research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­aqua­nickel(II) bis­­{5-bromo-7-[(2-hy­dr­oxy­eth­yl)amino]-1-methyl-6-oxido­quinolin-1-ium-3-sulfonate} monohydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bKU Leuven – University of Leuven, Department of Chemistry, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by H. Ishida, Okayama University, Japan (Received 18 July 2016; accepted 1 August 2016; online 5 August 2016)

The asymmetric unit of the title compound, [Ni(H2O)6](C12H12BrN2O5S)2·H2O, contains a half hexa­aqua­nickel(II) complex cation with the NiII ion lying on an inversion center, one 5-bromo-7-[(2-hy­droxy­eth­yl)amino]-1-methyl-6-oxido­quinolin-1-ium-3-sulfonate (QAO) anion and a half lattice water mol­ecule on a twofold rotation axis. In the crystal, QAO anions are stacked in a column along the c axis by ππ stacking inter­actions [centroid–centroid distances 3.5922 (10)–3.7223 (11) Å]. The columns are inter­linked by hexa­aqua­nickel(II) cations through O—H⋯O and N—H⋯O hydrogen bonds.

1. Chemical context

Among heterocyclic rings, the quinoline ring system is of great importance due to its therapeutic and biological activities. Many new quinoline derivatives have been synthesized and used as new potential agents to treat HIV (Cecchetti et al., 2000[Cecchetti, V., Parolin, C., Moro, S., Pecere, T., Filipponi, E., Calistri, A., Tabarrini, O., Gatto, B., Palumbo, M., Fravolini, A. & Palu', G. (2000). J. Med. Chem. 43, 3799-3802.]; Tabarrini et al., 2008[Tabarrini, O., Massari, S., Daelemans, D., Stevens, M., Manfroni, G., Sabatini, S., Balzarini, J., Cecchetti, V., Pannecouque, C. & Fravolini, A. (2008). J. Med. Chem. 51, 5454-5458.]) and malaria (Nayyar et al., 2006[Nayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302-7310.]) or to inhibit human tumor cell growth (Rashad et al., 2010[Rashad, A. E., El-Sayed, W. A., Mohamed, A. M. & Ali, M. M. (2010). Arch. Pharm. Pharm. Med. Chem. 343, 440-448.]). Recently, a simple amino­quinoline derivative has been used in colorimetric sensors for pH (Wang et al., 2014[Wang, Q., Li, R., Qui, S., Lin, Z., Chen, G. & Luo, L. (2014). Anal. Methods, 6, 5016-5019.]). In addition, complexes of quinoline compounds with transition metals are also known to exhibit a wide variety of structures and possess profound biochemical activities which allow them to act as anti­microbial, anti-Alzheimer's (Deraeve et al., 2008[Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682-696.]) or anti­tumoral agents (Yan et al., 2012[Yan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46-51.]; Kitanovic et al., 2014[Kitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496-2507.]). Some complexes of polysubstituted quinoline compounds have also been used in dye-sensitized solar cells or in efficient organic heterojunction solar cells (Li et al., 2012[Li, J.-Y., Chen, C.-Y., Ho, W.-C., Chen, S.-H. & Wu, C.-G. (2012). Org. Lett. 14, 5420-5423.]).

[Scheme 1]

The new quinoline derivative (6-hy­droxy-3-sulfoquinolin-7-yloxy)acetic acid (Q) was synthesized from eugenol and its anti­bacterial activities have been reported (Dinh et al., 2012[Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles, 85, 627-637.]). From Q, a series of polysubstituted quinoline compounds has been synthesized, including 5-bromo-6-hy­droxy-7-[(2-hy­droxy­ethyl)­amino]-1-methyl-3-sulfo­quinoline (QAO). As polysubstituted quinoline rings are known to coordinate to metal ions, the reaction between QAO and NiCl2 was studied. The reaction product could not be characterized unambiguously by IR or 1H NMR spectroscopy. Although the obtained spectroscopic data are different from those of free QAO, indicating the presence of a deprotonated hydroxyl group, no conclusion about complex formation was possible and further investigation by X-ray diffraction was necessary.

2. Structural commentary

The structure determination shows that NiII is not complexed directly with QAO, but is present as a hexa­aqua complex, [Ni(H2O)6]2+, located about an inversion center (Fig. 1[link]). The 6-hy­droxy group as well as the 3-sulfonic acid group of QAO are deprotonated. The substituent atom Br16 deviates most [0.125 (1) Å] from the best plane through the quinoline ring system (r.m.s. deviation = 0.009 Å). The 2-hy­droxy­ethyl­amino substituent shows a +sc conformation [torsion angle N18—C19—C20—O21 = 57.0 (2)°].

[Figure 1]
Figure 1
The structures of the mol­ecular components in the title compound with ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1.]

3. Supra­molecular features

The crystal packing (Fig. 2[link]) is characterized by columns of stacking QAO mol­ecules running along the c axis through ππ stacking inter­actions between the quinoline ring systems [Cg1⋯Cg1i = 3.5922 (10) Å, Cg2⋯Cg2i = 3.5793 (11) Å, Cg1⋯Cg2ii = 3.7223 (11) Å; Cg1 and Cg2 are the centroids of the rings N1/C2–C6 and C5–C10, respectively; symmetry codes: (i) −x + 2, y, −z + [{1\over 2}]; (ii) −x + 2, −y + 1, −z + 1; Fig. 3[link]]. Within these columns additional C—H⋯Br and C—H⋯O inter­actions occur (Table 1[link] and Fig. 3[link]). The columns inter­act with the hexa­aqua­nickel(II) cations through hydrogen bonding. The lattice water mol­ecule inter­acts with two neighboring cations. One [Ni(H2O)6]2+ complex inter­acts in total with twelve QAO mol­ecules and two water mol­ecules through O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21⋯O17i 0.83 (3) 1.89 (3) 2.707 (2) 170 (3)
C11—H11B⋯Br16ii 0.98 3.02 3.987 (2) 171
C19—H19A⋯O13ii 0.99 2.59 3.360 (3) 134
N18—H18⋯O25iii 0.88 2.58 3.422 (2) 159
O23—H23A⋯O14iv 0.92 2.09 2.971 (2) 161
O23—H23B⋯O21v 0.91 1.72 2.630 (2) 172
O24—H24A⋯O13ii 0.90 1.90 2.772 (2) 162
O24—H24B⋯O17vi 0.90 1.83 2.714 (2) 165
O25—H25A⋯O15vii 0.92 2.16 2.826 (2) 129
O25—H25B⋯O26 0.91 1.86 2.755 (2) 165
O26—H26⋯O14ii 0.76 (3) 2.03 (3) 2.783 (2) 175 (3)
Symmetry codes: (i) [-x+2, y, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the a axis. Dashed lines represent hydrogen bonds.
[Figure 3]
Figure 3
Partial packing diagram of the title compound, showing ππ inter­actions between quinoline ring systems [grey dotted lines; Cg1 and Cg2 are the centroids of rings N1/C2–C6 and C5–C10, respectively; symmetry codes: (i) −x + 2, y, −z + [{1\over 2}]; (ii) −x + 2, −y + 1, −z + 1], and C—H⋯Br and C—H⋯O hydrogen bonds (red dotted lines).
[Figure 4]
Figure 4
Partial packing diagram of the title compound viewed along the a axis, showing the X—H⋯O hydrogen bonds (red dotted lines, see Table 1[link] for details) and C—H⋯Br inter­actions (brown dotted lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3-quinolinium sulfonic acids gives six hits of which four have a zwitterionic form [CSD refcodes PUSMOH (Le Thi Hong et al., 2015[Le Thi Hong, H., Nguyen Thi Ngoc, V., Tran Thi, D., Nguyen Bich, N. & Van Meervelt, L. (2015). Acta Cryst. E71, 1105-1108.]), BAPBOK (Skrzypek & Suwinska, 2002[Skrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035-2044.]), HIVHUQ (Skrzypek & Suwinska, 2007[Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363-1370.]) and QUNREY (Dinh et al., 2012[Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles, 85, 627-637.])]. The remaining two are N-methyl­ated [CSD refcode HIVJEC (Skrzypek & Suwinska, 2007[Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363-1370.])] or N-ethyl­ated [CSD refcode HIVJAY (Skrzypek & Suwinska, 2007[Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363-1370.])] and have a hydroxyl group at the 4-position.

5. Synthesis and crystallization

The quinoline derivative (6-hy­droxy-3-sulfoquinolin-7-yloxy)­acetic acid (Q) was synthesized starting from the natural product eugenol and further transformed to 5-bromo-6-hy­droxy-7-[(2-hy­droxy­ethyl)­amino]-1-methyl-3-sulfo­quinoline (QAO) according to a procedure described by Dinh et al. (2012[Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles, 85, 627-637.]).

A solution containing NiCl2·6H2O (262 mg, 1.1 mmol) in 10 mL water was added dropwise to 15 mL aqueous solution of QAO (754 mg, 2 mmol) and NH3 (pH ≃ 6–7). The obtained solution was stirred and refluxed at 313–323 K for three h. The brown precipitate was collected by filtration, washed consec­utively with ethanol and dried in vacuo. The obtained crystals were soluble in water and DMSO, but insoluble in ethanol, acetone and chloro­form. The yield was 60%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a ethanol–water (1:2 v/v) solution at room temperature.

IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3510, 3334 (νNH, νOH); 3080, 2942 (νC-H); 1588, 1540 (νC=Cring or νC=N); 1190, 1036 (νC-O, νS-O), 632 (νC-Br). 1H NMR (Bruker Avance 500 MHz, d6-DMSO): 8.34 (1H, d, J =1.0Hz, Ar), 8.27 (1H, s, Ar), 6.51 (1H, s, Ar), 4.22 (3H, s, N-CH3); 3.69 (2H, t, J = 5.5Hz); 3.45 (2H, q, J = 5.5Hz), 7.34 (NH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms for N18, O21, O23, O24, O25 and O26 were located in difference Fourier maps. The coordinates of H21 and H26 were refined freely, while the other H atoms were refined as riding. All C-bound H atoms were placed at idealized positions and refined as riding, with C—H distances of 0.95 (aromatic), 0.99 (methyl­ene) and 0.98 Å (meth­yl). For most H atoms, Uiso(H) values were assigned as 1.5Ueq of the parent atoms (1.2Ueq for H2, H4, H10, H18, H19A/B and H20A/B).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(H2O)6](C12H12BrN2O5S)2·H2O
Mr 937.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 8.7315 (4), 27.4581 (13), 13.7943 (6)
β (°) 94.061 (4)
V3) 3298.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.22
Crystal size (mm) 0.4 × 0.2 × 0.1
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.546, 0.725
No. of measured, independent and observed [I > 2σ(I)] reflections 9171, 3372, 3041
Rint 0.020
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.08
No. of reflections 3372
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.49
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexaaquanickel(II) bis{5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxidoquinoline-1-ium-3-sulfonate} monohydrate top
Crystal data top
[Ni(H2O)6](C12H12BrN2O5S)2·H2OF(000) = 1904
Mr = 937.23Dx = 1.887 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.7315 (4) ÅCell parameters from 5359 reflections
b = 27.4581 (13) Åθ = 2.8–29.0°
c = 13.7943 (6) ŵ = 3.22 mm1
β = 94.061 (4)°T = 100 K
V = 3298.9 (3) Å3Plate, orange
Z = 40.4 × 0.2 × 0.1 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3372 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3041 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 3432
Tmin = 0.546, Tmax = 0.725l = 1217
9171 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0207P)2 + 5.2045P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
3372 reflectionsΔρmax = 0.41 e Å3
235 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.90237 (18)0.43668 (6)0.37155 (11)0.0110 (3)
C20.9801 (2)0.39411 (8)0.37514 (14)0.0132 (4)
H20.92540.36420.37390.016*
C31.1379 (2)0.39384 (8)0.38056 (14)0.0131 (4)
C41.2182 (2)0.43770 (8)0.38321 (13)0.0134 (4)
H41.32730.43740.38770.016*
C51.1403 (2)0.48189 (8)0.37930 (13)0.0108 (4)
C60.9750 (2)0.48132 (8)0.37471 (13)0.0104 (4)
C71.2125 (2)0.52820 (8)0.38177 (14)0.0119 (4)
C81.1373 (2)0.57248 (8)0.38109 (13)0.0122 (4)
C90.9683 (2)0.56934 (8)0.37556 (13)0.0110 (4)
C100.8918 (2)0.52466 (8)0.37301 (13)0.0113 (4)
H100.78280.52380.37010.014*
C110.7332 (2)0.43449 (8)0.36504 (14)0.0128 (4)
H11A0.69230.45430.31010.019*
H11B0.69500.44700.42530.019*
H11C0.69990.40060.35530.019*
S121.23734 (6)0.33760 (2)0.37750 (4)0.01589 (12)
O131.3871 (2)0.34725 (7)0.42443 (13)0.0360 (5)
O141.24175 (17)0.32666 (6)0.27422 (10)0.0200 (3)
O151.1481 (2)0.30278 (6)0.42858 (12)0.0323 (4)
Br161.42949 (2)0.53172 (2)0.38060 (2)0.01722 (7)
O171.19947 (16)0.61482 (5)0.38363 (10)0.0154 (3)
N180.89569 (19)0.61215 (7)0.37205 (12)0.0136 (4)
H180.95060.63910.37300.016*
C190.7298 (2)0.61683 (8)0.35993 (15)0.0139 (4)
H19A0.68460.60700.42080.017*
H19B0.68920.59470.30750.017*
C200.6831 (2)0.66848 (8)0.33499 (15)0.0162 (4)
H20A0.56990.67040.32480.019*
H20B0.71590.69020.38990.019*
O210.75070 (19)0.68455 (6)0.24924 (11)0.0229 (4)
H210.760 (3)0.6610 (11)0.213 (2)0.034*
Ni220.25000.75000.50000.01747 (10)
O230.35588 (18)0.75193 (6)0.37316 (12)0.0273 (4)
H23A0.33040.77990.33920.041*
H23B0.32700.72700.33220.041*
O240.31091 (17)0.67782 (6)0.52289 (12)0.0237 (4)
H24A0.41360.67480.53150.036*
H24B0.28160.66040.46950.036*
O250.44976 (16)0.77588 (5)0.57273 (12)0.0196 (3)
H25A0.53370.76620.54140.029*
H25B0.46800.76610.63570.029*
O260.50000.73024 (9)0.75000.0218 (5)
H260.570 (3)0.7142 (10)0.746 (2)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0109 (8)0.0116 (9)0.0102 (8)0.0017 (7)0.0001 (6)0.0009 (7)
C20.0169 (10)0.0120 (10)0.0106 (9)0.0023 (8)0.0005 (8)0.0001 (8)
C30.0151 (10)0.0137 (11)0.0102 (9)0.0061 (8)0.0001 (7)0.0021 (8)
C40.0125 (10)0.0178 (11)0.0098 (9)0.0049 (8)0.0007 (7)0.0004 (8)
C50.0103 (9)0.0153 (11)0.0070 (8)0.0009 (8)0.0010 (7)0.0001 (8)
C60.0118 (9)0.0132 (11)0.0064 (8)0.0002 (8)0.0014 (7)0.0001 (8)
C70.0075 (9)0.0184 (11)0.0099 (9)0.0003 (8)0.0009 (7)0.0005 (8)
C80.0109 (10)0.0178 (11)0.0078 (9)0.0010 (8)0.0003 (7)0.0001 (8)
C90.0111 (10)0.0142 (11)0.0077 (9)0.0018 (8)0.0003 (7)0.0011 (8)
C100.0079 (9)0.0150 (11)0.0111 (9)0.0017 (8)0.0007 (7)0.0001 (8)
C110.0079 (9)0.0140 (11)0.0166 (10)0.0003 (8)0.0005 (7)0.0003 (8)
S120.0176 (3)0.0156 (3)0.0141 (2)0.0096 (2)0.00095 (19)0.0023 (2)
O130.0268 (9)0.0349 (11)0.0431 (11)0.0212 (8)0.0198 (8)0.0210 (9)
O140.0243 (8)0.0199 (9)0.0156 (7)0.0105 (7)0.0008 (6)0.0038 (6)
O150.0481 (11)0.0194 (9)0.0315 (9)0.0170 (8)0.0186 (8)0.0112 (8)
Br160.00740 (10)0.02418 (13)0.02029 (11)0.00080 (8)0.00253 (7)0.00294 (9)
O170.0144 (7)0.0140 (8)0.0177 (7)0.0023 (6)0.0002 (6)0.0003 (6)
N180.0113 (8)0.0107 (9)0.0189 (9)0.0004 (7)0.0006 (7)0.0002 (7)
C190.0094 (10)0.0138 (11)0.0184 (10)0.0013 (8)0.0001 (8)0.0003 (9)
C200.0162 (10)0.0160 (11)0.0163 (10)0.0034 (9)0.0004 (8)0.0003 (9)
O210.0355 (9)0.0159 (9)0.0179 (8)0.0045 (7)0.0053 (7)0.0017 (7)
Ni220.00750 (18)0.0097 (2)0.0349 (2)0.00015 (14)0.00080 (16)0.00713 (17)
O230.0182 (8)0.0217 (9)0.0422 (10)0.0036 (7)0.0036 (7)0.0123 (8)
O240.0136 (7)0.0140 (8)0.0422 (10)0.0032 (6)0.0073 (7)0.0106 (7)
O250.0107 (7)0.0148 (8)0.0331 (9)0.0003 (6)0.0004 (6)0.0042 (7)
O260.0133 (11)0.0133 (12)0.0403 (14)0.0000.0117 (10)0.000
Geometric parameters (Å, º) top
N1—C21.351 (3)S12—O151.4474 (18)
N1—C61.380 (3)N18—H180.8806
N1—C111.475 (2)N18—C191.452 (2)
C2—H20.9500C19—H19A0.9900
C2—C31.374 (3)C19—H19B0.9900
C3—C41.393 (3)C19—C201.509 (3)
C3—S121.774 (2)C20—H20A0.9900
C4—H40.9500C20—H20B0.9900
C4—C51.390 (3)C20—O211.429 (3)
C5—C61.440 (3)O21—H210.83 (3)
C5—C71.418 (3)Ni22—O23i2.0366 (17)
C6—C101.394 (3)Ni22—O232.0366 (17)
C7—C81.381 (3)Ni22—O242.0704 (15)
C7—Br161.8983 (19)Ni22—O24i2.0704 (15)
C8—C91.474 (3)Ni22—O252.0750 (14)
C8—O171.283 (3)Ni22—O25i2.0750 (14)
C9—C101.397 (3)O23—H23A0.9191
C9—N181.335 (3)O23—H23B0.9115
C10—H100.9500O24—H24A0.9003
C11—H11A0.9800O24—H24B0.9001
C11—H11B0.9800O25—H25A0.9163
C11—H11C0.9800O25—H25B0.9128
S12—O131.4420 (17)O26—H260.76 (3)
S12—O141.4592 (15)
C2—N1—C6122.61 (17)O15—S12—O14113.06 (10)
C2—N1—C11117.74 (18)C9—N18—H18118.8
C6—N1—C11119.64 (17)C9—N18—C19123.35 (18)
N1—C2—H2119.8C19—N18—H18117.7
N1—C2—C3120.4 (2)N18—C19—H19A109.4
C3—C2—H2119.8N18—C19—H19B109.4
C2—C3—C4119.84 (19)N18—C19—C20111.15 (17)
C2—C3—S12119.61 (17)H19A—C19—H19B108.0
C4—C3—S12120.46 (15)C20—C19—H19A109.4
C3—C4—H4119.7C20—C19—H19B109.4
C5—C4—C3120.66 (19)C19—C20—H20A109.4
C5—C4—H4119.7C19—C20—H20B109.4
C4—C5—C6118.55 (19)H20A—C20—H20B108.0
C4—C5—C7124.51 (18)O21—C20—C19111.00 (17)
C7—C5—C6116.92 (18)O21—C20—H20A109.4
N1—C6—C5117.92 (18)O21—C20—H20B109.4
N1—C6—C10121.32 (18)C20—O21—H21109 (2)
C10—C6—C5120.76 (19)O23i—Ni22—O23180.00 (4)
C5—C7—Br16119.16 (15)O23i—Ni22—O2488.36 (7)
C8—C7—C5125.37 (18)O23—Ni22—O24i88.36 (7)
C8—C7—Br16115.42 (15)O23—Ni22—O2491.64 (7)
C7—C8—C9114.98 (19)O23i—Ni22—O24i91.64 (7)
O17—C8—C7126.71 (18)O23i—Ni22—O25i89.39 (6)
O17—C8—C9118.31 (18)O23—Ni22—O2589.39 (6)
C10—C9—C8121.87 (19)O23i—Ni22—O2590.61 (6)
N18—C9—C8114.94 (18)O23—Ni22—O25i90.61 (6)
N18—C9—C10123.18 (18)O24—Ni22—O24i180.0
C6—C10—C9120.10 (18)O24i—Ni22—O2586.79 (6)
C6—C10—H10120.0O24—Ni22—O2593.21 (6)
C9—C10—H10120.0O24—Ni22—O25i86.79 (6)
N1—C11—H11A109.5O24i—Ni22—O25i93.21 (6)
N1—C11—H11B109.5O25i—Ni22—O25180.0
N1—C11—H11C109.5Ni22—O23—H23A110.6
H11A—C11—H11B109.5Ni22—O23—H23B113.0
H11A—C11—H11C109.5H23A—O23—H23B105.3
H11B—C11—H11C109.5Ni22—O24—H24A110.6
O13—S12—C3105.03 (10)Ni22—O24—H24B109.2
O13—S12—O14112.98 (10)H24A—O24—H24B106.3
O13—S12—O15113.89 (12)Ni22—O25—H25A110.3
O14—S12—C3104.43 (9)Ni22—O25—H25B116.3
O15—S12—C3106.39 (10)H25A—O25—H25B105.9
N1—C2—C3—C40.5 (3)C6—N1—C2—C31.1 (3)
N1—C2—C3—S12176.06 (14)C6—C5—C7—C80.7 (3)
N1—C6—C10—C9179.52 (17)C6—C5—C7—Br16176.56 (13)
C2—N1—C6—C51.8 (3)C7—C5—C6—N1179.55 (16)
C2—N1—C6—C10178.59 (17)C7—C5—C6—C100.1 (3)
C2—C3—C4—C50.7 (3)C7—C8—C9—C101.1 (3)
C2—C3—S12—O13156.31 (17)C7—C8—C9—N18178.14 (17)
C2—C3—S12—O1484.58 (17)C8—C9—C10—C60.6 (3)
C2—C3—S12—O1535.24 (19)C8—C9—N18—C19175.77 (17)
C3—C4—C5—C61.4 (3)C9—N18—C19—C20166.55 (18)
C3—C4—C5—C7179.87 (18)C10—C9—N18—C193.5 (3)
C4—C3—S12—O1327.10 (19)C11—N1—C2—C3179.54 (17)
C4—C3—S12—O1492.01 (17)C11—N1—C6—C5178.90 (16)
C4—C3—S12—O15148.17 (17)C11—N1—C6—C100.8 (3)
C4—C5—C6—N11.9 (3)S12—C3—C4—C5175.84 (14)
C4—C5—C6—C10178.47 (17)Br16—C7—C8—C9176.19 (13)
C4—C5—C7—C8177.81 (18)Br16—C7—C8—O173.0 (3)
C4—C5—C7—Br165.0 (3)O17—C8—C9—C10179.67 (17)
C5—C6—C10—C90.1 (3)O17—C8—C9—N181.1 (3)
C5—C7—C8—C91.1 (3)N18—C9—C10—C6178.53 (17)
C5—C7—C8—O17179.72 (18)N18—C19—C20—O2157.0 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O17ii0.83 (3)1.89 (3)2.707 (2)170 (3)
C11—H11B···Br16iii0.983.023.987 (2)171
C19—H19A···O13iii0.992.593.360 (3)134
N18—H18···O25iv0.882.583.422 (2)159
O23—H23A···O14v0.922.092.971 (2)161
O23—H23B···O21vi0.911.722.630 (2)172
O24—H24A···O13iii0.901.902.772 (2)162
O24—H24B···O17vii0.901.832.714 (2)165
O25—H25A···O15viii0.922.162.826 (2)129
O25—H25B···O260.911.862.755 (2)165
O26—H26···O14iii0.76 (3)2.03 (3)2.783 (2)175 (3)
Symmetry codes: (ii) x+2, y, z+1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y+3/2, z+1; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y, z+1/2; (vii) x1, y, z; (viii) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank VLIR–UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationCecchetti, V., Parolin, C., Moro, S., Pecere, T., Filipponi, E., Calistri, A., Tabarrini, O., Gatto, B., Palumbo, M., Fravolini, A. & Palu', G. (2000). J. Med. Chem. 43, 3799–3802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles, 85, 627–637.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496–2507.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLe Thi Hong, H., Nguyen Thi Ngoc, V., Tran Thi, D., Nguyen Bich, N. & Van Meervelt, L. (2015). Acta Cryst. E71, 1105–1108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-Y., Chen, C.-Y., Ho, W.-C., Chen, S.-H. & Wu, C.-G. (2012). Org. Lett. 14, 5420–5423.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302–7310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRashad, A. E., El-Sayed, W. A., Mohamed, A. M. & Ali, M. M. (2010). Arch. Pharm. Pharm. Med. Chem. 343, 440–448.  Web of Science CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035–2044.  CSD CrossRef CAS Google Scholar
First citationSkrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363–1370.  CSD CrossRef CAS Google Scholar
First citationTabarrini, O., Massari, S., Daelemans, D., Stevens, M., Manfroni, G., Sabatini, S., Balzarini, J., Cecchetti, V., Pannecouque, C. & Fravolini, A. (2008). J. Med. Chem. 51, 5454–5458.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Q., Li, R., Qui, S., Lin, Z., Chen, G. & Luo, L. (2014). Anal. Methods, 6, 5016–5019.  Web of Science CrossRef CAS Google Scholar
First citationYan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46–51.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds