotatory fashion out of the plane of the propenide unit; this central C_{3} fragment makes dihedral angles of 10.39 (13) and $16.71(18)^{\circ}$, respectively, with the $\mathrm{C}(\mathrm{CN})_{2}$ units containing atoms C 41 and C 43 .

(a)

(c)

(e)

(b)

(d)

(f)
Scheme 2

3. Supramolecular interactions

The two independent $4,4^{\prime}$-bipy units are linked by disordered $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, both of which are almost linear (Table 1). In addition, there are four $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in the structure: two of these have donor atoms, C13 and C15, which are part of the $4,4^{\prime}$-bipy unit containing N11

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 21$	$0.98(4)$	$1.69(4)$	$2.6655(18)$	$175(3)$
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 11$	$0.90(7)$	$1.78(7)$	$2.6655(18)$	$172(5)$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 31^{\mathrm{i}}$	0.95	2.57	$3.4248(19)$	150
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 411^{\mathrm{ii}}$	0.95	2.56	$3.434(2)$	154
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 411$	0.95	2.38	$3.249(2)$	152
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 5 B$	0.95	2.56	$3.355(4)$	141
$\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{O} 6 A$	0.95	2.53	$3.474(13)$	176
$\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{O} 6 B$	0.95	2.54	$3.484(16)$	170
$\mathrm{C} 421-\mathrm{H} 41 A \cdots \mathrm{~N} 431^{\mathrm{iii}}$	0.99	2.61	$3.589(2)$	172

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2} ; \quad$ (ii) $\quad-x+\frac{1}{2}, y+1,-z+1$;
$-x,-y-1,-z+1$.
and acceptors in the anion, one has an acceptor in the 4,4'-bipy unit containing N21 and N31, and the fourth involves only the anion. Of these four interactions, the first two can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994) and it is interesting to note that the ethoxy O atom in the anion plays no role in the supramolecular assembly.

These six hydrogen bonds link the cations and anions into a three-dimensional network whose formation is readily

Figure 1
The independent components of the structure of compound (I), showing the atom-labelling scheme, the complete central $4,4^{\prime}$-bipy unit and the hydrogen bond (shown as a dashed line) between the cation and anion within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and the atoms marked with ' a ' are at the symmetry position $\left(-x+\frac{1}{2}, y,-z+1\right)$. The partially occupied water sites have refined occupancies as follows: O5A 0.522 (6), O5B 0.478 (6), O6A 0.34 (3) and O6B 0.16 (3).

Figure 2
Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded ribbon of edge-fused $R_{4}^{2}(14)$ rings along the [010] direction. For the sake of clarity, the 4,4'-bipy units containing atoms N21 and N31, the partial-occupancy water molecules, and the H atoms not involved in the motif shown have been omitted.
analysed in terms of substructures (Ferguson et al., 1998a,b; Gregson et al., 2000) in zero, one and two dimensions. It is convenient to consider firstly the hydrogen bonds between cations and anions. The anions and the central 4, 4^{\prime}-bipy units containing atom N11 which are related by translation along the [010] direction are linked to form the one-dimensional substructure in the form of a ribbon of edge-fused $R_{4}^{2}(14)$ loops (Fig. 2). Ribbons of this type, which are related by translation along [$1 \overline{1} 1]$, are linked by the $4,4^{\prime}$-bipy units containing atoms N21 and N31 to form the two-dimensional substructure, a sheet lying parallel to (10 $\overline{1})$ (Fig. 3). Adjacent sheets are linked by the zero-dimensional substructure which

Figure 3
Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet lying parallel to (101). For the sake of clarity, the partial-occupancy water molecules, and the H atoms not involved in the motif shown have been omitted.
involves inversion-related pairs of anions forming a centrosymmetric motif characterized by an $R_{2}^{2}(14)$ ring (Fig. 4).

Three of the partially occupied water sites are linked by C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) within the selected asymmetric unit to one of the $4,4^{\prime}$-bipy components, while the fourth, O5A, lies 2.54 (3) A from atom O6A at $\left(-x+1, y+\frac{1}{2}\right.$, $-z+\frac{3}{2}$), i.e. within the reference ($10 \overline{1}$) sheet and comfortably within $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding range.

4. Database survey

The 1,1,3,3-tetracyano-2-ethoxypropenide unit, here conveniently denoted as X^{-}, has been reported in a number of structures. These include salts of organic cations, including $\left[\left(2,2^{\prime} \text {-bipy }\right) \mathrm{H}\right]^{+} \cdot X^{-}$, (II) (Setifi, Valkonen et al., 2015), [(4, $4^{\prime}-$ bipy) $\left.\mathrm{H}_{2}\right]^{2+} \cdot 2 X^{-}$, (III) (Setifi, Geiger et al., 2015), and [(4, $4^{\prime}-$ bipy) $\left.\mathrm{Et}_{2}\right]^{2+} \cdot 2 X^{-}$, (IV) (Setifi, Lehchili et al., 2014); salts of mononuclear metal complexes in which the 1,1,3,3-tetracyano-2-ethoxypropenide unit is not ccordinated to the metal centre, including [(2,2'-bi-1H-imidazole) $\left.{ }_{2} \mathrm{Cu}\right]^{2+} \cdot 2 \mathrm{X}^{-}$, (V) (Gaamoune et al., 2010), [(1,10-phen) $\left.3_{3} \mathrm{Fe}\right]^{2-} \cdot 2 X^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, (VI) (Setifi, Setifi et al., 2013), [(1,10-phen) $\left.{ }_{3} \mathrm{Fe}\right]^{2-} \cdot 2 X^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, and (VII) (Setifi, Domasevitch et al., 2013); and compounds where the 1,1,3,3-tetracyano-2-ethoxypropenide unit acts as a ligand including a binuclear Cu complex in which it acts both as a bridging ligand between two $\mathrm{Cu}^{\text {II }}$ centres and as a monodentate terminal ligand, thus $\left[\left(2,2^{\prime} \text {-bipy }\right) X \mathrm{Cu}\right]_{2}(\mu-X)_{2}$, (VIII) (Addala et al., 2015), and a two-dimensional coordination polymer $[X(1,10-\text { phen }) \mathrm{ClCu}]_{n}$, (IX) (Setifi, Setifi et al., 2014). Of these examples, compounds (II), (III) and (IV) are most closely related to compound (I) reported here. In the structure

Figure 4
Part of the crystal structure of compound (I), showing the formation by pairs of anions of a hydrogen-bonded $R_{2}^{2}(14)$ ring. The atoms marked with an asterisk (*) are at the symmetry position $(-x,-y+1,-z+1)$. For the sake of clarity, the unit-cell outline, the $4,4^{\prime}$-bipy units and the partialoccupancy water molecules have all been omitted.
of compound (II), a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds links the ions into ribbons containing alternating $R_{4}^{4}(18)$ and $R_{4}^{4}(26)$ rings; in (IV), where there are no $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, the ions are linked into sheets by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, and in (III), an extensive series of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generates a threedimensional network, so that the supramolecular aggregation is one-, two- and three-dimensional in compounds (II), (IV) and (III), respectively.

5. Synthesis and crystallization

The salt K(tcnoet) was prepared according to a published method (Middleton et al., 1958). The title compound was synthesized hydrothermally under autogenous pressure from a mixture of iron(II) sulfate heptahydrate ($56 \mathrm{mg}, 0.2 \mathrm{mmol}$), $4,4^{\prime}$-bipyridine ($32 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{K}($ tcnoet $)(90 \mathrm{mg}$, $0.4 \mathrm{mmol})$ in water-methanol ($4: 1 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 2 d , and then cooled to ambient temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$ (yield 25%). Pale-yellow blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms bonded to C or N atoms were all located in difference maps. The H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealised positions, with $\mathrm{C}-\mathrm{H}=0.95$ (pyridyl), $0.98\left(\mathrm{CH}_{3}\right)$ or $0.99 \AA\left(\mathrm{CH}_{2}\right)$, and with $U_{\text {iso }}(\mathrm{H})=$ $k U_{\text {eq }}(\mathrm{C})$ where $k=1.5$ for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. The unique H atom bonded to N was disordered over two atomic sites, labeled H11 and H21, adjacent to atoms N11 and N21, respectively, and having unequal occupancies; for these two sites, the atomic coordinates were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$, leading to the $\mathrm{N}-\mathrm{H}$ distances shown in Table 1 and to refined site occupancies of 0.66 (4) and 0.36 (4) for H11 and H21, respectively. No H -atom sites associated with water atoms O 5 and O 6 could be located. Each of these water O atoms is disordered over two atomic sites: O5 is disordered over two sites, labelled O5A and $05 B$, which are separated by 0.963 (4) \AA, while O6 is disordered over two sites, labelled $\mathrm{O} 6 A$ and $\mathrm{O} 6 B$, which are separated by 0.627 (9) \AA. Free refinement of the site occupancies of O5A and O5B gave values of 0.579 (7) and 0.512 (7), respectively; these values are not physically possible and both are over-estimates because of the lack of H atoms in the modelling of the water sites. Accordingly, the occupancies of O5A and O5B were constrained to sum to unity, giving values of 0.522 (6) and 0.478 (6). Free refinement of the site occupancies for O6A and O6B gave values of 0.36 (3) and 0.16 (3), and these values were subsequently restrained to sum to $0.500(2)$, giving final values of 0.34 (3) and 0.16 (3). The final analysis of variance showed a large value, 4.522, of $K=$
$\left[\operatorname{mean}\left(F_{\mathrm{o}}{ }^{2}\right)\right] /\left[\operatorname{mean}\left(F_{\mathrm{c}}{ }^{2}\right)\right]$ for the group of 541 very weak reflections having $F_{\mathrm{c}} / F_{\mathrm{c}}(\max)$ in the range $0.000<F_{\mathrm{c}} / F_{\mathrm{c}}(\max)$ < 0.014 .

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. \& Reedijk, J. (2015). Polyhedron, 87, 307-310.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. \& Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. \& Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. \& Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.

Benmansour, S., Setifi, F., Triki, S. \& Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.
Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., SalaPala, J., Gómez-García, C. J. \& Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186-194.
Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.
Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. \& Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.
Gilli, P., Bertolasi, V., Ferretti, V. \& Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.
Gregson, R. M., Glidewell, C., Ferguson, G. \& Lough, A. J. (2000). Acta Cryst. B56, 39-57.
Middleton, W. J., Little, E. L., Coffman, D. D. \& Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2795-2806.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petrícek, V. \& Dusek, M. (2013). Acta Cryst. C69, 1351-1356.

Setifi, F., Geiger, D. K., Abdul Razak, I. \& Setifi, Z. (2015). Acta Cryst. C71, 658-663.
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. \& Glidewell, C. (2014). Acta Cryst. C70, 338-341.

Table 2
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ 894.95

Monoclinic, $I 2 / a$
123
18.1861 (2), 7.1187 (1), 35.7070 (4)
100.448 (1)
4546.03 (10)

4
Mo $K \alpha$
0.09
$0.45 \times 0.38 \times 0.31$

Bruker-Nonius Kappa CCD with APEXII detector
Multi-scan (SADABS; Sheldrick, 2003)
0.907, 0.973

35680, 5197, 4559
0.039
0.650
$0.049,0.115,1.09$
5197
335
1
H atoms treated by a mixture of independent and constrained refinement
$0.32,-0.23$

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski \& Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. \& Glidewell, C. (2014). Acta Cryst. C70, 19-22.
Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. \& Avignant, D. (2013). Acta Cryst. E69, m12-m13.
Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. \& Glidewell, C. (2015). Acta Cryst. E71, 509-515.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thétiot, F., Triki, S. \& Sala-Pala, J. (2003). Polyhedron, 22, 1837-1843.
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. \& Julve, M. (2009). Polyhedron, 28, 1287-1294.

supporting information

Acta Cryst. (2016). E72, 1246-1250 [https://doi.org/10.1107/S2056989016012160]
Crystal structure of [tris(4,4'-bipyridine)]diium bis(1,1,3,3-tetracyano-2-ethoxypropenide) trihydrate

Fatima Setifi, Arto Valkonen, Zouaoui Setifi, Sami Nummelin, Rachid Touzani and Christopher Glidewell

Computing details

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).
[Tris(4,4-bipyridine)]diium bis(1,1,3,3-tetracyano-2-ethoxypropenide) trihydrate

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=894.95$
Monoclinic, $I 2 / a$
$a=18.1861$ (2) \AA
$b=7.1187$ (1) \AA
$c=35.7070(4) \AA$
$\beta=100.448(1)^{\circ}$
$V=4546.03$ (10) \AA^{3}
$Z=4$

Data collection

Bruker-Nonius Kappa CCD with APEXII detector diffractometer
Radiation source: fine focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min }=0.907, T_{\text {max }}=0.973$
$F(000)=1872$
$D_{\mathrm{x}}=1.299 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5197 reflections
$\theta=2.3-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Block, pale yellow
$0.45 \times 0.38 \times 0.31 \mathrm{~mm}$

35680 measured reflections
5197 independent reflections
4559 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-23 \rightarrow 23$
$k=-8 \rightarrow 9$
$l=-42 \rightarrow 46$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.115$
$S=1.09$
5197 reflections

335 parameters

1 restraint
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0362 P)^{2}+5.2868 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
N11	0.34943 (7)	0.62579 (18)	0.59359 (3)	0.0268 (3)	
H11	0.3778 (17)	0.621 (4)	0.6196 (11)	0.032*	0.66 (4)
C12	0.34888 (8)	0.7810 (2)	0.57234 (4)	0.0260 (3)	
H12	0.3753	0.8893	0.5830	0.031*	
C13	0.31054 (7)	0.7862 (2)	0.53523 (4)	0.0234 (3)	
H13	0.3109	0.8967	0.5204	0.028*	
C14	0.27134 (7)	0.62756 (19)	0.51984 (3)	0.0192 (3)	
C15	0.27272 (8)	0.4676 (2)	0.54248 (4)	0.0244 (3)	
H15	0.2466	0.3574	0.5327	0.029*	
C16	0.31261 (8)	0.4715 (2)	0.57924 (4)	0.0276 (3)	
H16	0.3140	0.3625	0.5947	0.033*	
N21	0.42091 (7)	0.62202 (17)	0.66569 (4)	0.0269 (3)	
H21	0.400 (3)	0.616 (8)	0.641 (2)	0.032*	0.34 (4)
C22	0.49341 (8)	0.5785 (2)	0.67630 (4)	0.0276 (3)	
H22	0.5217	0.5488	0.6572	0.033*	
C23	0.52856 (8)	0.5754 (2)	0.71399 (4)	0.0256 (3)	
H23	0.5802	0.5455	0.7206	0.031*	
C24	0.48726 (8)	0.61675 (19)	0.74231 (4)	0.0219 (3)	
C25	0.41210 (8)	0.6605 (2)	0.73098 (4)	0.0258 (3)	
H25	0.3821	0.6887	0.7494	0.031*	
C26	0.38118 (8)	0.6626 (2)	0.69263 (4)	0.0277 (3)	
H26	0.3298	0.6940	0.6852	0.033*	
N31	0.58874 (8)	0.61811 (19)	0.86102 (3)	0.0331 (3)	
C32	0.51622 (9)	0.5772 (2)	0.84948 (4)	0.0327 (3)	
H32	0.4872	0.5488	0.8683	0.039*	
C33	0.48101 (9)	0.5739 (2)	0.81152 (4)	0.0281 (3)	
H33	0.4294	0.5438	0.8049	0.034*	
C34	0.52250 (8)	0.61556 (19)	0.78334 (4)	0.0227 (3)	
C35	0.59782 (8)	0.6576 (2)	0.79502 (4)	0.0270 (3)	
H35	0.6283	0.6867	0.7768	0.032*	
C36	0.62787 (9)	0.6565 (2)	0.83360 (4)	0.0313 (3)	
H36	0.6795	0.6848	0.8410	0.038*	
C41	0.15157 (8)	-0.1715 (2)	0.58797 (4)	0.0272 (3)	
C42	0.11579 (7)	-0.3411 (2)	0.57565 (4)	0.0234 (3)	
C43	0.11642 (8)	-0.5041 (2)	0.59765 (4)	0.0249 (3)	
C411	0.16626 (8)	-0.0335 (2)	0.56164 (4)	0.0297 (3)	

N411	$0.17940(8)$	$0.0773(2)$	$0.54035(4)$	$0.0382(3)$	
C412	$0.17576(9)$	$-0.1283(2)$	$0.62709(5)$	$0.0347(4)$	
N412	$0.19482(10)$	$-0.0875(3)$	$0.65855(5)$	$0.0528(4)$	
C431	$0.06545(8)$	$-0.6532(2)$	$0.58565(4)$	$0.0262(3)$	
N431	$0.02403(7)$	$-0.77540(19)$	$0.57765(4)$	$0.0333(3)$	
C432	$0.16949(9)$	$-0.5343(2)$	$0.63136(4)$	$0.0321(3)$	
N432	$0.21320(9)$	$-0.5619(3)$	$0.65832(4)$	$0.0496(4)$	
O421	$0.08005(6)$	$-0.35955(15)$	$0.53932(3)$	$0.0283(2)$	
C421	$0.02174(9)$	$-0.2228(2)$	$0.52443(4)$	$0.0330(3)$	
H41A	0.0143	-0.2200	0.4963	0.040^{*}	
H41B	0.0372	-0.0959	0.5341	0.040^{*}	
C422	$-0.04964(9)$	$-0.2764(3)$	$0.53674(5)$	$0.0427(4)$	
H42A	-0.0886	-0.1850	0.5268	0.064^{*}	0.064^{*}
H42B	-0.0650	-0.4016	0.5269	0.064^{*}	
H42C	-0.0421	-0.2778	0.5646	$0.0915(17)$	$0.522(6)$
O5A	$0.2512(2)$	$0.9317(7)$	$0.73743(12)$	$0.0533(13)$	$0.478(6)$
O5B	$0.28182(16)$	$0.9204(5)$	$0.76234(11)$	$0.055(4)$	$0.34(3)$
O6A	$0.7139(8)$	$0.743(4)$	$0.7296(2)$	$0.16(3)$	
O6B	$0.7007(9)$	$0.824(4)$	$0.7286(3)$	$0.031(4)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	$0.0253(6)$	$0.0364(7)$	$0.0166(5)$	$0.0030(5)$	$-0.0018(5)$	$0.0009(5)$
C12	$0.0241(7)$	$0.0309(8)$	$0.0210(6)$	$-0.0013(6)$	$-0.0013(5)$	$-0.0028(6)$
C13	$0.0248(6)$	$0.0246(7)$	$0.0199(6)$	$-0.0014(5)$	$0.0015(5)$	$0.0007(5)$
C14	$0.0165(6)$	$0.0233(7)$	$0.0169(6)$	$0.0020(5)$	$0.0011(5)$	$0.0004(5)$
C15	$0.0244(6)$	$0.0254(7)$	$0.0224(7)$	$-0.0016(6)$	$0.0013(5)$	$0.0016(5)$
C16	$0.0295(7)$	$0.0306(8)$	$0.0217(7)$	$0.0026(6)$	$0.0020(5)$	$0.0063(6)$
N21	$0.0325(6)$	$0.0262(6)$	$0.0188(6)$	$-0.0020(5)$	$-0.0036(5)$	$0.0016(5)$
C22	$0.0322(7)$	$0.0283(7)$	$0.0216(7)$	$-0.0004(6)$	$0.0034(6)$	$0.0011(6)$
C23	$0.0259(7)$	$0.0255(7)$	$0.0235(7)$	$0.0015(6)$	$-0.0002(5)$	$0.0007(5)$
C24	$0.0269(7)$	$0.0174(6)$	$0.0197(6)$	$-0.0014(5)$	$0.0001(5)$	$0.0006(5)$
C25	$0.0270(7)$	$0.0265(7)$	$0.0228(7)$	$-0.0006(6)$	$0.0016(5)$	$-0.0024(5)$
C26	$0.0260(7)$	$0.0280(8)$	$0.0259(7)$	$-0.0003(6)$	$-0.0035(5)$	$-0.0002(6)$
N31	$0.0437(8)$	$0.0285(7)$	$0.0227(6)$	$0.0020(6)$	$-0.0053(5)$	$0.0004(5)$
C32	$0.0466(9)$	$0.0287(8)$	$0.0216(7)$	$-0.0022(7)$	$0.0029(6)$	$0.0032(6)$
C33	$0.0332(7)$	$0.0253(7)$	$0.0239(7)$	$-0.0026(6)$	$0.0003(6)$	$0.0014(6)$
C34	$0.0295(7)$	$0.0174(6)$	$0.0193(6)$	$0.0035(5)$	$-0.0010(5)$	$-0.0005(5)$
C35	$0.0292(7)$	$0.0249(7)$	$0.0250(7)$	$0.0031(6)$	$0.0001(6)$	$-0.0028(5)$
C36	$0.0324(8)$	$0.0294(8)$	$0.0280(7)$	$0.0037(6)$	$-0.0054(6)$	$-0.0041(6)$
C41	$0.0283(7)$	$0.0256(7)$	$0.0286(7)$	$-0.0013(6)$	$0.0074(6)$	$-0.0023(6)$
C42	$0.0226(6)$	$0.0266(7)$	$0.0217(6)$	$0.0015(5)$	$0.0060(5)$	$-0.0009(5)$
C43	$0.0246(7)$	$0.0266(7)$	$0.0233(7)$	$-0.0006(6)$	$0.0038(5)$	$0.0012(5)$
C411	$0.0284(7)$	$0.0245(7)$	$0.0379(8)$	$-0.0001(6)$	$0.0108(6)$	$-0.0039(6)$
N411	$0.0419(8)$	$0.0267(7)$	$0.0495(8)$	$-0.0033(6)$	$0.0181(7)$	$0.0013(6)$
C412	$0.0343(8)$	$0.0332(9)$	$0.0375(9)$	$-0.0080(7)$	$0.0084(7)$	$-0.0069(7)$
N412	$0.0583(10)$	$0.0593(11)$	$0.0399(9)$	$-0.0190(8)$	$0.0065(7)$	$-0.0157(8)$

C431	$0.0278(7)$	$0.0265(7)$	$0.0250(7)$	$0.0036(6)$	$0.0068(5)$	$0.0037(6)$
N 431	$0.0345(7)$	$0.0284(7)$	$0.0366(7)$	$-0.0030(6)$	$0.0053(6)$	$0.0006(6)$
C432	$0.0305(8)$	$0.0326(8)$	$0.0325(8)$	$-0.0031(6)$	$0.0036(6)$	$0.0064(6)$
N 432	$0.0429(8)$	$0.0560(10)$	$0.0432(9)$	$-0.0030(7)$	$-0.0096(7)$	$0.0147(7)$
O421	$0.0348(5)$	$0.0277(5)$	$0.0211(5)$	$0.0027(4)$	$0.0019(4)$	$-0.0006(4)$
C421	$0.0368(8)$	$0.0334(8)$	$0.0263(7)$	$0.0047(7)$	$-0.0011(6)$	$0.0061(6)$
C422	$0.0353(9)$	$0.0423(10)$	$0.0489(10)$	$0.0042(8)$	$0.0031(7)$	$-0.0003(8)$
O5A	$0.059(2)$	$0.166(4)$	$0.054(3)$	$0.015(2)$	$0.021(2)$	$0.037(2)$
O5B	$0.0324(15)$	$0.082(2)$	$0.043(2)$	$0.0148(14)$	$0.0002(14)$	$-0.0208(16)$
O6A	$0.058(4)$	$0.072(11)$	$0.038(2)$	$-0.021(6)$	$0.015(2)$	$-0.009(4)$
O6B	$0.047(5)$	$0.023(9)$	$0.027(4)$	$0.002(5)$	$0.016(3)$	$0.000(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

N11-C16	1.339 (2)	C33-C34	1.395 (2)
N11-C12	1.3393 (19)	C33-H33	0.9500
N11-H11	0.98 (4)	C34-C35	1.390 (2)
C12-C13	1.3813 (19)	C35-C36	1.387 (2)
C12-H12	0.9500	C35-H35	0.9500
C13-C14	1.3938 (19)	C36-H36	0.9500
C13-H13	0.9500	C41-C42	1.404 (2)
C14-C15	1.3943 (19)	C41-C411	1.418 (2)
C14-C14 ${ }^{\text {i }}$	1.487 (2)	C41-C412	1.420 (2)
C15-C16	1.3802 (19)	C42-O421	1.3480 (16)
C15-H15	0.9500	C411-N411	1.151 (2)
C16-H16	0.9500	C412-N412	1.151 (2)
N21-C26	1.335 (2)	C42-C43	1.400 (2)
N21-C22	1.3405 (19)	C43-C431	1.423 (2)
N21-H21	0.90 (8)	C43-C432	1.416 (2)
C22-C23	1.3813 (19)	C431-N431	1.152 (2)
C22-H22	0.9500	C432-N432	1.149 (2)
C23-C24	1.396 (2)	O421-C421	1.4662 (18)
C23-H23	0.9500	C421-C422	1.493 (2)
C24-C25	1.3887 (19)	C421-H41A	0.9900
C24-C34	1.4885 (18)	C421-H41B	0.9900
C25-C26	1.3826 (19)	C422-H42A	0.9800
C25-H25	0.9500	C422-H42B	0.9800
C26-H26	0.9500	C422-H42C	0.9800
N31-C36	1.339 (2)	O5A-O5B	0.963 (4)
N31-C32	1.340 (2)	O6A-06B	0.627 (9)
C32-C33	1.390 (2)	O6A-06A ${ }^{\text {ii }}$	1.78 (2)
C32-H32	0.9500		
C16-N11-C12	120.54 (12)	C32-C33-C34	119.08 (14)
C16-N11-H11	118.5 (16)	C32-C33-H33	120.5
C12-N11-H11	121.0 (17)	C34-C33-H33	120.5
N11-C12-C13	121.05 (14)	C35-C34-C33	117.49 (13)
N11-C12-H12	119.5	C35-C34-C24	121.27 (13)

C13-C12-H12	119.5
C12-C13-C14	119.33 (13)
C12-C13-H13	120.3
C14-C13-H13	120.3
C13-C14-C15	118.63 (11)
C13-C14-C14	121.13 (8)
C15-C14-C14	120.25 (9)
C16-C15-C14	119.06 (13)
C16-C15-H15	120.5
C14-C15-H15	120.5
N11-C16-C15	121.39 (13)
N11-C16-H16	119.3
C15-C16-H16	119.3
C26-N21-C22	118.63 (12)
C26-N21-H21	123 (3)
C22-N21-H21	119 (3)
N21-C22-C23	122.47 (14)
N21-C22-H22	118.8
C23-C22-H22	118.8
C22-C23-C24	119.19 (13)
C22-C23-H23	120.4
C24-C23-H23	120.4
C25-C24-C23	117.80 (12)
C25-C24-C34	120.90 (12)
C23-C24-C34	121.30 (12)
C26-C25-C24	119.55 (13)
C26-C25-H25	120.2
C24-C25-H25	120.2
N21-C26-C25	122.35 (13)
N21-C26-H26	118.8
C25-C26-H26	118.8
C36-N31-C32	116.31 (13)
N31-C32-C33	123.86 (15)
N31-C32-H32	118.1
C33-C32-H32	118.1
C16-N11-C12-C13	0.0 (2)
N11-C12-C13-C14	0.5 (2)
C12-C13-C14-C15	-0.6 (2)
C12-C13-C14-C14	179.35 (14)
C13-C14-C15-C16	0.1 (2)
C14-C14-C15-C16	-179.83 (14)
C12-N11-C16-C15	-0.5 (2)
C14-C15-C16-N11	0.4 (2)
C26-N21-C22-C23	-0.4 (2)
N21-C22-C23-C24	0.8 (2)
C22-C23-C24-C25	-0.3 (2)
C22-C23-C24-C34	-179.91 (13)

C33-C34-C24	121.24 (13)
C36-C35-C34	119.10 (14)
C36-C35-H35	120.5
C34-C35-H35	120.5
N31-C36-C35	124.16 (14)
N31-C36-H36	117.9
C35-C36-H36	117.9
C42-C41-C411	121.34 (13)
C42-C41-C412	122.53 (14)
C411-C41-C412	116.12 (14)
O421-C42-C43	114.36 (12)
O421-C42-C41	120.05 (13)
C41-C42-C43	125.51 (13)
C42-C43-C431	120.70 (13)
C42-C43-C432	122.51 (13)
C431-C43-C432	116.70 (13)
N411-C411-C41	178.83 (16)
N412-C412-C41	177.9 (2)
N431-C431-C43	176.87 (15)
N432-C432-C43	178.5 (2)
C42-O421-C421	118.36 (11)
O421-C421-C422	109.51 (13)
O421-C421-H41A	109.8
C422-C421-H41A	109.8
O421-C421-H41B	109.8
C422-C421-H41B	109.8
H41A-C421-H41B	108.2
C 421 - C 422 - H 42 A	109.5
C421-C422-H42B	109.5
H42A-C422-H42B	109.5
C421-C422-H42C	109.5
H42A-C422-H42C	109.5
H42B-C422-H42C	109.5
O6B-O6A-O6A ${ }^{\text {ii }}$	102 (2)
C25-C24-C34-C35	-150.27 (14)
C23-C24-C34-C35	29.3 (2)
C25-C24-C34-C33	29.1 (2)
C23-C24-C34-C33	-151.33 (14)
C33-C34-C35-C36	-0.1 (2)
C24-C34-C35-C36	179.35 (13)
C32-N31-C36-C35	0.6 (2)
C34-C35-C36-N31	-0.4 (2)
C411-C41-C42-O421	-14.7 (2)
C412-C41-C42-O421	165.94 (14)
C411-C41-C42-C43	161.79 (14)
C412-C41-C42-C43	-17.6 (2)

$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-0.3(2)$	$\mathrm{O} 421-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 432$	$158.96(13)$
$\mathrm{C} 34-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$179.24(13)$	$\mathrm{C} 41-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 432$	$-17.7(2)$
$\mathrm{C} 22-\mathrm{N} 21-\mathrm{C} 26-\mathrm{C} 25$	$-0.3(2)$	$\mathrm{O} 421-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 431$	$-17.47(19)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{N} 21$	$0.7(2)$	$\mathrm{C} 41-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 431$	$165.87(14)$
$\mathrm{C} 36-\mathrm{N} 31-\mathrm{C} 32-\mathrm{C} 33$	$-0.3(2)$	$\mathrm{C} 43-\mathrm{C} 42-\mathrm{O} 421-\mathrm{C} 421$	$127.63(14)$
$\mathrm{N} 31-\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34$	$-0.1(2)$	$\mathrm{C} 41-\mathrm{C} 42-\mathrm{O} 421-\mathrm{C} 421$	$-55.52(18)$
$\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 35$	$0.3(2)$	$\mathrm{C} 42-\mathrm{O} 421-\mathrm{C} 421-\mathrm{C} 422$	$-81.41(17)$
$\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 24$	$-179.10(13)$		

Symmetry codes: (i) $-x+1 / 2, y,-z+1$; (ii) $-x+3 / 2,-y+3 / 2,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 21$	$0.98(4)$	$1.69(4)$	$2.6655(18)$	$175(3)$
$\mathrm{N} 21 — \mathrm{H} 21 \cdots \mathrm{~N} 11$	$0.90(7)$	$1.78(7)$	$2.6655(18)$	$172(5)$
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{~N} 31^{\text {iii }}$	0.95	2.57	$3.4248(19)$	150
$\mathrm{C} 13 — \mathrm{H} 13 \cdots \mathrm{~N} 411^{\text {iv }}$	0.95	2.56	$3.434(2)$	154
C15—H15 $\cdots \mathrm{N} 411$	0.95	2.38	$3.249(2)$	152
C25—H25 $\cdots \mathrm{O} 5 B$	0.95	2.56	$3.355(4)$	141
C35—H35 $\cdots \mathrm{O} 6 A$	0.95	2.53	$3.474(13)$	176
C35—H35 $\cdots \mathrm{O} 6 B$	0.95	2.54	$3.484(16)$	170
C421—H41A $\cdots \mathrm{N} 431^{\mathrm{v}}$	0.99	2.61	$3.589(2)$	172

Symmetry codes: (iii) $-x+1, y+1 / 2,-z+3 / 2$; (iv) $-x+1 / 2, y+1,-z+1 ;$ (v) $-x,-y-1,-z+1$.

