CRYSTALOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 27 June 2016
Accepted 9 August 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; pentamethylcyclopentadienyl; olefin complex; cobalt.

CCDC reference: 1498272

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of $\operatorname{bis}\left(\eta^{2}\right.$-ethylene) $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)cobalt

Chandika D. Ramful, Katherine N. Robertson and Kai E. O. Ylijoki*

Department of Chemistry, Saint Mary's University, 923 Robie St., Halifax, NS, B3H 3C3, Canada. *Correspondence e-mail: kai.ylijoki@smu.ca

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$, was prepared by $\mathrm{Na} / \mathrm{Hg}$ reduction of $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}(\mu-\mathrm{Cl})_{2}\right]$ in THF under an ethylene atmosphere and crystallized from pentane at 193 K . The $\mathrm{Co}-\mathrm{C}$ (olefin) bonds have an average length of 2.022 (2) \AA, while the $\mathrm{Co}-\mathrm{C}($ pentadienyl) bonds average 2.103 (19) \AA. The olefin $\mathrm{C}=\mathrm{C}$ bonds are 1.410 (1) \AA. The dihedral angle between the planes defined by the cyclopentadienyl ligand and the two olefin ligands is $0.25(12)^{\circ}$. In the crystal, molecules are linked into chains by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

1. Chemical context

The title compound, $\mathrm{Cp} * \mathrm{Co}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\left(\mathrm{Cp}^{*}=\right.$ pentamethylcyclopentadienyl), was first reported in 1981 by Spencer and coworkers (Beevor et al., 1981) in their quest to find a more thermally labile analogue of the related $\mathrm{Cp} * \mathrm{Co}$ (dicarbonyl) complex. Since this first report, it and other olefin complexes of cobalt with $\mathrm{Cp} *$ or $\mathrm{Cp}(\mathrm{Cp}=$ cyclopentadienyl) have become important precursors for the generation of $\mathrm{Cp}^{\prime} \operatorname{CoL}(L$ $=$ olefin, pyridine, etc) and $\mathrm{Cp}^{\prime} \mathrm{Co}$ fragments used as active species in C-H bond activation (Lenges et al., 1997, 1998, 2000; Broere \& Ruijter, 2012), cyclotrimerization of alkynes (Dosa et al., 2002; Holmes et al., 2015) and C-S bond activation (Jones \& Chin, 1994; Chan et al., 2015). The utility of the $\mathrm{Cp} * \mathrm{Co}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ complex in organometallic synthesis has been explored extensively. Examples include the preparation of high-oxidation state Co^{\vee} complexes (Brookhart et al., 2000) and the preparation of $\mathrm{Cp}{ }^{*} \mathrm{Co}\left(\eta^{5}\right.$-pentadienyl) ${ }^{+}$complexes (Witherell et al., 2008; Ylijoki et al., 2009, 2015).

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. Although the cobalt atom is located on a general position, the molecule is essentially $C_{2 \mathrm{v}}$ symmetric, which agrees with the symmetry of the ${ }^{1} \mathrm{H}$ NMR data (Beevor et al.,

Figure 1
The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

1981; Nicholls \& Spencer, 1990). The Co-C(olefin) bonds have an average length of 2.022 (2) \AA, while the $\mathrm{Co}-\mathrm{C}\left(\mathrm{Cp}^{*}\right)$ bonds average 2.103 (19) A. The olefin $\mathrm{C}=\mathrm{C}$ bonds are 1.410 (1) \AA. All bond lengths are in agreement with those
reported for the related $\mathrm{Cp} *$ Cobis(trimethylvinylsilane) complex (Lenges et al., 1998). The C11-Co1-C14 and C12$\mathrm{Co} 1-\mathrm{C} 13$ bond angles average $104.64(1)^{\circ}$, indicating a parallel arrangement of the olefin ligands. The dihedral angle between the planes defined by the Cp* ligand (C1-C5) and the two olefin ligands (C11-C14) is $0.25(12)^{\circ}$.

3. Supramolecular features

In the crystal, a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is observed between one of the methyl groups and the $\mathrm{Cp} *$ ring edge of the adjacent molecule related by a 2_{1} screw axis. The shortest contact occurs between the $\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$ of the methyl group and the C 1 atom of the Cp * ring $\left[\mathrm{H} 6 \mathrm{C} \cdots \mathrm{Cl}^{\mathrm{i}} 2.79\right.$, $\mathrm{C} 6 \cdots \mathrm{C}^{1}$ 3.734 (3) $\AA, \mathrm{C} 6-\mathrm{H} 6 C \cdots 1^{\mathrm{i}} 162^{\circ}$; symmetry code (i): $-x, y-\frac{1}{2}$, $\left.-z+\frac{1}{2}\right]$, while the $\mathrm{H} 6 C \cdots \mathrm{C}$ * ring centroid distance is $3.00 \AA$. The molecules are linked through the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a helical chain parallel to the b axis (Fig. 2).

4. Database survey

The Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016) contains one additional example of a Cp*Cobis(olefin) complex: the $\mathrm{Cp} *$ Cobis(trimethylvinylsilane) complex (GIQHUJ) reported by Brookhart and coworkers (Lenges et al., 1998). The title compound is isostructural with the $\mathrm{Cp} * \mathrm{Fe}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ complex (VOGJAD; Fig. 3) reported by Fürstner et al. (2008). The iron compound crys-

Figure 2
Packing diagram of the title compound, viewed down the c axis, showing a chain formed by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Dotted lines show the shortest $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{C}$ contact involved in the interaction. Ellipsoids are drawn at the 50% probability level. The 2_{1} screw axes (green) are also shown.
tallizes in the monoclinic space group $P 2_{1} / c$ with unit-cell dimensions of $a=12.5561$ (5), $b=7.3323$ (3), $c=14.7157$ (6) \AA and $\beta=108.3520(10)^{\circ}$ at 100 K .

5. Synthesis and crystallization

The title compound was prepared by reduction of $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)_{2}(\mu-\mathrm{Cl})_{2}\right]$ (Koelle et al., 1986) under ethylene. This procedure is an adaptation of that reported by Nicholls \& Spencer (1990). All solvents were degassed by purging with nitrogen and dried by passing through activated $\mathrm{Al}_{2} \mathrm{O}_{3}$. $\mathrm{A} 1 \%$ Na amalgam was prepared by addition of $\mathrm{Na}(305 \mathrm{mg}$, 13.3 mmol) in small portions to mercury (30.5 g) in a Schlenk flask equipped with a stir bar and rubber septum under a nitrogen atmosphere. The sodium was allowed to disperse completely between additions. Gentle heating with a heat gun may be required to initiate the process after the first addition. The Na amalgam was cooled to room temperature. THF (100 ml) was added to the Schlenk flask, followed by gently bubbling ethylene through the system via a needle for 20 min to ensure saturation. Previously prepared $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)(\mu-\right.$ $\left.\mathrm{Cl})_{2}\right](2.77 \mathrm{~g}, 6.0 \mathrm{mmol})$ was removed from the glovebox and rapidly added to the Schlenk flask under a nitrogen purge. The ethylene was bubbled through the THF for an additional 10 min , then the needle was moved to a position ca 1 cm above the solution surface to prevent clogging. The reaction was stirred under ethylene for a total of 1.5 h . Over this timespan, the colour evolved from dark brown to a red/orange colour. At this point, the septum was replaced with a glass stopper and the solvent removed completely under vacuum. The evacuated flask was transferred to the glovebox where the product was taken up in pentane and filtered through Celite, taking care to separate the mercury. The solution was concentrated under vacuum in a Schlenk tube and then sealed with a greased glass stopper. The tube was removed from the glovebox and placed in a 193 K freezer overnight. The next day, the tube was removed from the freezer and immediately

Table 1
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$
M_{r}	250.25
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	125
$a, b, c(\AA)$	$12.526(2), 7.2647(13), 14.712(3)$
$\beta\left({ }^{\circ}\right)$	$107.860(2)$
$V\left(\AA^{3}\right)$	$1274.3(4)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.31
Crystal size (mm)	$0.23 \times 0.12 \times 0.10$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2009)$
	$0.524,0.746$
$T_{\text {min }}, T_{\text {max }}$	$14405,3165,2684$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.084
$R_{\text {int }}$	0.676
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.039,0.106,1.06$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	3165
No. of reflections	165
No. of parameters	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.41,-0.51$

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and Mercury (Macrae et al., 2006).
immersed in a dry ice/acetone bath and placed under inert atmosphere on the Schlenk line. The solvent was removed by canula transfer at low temperature to isolate the title compound ($1.8 \mathrm{~g}, 60 \%$) as dark-red rectangular crystals. The product was dried under vacuum and transferred to the glovebox where it was stored at 233 K . The NMR spectroscopic data is identical to that previously reported (Beevor et al., 1981; Nicholls \& Spencer, 1990).

Figure 3
Comparison diagram of the isostructural $\mathrm{Cp} * \mathrm{Co}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ (left) and $\mathrm{Cp} * \mathrm{Fe}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$ (right) unit cells, viewed down the b axis.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1. The H atoms of the methyl groups were included at geometrically idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.98 \AA$) and were treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The H atoms of the ethylene groups were located in a difference-Fourier map and their positions were freely refined, while their $U_{\text {iso }}(\mathrm{H})$ values were set to be equal to $1.2 U_{\text {eq }}$ of the parent carbon atom.

Acknowledgements

Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary's University and ACEnet (ACEnet Summer Research Fellowship to CDR) is gratefully acknowledged.

References

Beevor, R. G., Frith, S. A. \& Spencer, J. L. (1981). J. Organomet. Chem. 221, C25-C27.
Broere, D. L. J. \& Ruijter, E. (2012). Synthesis, 44, 2639-2672.
Brookhart, M., Grant, B. E., Lenges, C. P., Prosenc, M. H. \& White, P. S. (2000). Angew. Chem. Int. Ed. 39, 1676-1679.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chan, N. H., Roache, J. H. \& Jones, W. D. (2015). Inorg. Chim. Acta, 437, 36-40.
Dosa, P. I., Whitener, G. D., Vollhardt, K. P. C., Bond, A. D. \& Teat, S. J. (2002). Org. Lett. 4, 2075-2078.

Fürstner, A., Martin, R., Krause, H., Seidel, G., Goddard, R. \& Lehmann, C. W. (2008). J. Am. Chem. Soc. 130, 8773-8787.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Holmes, D., Lee, S. Y., Lotz, S. D., Nguyen, S., Schaller, G. R., Schmidt-Radde, R. H. \& Vollhardt, K. P. C. (2015). Synthesis, 47, 2038-2054.
Jones, W. D. \& Chin, R. M. (1994). J. Organomet. Chem. 472, 311-316.
Koelle, U., Fuss, B., Belting, M. \& Raabe, E. (1986). Organometallics, 5, 980-987.
Lenges, C. P., Brookhart, M. \& Grant, B. E. (1997). J. Organomet. Chem. 528, 199-203.
Lenges, C. P., White, P. S. \& Brookhart, M. (1998). J. Am. Chem. Soc. 120, 6965-6979.
Lenges, C. P., White, P. S., Marshall, W. J. \& Brookhart, M. (2000). Organometallics, 19, 1247-1254.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Nicholls, J. C. \& Spencer, J. L. (1990). Inorg. Synth. 28, 278-280.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Witherell, R. D., Ylijoki, K. E. O. \& Stryker, J. M. (2008). J. Am. Chem. Soc. 130, 2176-2177.
Ylijoki, K. E. O., Kirk, A. D., Böcklein, S., Witherell, R. D. \& Stryker, J. M. (2015). Organometallics, 34, 3335-3357.

Ylijoki, K. E. O., Witherell, R. D., Kirk, A. D., Böcklein, S., Lofstrand, V. A., McDonald, R., Ferguson, M. J. \& Stryker, J. M. (2009). Organometallics, 28, 6807-6822.

supporting information

Acta Cryst. (2016). E72, 1301-1304 [https://doi.org/10.1107/S2056989016012822]

Crystal structure of bis(η^{2}-ethylene) (η^{5}-pentamethylcyclopentadienyl)cobalt

Chandika D. Ramful, Katherine N. Robertson and Kai E. O. Ylijoki

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).
$\operatorname{Bis}\left(\eta^{2}\right.$-ethylene) (η^{5}-pentamethylcyclopentadienyl)cobalt

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$
$M_{r}=250.25$
Monoclinic, $P 2_{1} / c$
$a=12.526$ (2) \AA
$b=7.2647(13) \AA$
$c=14.712(3) \AA$
$\beta=107.860(2)^{\circ}$
$V=1274.3(4) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.524, T_{\max }=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.106$
$S=1.06$
3165 reflections
165 parameters
0 restraints

$$
F(000)=536
$$

$D_{\mathrm{x}}=1.304 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7968 reflections
$\theta=2.9-28.7^{\circ}$
$\mu=1.31 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
Irregular, orange-brown
$0.23 \times 0.12 \times 0.10 \mathrm{~mm}$

14405 measured reflections
3165 independent reflections
2684 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=28.7^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-16 \rightarrow 16$
$k=-9 \rightarrow 9$
$l=-19 \rightarrow 18$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0509 P)^{2}+0.0513 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Col	0.25940 (2)	0.31555 (3)	0.35283 (2)	0.01378 (11)
C1	0.11064 (16)	0.4768 (2)	0.31455 (13)	0.0162 (4)
C2	0.15937 (16)	0.4812 (2)	0.23996 (13)	0.0172 (4)
C3	0.27067 (17)	0.5547 (3)	0.27741 (15)	0.0206 (4)
C4	0.29067 (17)	0.5974 (3)	0.37588 (15)	0.0204 (4)
C5	0.19206 (17)	0.5474 (3)	0.39890 (14)	0.0184 (4)
C6	-0.00806 (17)	0.4243 (3)	0.30531 (16)	0.0247 (4)
H6A	-0.0577	0.5290	0.2802	0.037*
H6B	-0.0135	0.3899	0.3681	0.037*
H6C	-0.0305	0.3197	0.2615	0.037*
C7	0.10181 (19)	0.4326 (3)	0.13701 (15)	0.0276 (5)
H7A	0.0436	0.3403	0.1334	0.041*
H7B	0.1569	0.3826	0.1086	0.041*
H7C	0.0675	0.5433	0.1020	0.041*
C8	0.3474 (2)	0.5936 (3)	0.2190 (2)	0.0355 (6)
H8A	0.3266	0.7112	0.1856	0.053*
H8B	0.3408	0.4949	0.1722	0.053*
H8C	0.4250	0.6003	0.2610	0.053*
C9	0.3941 (2)	0.6847 (3)	0.4412 (2)	0.0350 (6)
H9A	0.4597	0.6437	0.4237	0.052*
H9B	0.4027	0.6487	0.5073	0.052*
H9C	0.3877	0.8189	0.4354	0.052*
C10	0.1708 (2)	0.5774 (3)	0.49277 (15)	0.0303 (5)
H10A	0.1248	0.6880	0.4889	0.045*
H10B	0.2424	0.5931	0.5432	0.045*
H10C	0.1311	0.4707	0.5075	0.045*
C11	0.39512 (19)	0.1994 (3)	0.32878 (17)	0.0231 (5)
H11A	0.436 (2)	0.292 (3)	0.3065 (18)	0.028*
H11B	0.440 (2)	0.120 (3)	0.3815 (18)	0.028*
C12	0.29566 (19)	0.1242 (3)	0.26683 (16)	0.0241 (4)
H12A	0.269 (2)	0.156 (3)	0.201 (2)	0.029*
H12B	0.273 (2)	0.005 (4)	0.2803 (18)	0.029*
C13	0.30282 (19)	0.1963 (3)	0.48330 (16)	0.0214 (4)
H13A	0.370 (2)	0.121 (3)	0.4991 (17)	0.026*
H13B	0.309 (2)	0.294 (3)	0.5351 (19)	0.026*
C14	0.20163 (19)	0.1212 (3)	0.42396 (16)	0.0234 (4)
H14A	0.132 (2)	0.154 (3)	0.4317 (19)	0.028*
H14B	0.205 (2)	0.008 (4)	0.4038 (18)	0.028*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Co1	$0.01325(17)$	$0.01235(16)$	$0.01530(17)$	$0.00046(8)$	$0.00374(11)$	$0.00026(9)$
C1	$0.0174(9)$	$0.0125(8)$	$0.0188(9)$	$0.0025(7)$	$0.0059(8)$	$0.0006(7)$
C2	$0.0205(9)$	$0.0151(9)$	$0.0163(9)$	$0.0042(7)$	$0.0060(7)$	$0.0018(7)$
C3	$0.0200(10)$	$0.0164(9)$	$0.0272(10)$	$0.0046(7)$	$0.0100(8)$	$0.0071(8)$
C4	$0.0178(9)$	$0.0124(9)$	$0.0275(10)$	$0.0001(7)$	$0.0021(8)$	$0.0011(7)$
C5	$0.0215(10)$	$0.0147(9)$	$0.0176(9)$	$0.0042(7)$	$0.0041(8)$	$-0.0002(7)$
C6	$0.0180(10)$	$0.0222(10)$	$0.0337(12)$	$0.0002(8)$	$0.0075(9)$	$0.0006(9)$
C7	$0.0335(12)$	$0.0297(11)$	$0.0173(10)$	$0.0106(9)$	$0.0043(9)$	$0.0017(8)$
C8	$0.0339(13)$	$0.0332(13)$	$0.0490(15)$	$0.0080(10)$	$0.0268(12)$	$0.0185(11)$
C9	$0.0254(12)$	$0.0168(11)$	$0.0490(16)$	$-0.0011(8)$	$-0.0088(11)$	$-0.0036(9)$
C10	$0.0424(14)$	$0.0288(11)$	$0.0194(10)$	$0.0120(10)$	$0.0092(10)$	$-0.0029(9)$
C11	$0.0208(11)$	$0.0213(10)$	$0.0304(12)$	$0.0051(8)$	$0.0128(9)$	$0.0003(8)$
C12	$0.0282(11)$	$0.0195(10)$	$0.0242(11)$	$0.0059(9)$	$0.0073(9)$	$-0.0038(8)$
C13	$0.0237(11)$	$0.0191(10)$	$0.0201(10)$	$0.0024(8)$	$0.0047(9)$	$0.0053(7)$
C14	$0.0223(11)$	$0.0200(10)$	$0.0279(11)$	$-0.0027(8)$	$0.0078(9)$	$0.0060(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

Co1-C14	2.019 (2)	C7-H7A	0.9800
Co1-C13	2.022 (2)	C7-H7B	0.9800
Col-C12	2.023 (2)	C7-H7C	0.9800
Col-C11	2.024 (2)	C8-H8A	0.9800
Co1-C5	2.0875 (19)	С8-H8B	0.9800
Col-C3	2.0894 (19)	C8-H8C	0.9800
Col-C4	2.093 (2)	C9-H9A	0.9800
Co1-C2	2.1214 (19)	C9-H9B	0.9800
Col-C1	2.1256 (18)	C9-H9C	0.9800
C1-C2	1.410 (3)	C10-H10A	0.9800
C1-C5	1.438 (3)	C10-H10B	0.9800
C1-C6	1.500 (3)	C10-H10C	0.9800
C2-C3	1.436 (3)	C11-C12	1.409 (3)
C2-C7	1.506 (3)	C11-H11A	0.97 (3)
C3-C4	1.427 (3)	C11-H11B	0.99 (3)
C3-C8	1.500 (3)	C12-H12A	0.95 (3)
C4-C5	1.425 (3)	C12-H12B	0.95 (3)
C4-C9	1.497 (3)	C13-C14	1.410 (3)
C5-C10	1.501 (3)	C13-H13A	0.98 (3)
C6-H6A	0.9800	C13-H13B	1.03 (2)
C6-H6B	0.9800	C14-H14A	0.95 (3)
C6-H6C	0.9800	C14-H14B	0.88 (3)
C14-Col-C13	40.83 (9)	C4-C5-C1	108.86 (17)
C14-Col-C12	91.64 (10)	C4-C5-C10	126.40 (19)
C13-Col-C12	104.64 (9)	C1-C5-C10	124.54 (19)
C14-Col-C11	104.65 (9)	C4-C5-Co1	70.28 (11)

C13-Col-C11	89.51 (9)
C12-Col-C11	40.74 (9)
C14-Co1-C5	98.68 (9)
C13-Co1-C5	93.17 (8)
C12-Co1-C5	161.45 (9)
C11-Col-C5	146.92 (8)
C14-Co1-C3	161.80 (9)
C13-Co1-C3	144.88 (8)
C12-Col-C3	100.05 (9)
C11-Co1-C3	93.25 (8)
C5-Co1-C3	66.51 (8)
C14-Col-C4	132.78 (9)
C13-Co1-C4	106.43 (8)
C12-Col-C4	134.99 (9)
C11-Col-C4	108.11 (8)
C5-Co1-C4	39.85 (8)
C3-Co1-C4	39.89 (8)
C14-Co1-C2	125.65 (9)
C13-Co1-C2	155.27 (8)
C12-Col-C2	95.30 (8)
C11-Co1-C2	115.21 (8)
C5-Co1-C2	66.16 (7)
C3-Co1-C2	39.86 (8)
C4-Co1-C2	66.92 (8)
C14-Co1-C1	95.63 (8)
C13-Co1-C1	116.50 (8)
C12-Col-C1	124.04 (8)
C11-Co1-C1	153.97 (8)
C5-Co1-C1	39.89 (7)
C3-Co1-C1	66.27 (7)
C4-Co1-C1	66.98 (7)
C2-Co1-C1	38.79 (7)
C2-C1-C5	107.56 (17)
C2-C1-C6	126.07 (18)
C5-C1-C6	126.15 (17)
C2-C1-Co1	70.45 (11)
C5-C1-Co1	68.63 (10)
C6- $\mathrm{C} 1-\mathrm{Co} 1$	130.39 (13)
C1-C2-C3	108.12 (17)
C1-C2-C7	126.10 (18)
C3-C2-C7	125.60 (18)
C1-C2-Co1	70.77 (11)
C3-C2-Co1	68.87 (11)
C7-C2-Co1	129.77 (13)
C4-C3-C2	108.54 (17)
C4-C3-C8	126.7 (2)
C2-C3-C8	124.6 (2)
C4-C3-Col	70.19 (11)

89.51 (9) 98.68 (9)
93.17 (8)
161.45 (9)
146.92 (8)
161.80 (9)
144.88 (8)
100.05 (9)
93.25 (8)
66.51 (8)
132.78 (9)
106.43 (8)
134.99 (9)
108.11 (8)
39.85 (8)
39.89 (8)
125.65 (9)
155.27 (8)
95.30 (8)
115.21 (8)
66.16 (7)
39.86 (8)
66.92 (8)
95.63 (8)
124.04 (8)
153.97 (8)
39.89 (7)
66.27 (7)
66.98 (7)
38.79 (7)
107.56 (17)
126.07 (18)
126.15 (17)
70.45 (11)
68.63 (10)
130.39 (13)
108.12 (17)
126.10 (18)
125.60 (18)
70.77 (11)
68.87 (11)
129.77 (13)
108.54 (17)
126.7 (2)
70.19 (11)

C1-C5-Co1	71.48 (10)
C10-C5-Co1	128.29 (14)
C1-C6-H6A	109.5
C1-C6-H6B	109.5
H6A-C6-H6B	109.5
C1-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
C2-C7-H7A	109.5
C2-C7-H7B	109.5
H7A-C7-H7B	109.5
C2-C7-H7C	109.5
H7A-C7- 77 C	109.5
H7B-C7-H7C	109.5
C3-C8-H8A	109.5
C3-C8-H8B	109.5
H8A-C8-H8B	109.5
C3-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C4-C9-H9A	109.5
C4-C9-H9B	109.5
H9A-C9-H9B	109.5
C4-C9-H9C	109.5
H9A - C9- H 9 C	109.5
H9B-C9-H9C	109.5
C5-C10-H10A	109.5
C5-C10-H10B	109.5
H10A-C10-H10B	109.5
C5-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C12-C11-Co1	69.58 (12)
C12-C11-H11A	120.6 (16)
Col-C11-H11A	109.4 (15)
C12-C11-H11B	117.1 (15)
Col-C11-H11B	114.1 (14)
H11A-C11-H11B	116 (2)
C11-C12-Co1	69.67 (12)
C11-C12-H12A	122.1 (16)
Col-C12-H12A	113.1 (15)
C11-C12-H12B	118.7 (15)
Col-C12-H12B	110.9 (15)
H12A-C12-H12B	113 (2)
C14-C13-Co1	69.45 (12)
C14-C13-H13A	118.6 (15)
Co1-C13-H13A	115.4 (14)
C14-C13-H13B	124.8 (15)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Co} 1$	$71.27(11)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{Co} 1$	$128.37(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$106.90(17)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$126.8(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$126.3(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Co} 1$	$69.87(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Co} 1$	$69.92(11)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{Co} 1$	$126.91(14)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.1(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$174.76(17)$
$\mathrm{Co} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-58.94(13)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-175.46(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-0.5(3)$
$\mathrm{Co} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$125.75(19)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Co} 1$	$58.80(12)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Co} 1$	$-126.29(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(2)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$174.89(18)$
$\mathrm{Co} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-60.58(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-175.64(18)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-0.3(3)$
$\mathrm{Co} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$124.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Co} 1$	$60.13(13)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Co} 1$	$-124.53(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.9(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$175.94(19)$
$\mathrm{Co} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-60.39(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$-177.08(18)$

Co1-C13-H13B	110.3 (13)
H13A-C13-H13B	111 (2)
C13-C14-Co1	69.72 (12)
C13-C14-H14A	121.0 (16)
Col-C14-H14A	112.1 (15)
C13-C14-H14B	116.1 (16)
Col-C14-H14B	114.5 (17)
H14A-C14-H14B	115 (2)
C8-C3-C4-C9	-2.0 (3)
Co1-C3-C4-C9	121.7 (2)
C2-C3-C4-Co1	61.26 (13)
C8-C3-C4-Co1	-123.7 (2)
C3-C4-C5-C1	-1.0 (2)
C9-C4-C5-C1	176.98 (18)
Co1-C4-C5-C1	-61.39 (13)
C3-C4-C5-C10	-175.97 (18)
C9-C4-C5-C10	2.0 (3)
Co1-C4-C5-C10	123.6 (2)
C3-C4-C5-Co1	60.42 (13)
C9-C4-C5-Co1	-121.6 (2)
C2-C1-C5-C4	0.7 (2)
C6-C1-C5-C4	-174.21 (18)
$\mathrm{Co} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	60.64 (13)
C2-C1-C5-C10	175.81 (18)
C6-C1-C5-C10	0.9 (3)
Co1-C1-C5-C10	-124.24 (19)
C2-C1-C5-Col	-59.94 (13)
C6-C1-C5-Col	125.15 (18)

