

ISSN 2056-9890

Received 31 July 2016 Accepted 9 August 2016

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; cadmium(II); sevenfold coordination; pentagonal bipyramid; two-dimensional coordination polymer; network; hydrogen bonding.

CCDC reference: 1498382

Supporting information: this article has supporting information at journals.iucr.org/e

OFEN O ACCESS

A two-dimensional Cd^{II} coordination polymer: poly[diaqua[μ_3 -5,6-bis(pyridin-2-yl)pyrazine-2,3dicarboxylato- $\kappa^5 O^2$: O^3 : O^3 , N^4 , N^5]cadmium]

Monserrat Alfonso^a and Helen Stoeckli-Evans^{b*}

^aInstitute of Chemistry, University of Neuchâtel, Av Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

The reaction of 5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, $[Cd(C_{16}H_8N_4O_4)(H_2O)_2]_n$. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxylate O atoms, one of which bridges two Cd^{II} atoms to form a Cd_2O_2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N',O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of $O-H \cdots O$ hydrogen bonds present, involving the water molecules and the carboxylate O atoms. There are also $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds present. In the crystal, the polymer networks lie parallel to the *bc* plane. They are aligned back-to-back along the *a* axis with the non-coordinating pyridine rings directed into the space between the networks.

1. Chemical context

The crystal structure of the ligand 5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylic acid (H₂L) and the chloride, perchlorate and hexafluorophosphate salts, have been reported on previously (Alfonso et al., 2001). Interestingly, the ligand crystallizes as a zwitterion in all four compounds. The reaction of H₂L with CuBr₂ (ratio 1:2) leads to the formation of a onedimensional coordination polymer. On exposure to air, the compound loses the solvent of crystallization and four water molecules, transforming into a two-dimensional coordination polymer (Neels et al., 2003). In both cases, there are two crystallographically independent fivefold-coordinated copper atoms present and they all have almost perfect square-pyramidal geometry. Recently, we have reported on the crystal structures of the dimethyl and diethyl ester of the H₂L ligand (Alfonso & Stoeckli-Evans, 2016a). The reaction of the dimethyl ester of H_2L with CdCl₂ and HgCl₂ leads to the formation of isotypic one-dimensional coordination polymers (Alfonso & Stoeckli-Evans, 2016b). There the ligand coordinates to the metal atom via the pyridine N atoms, and they have MN₂Cl₂ fourfold bisphenoidal coordination geometry.

2. Structural commentary

The reaction of 5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer (Fig. 1). Here the

research communications

Selected geometric p	parameters (Å, °).	
Cd1-O1	2.371 (4)	Cd1-N3	2.430 (4
Cd1-O3 ⁱ	2.377 (4)	Cd1 - O1W	2.301 (4
Cd1-N1	2.418 (4)	Cd1 - O2W	2.317 (3
Cd1-O1 ⁱⁱ	2.427 (4)		
Cd1-O1-Cd1 ⁱⁱ	107.74 (13)	O1W-Cd1-N1	91.62 (16
$O1W-Cd1-O3^{i}$	157.41 (15)	O1W-Cd1-N3	87.87 (15
$O1-Cd1-O1^{ii}$	72.26 (13)	$O1W-Cd1-O1^{ii}$	76.59 (15
O1-Cd1-N1	67.98 (13)	$O2W-Cd1-O3^{i}$	87.05 (13
N1-Cd1-N3	65.40 (14)	$O1-Cd1-O3^{i}$	80.38 (12
O2W-Cd1-N3	78.01 (13)	O3 ⁱ -Cd1-N1	91.67 (13
$O2W-Cd1-O1^{ii}$	80.65 (13)	$O3^i - Cd1 - O1^{ii}$	86.60 (12
O1W-Cd1-O2W	104.67 (16)	O3 ⁱ -Cd1-N3	113.74 (13
O1W-Cd1-O1	80.18 (15)		

Table 1

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

metal atom is sevenfold coordinated by one pyrazine N atom (N1), one pyridine N atom (N3) and two water O atoms (O1W and O2W), and by two carboxylate O atoms (O1 and O3). Atom O1 bridges two cadmium atoms to form a Cd₂O₂ unit situated about a centre of inversion; the Cd1…Cd1ⁱⁱ distance is 3.8753 (8) Å, while the Cd–O1 and Cd–O1ⁱⁱ bonds are, respectively, 2.371 (4) and 2.427 (4) Å, and the Cd1- $O1 \cdots Cd1^{ii}$ and $O1 - Cd \cdots O1^{ii}$ bond angles are 107.74 (13) and 72.26 $(13)^{\circ}$, respectively. As can be seen in Fig. 1, the ligand coordinates to the cadmium atom in a tridentate (N,N,O) and a monodentate manner (O). It can be seen from the carboxylate C-O bond lengths [C15-O1 and C15-O2 are 1.255 (6) and 1.253 (6) Å, respectively, while C16–O3 and C16–O4 are 1.258 (6) and 1.227 (6) Å, respectively] that the negative charge is distributed over the O-C-O group for the first, but located on atom O3 for the second.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1W-H1WA\cdots O3^{iii}$	0.82 (2)	2.22 (3)	2.974 (6)	152 (5)
$O1W-H1WB\cdots O2^{iv}$ $O2W-H2WA\cdots O4^{i}$	0.84(2) 0.85(2)	2.05 (4) 1.88 (3)	2.805 (6) 2.630 (6)	150 (7) 146 (5)
$O2W - H2WB \cdot \cdot \cdot O2^{ii}$	0.85 (2)	1.88 (2)	2.692 (5)	159 (5)
$C9 = H9 \cdots O3^{v}$ $C14 = H14 \cdots N4^{vi}$	0.94 0.94	2.52 2.62	3.245 (6) 3.372 (8)	134 137

codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) Symmetry $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y + 1, z; (v) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (vi) -x, -y + 1, -z + 1.

Selected bond lengths and angles involving atom Cd1 are given in Table 1. The Cd-N_{pyrazine} (Cd1-N1) and the Cd-N_{pvridine} (Cd1-N3) bond lengths are the same within 3 s.u.s. [2.418(4) cf. 2.430(4) Å]. The Cd-O_{water} bond lengths [2.301 (4) and 2.317 (3) Å] are shorter than the Cd-O_{carboxylate} bond lengths [2.371 (4) and 2.377 (4) Å], while the bridging $Cd1 \cdots O1^{ii}$ distance is the longest at 2.427 (4) Å. The geometry of the sevenfold-coordinated cadmium atom can best be described as a distorted pentagonal bipyramid, with atoms O1,N1,N3,O2W,O1ⁱⁱ in the basal plane and atoms O1W,O3ⁱ in the apical positions with an O1W-Cd1-O3ⁱ bond angle of $157.41 (15)^{\circ}$ (Table 1).

The coordinated pyridine ring (N3/C5-C9) and the carboxylate group (O1/O2/C15) are inclined to the pyrazine ring (r.m.s. deviation = 0.03 Å) by 16.9 (2) and 1.9 (6)°, respectively. The non-coordinating pyridine ring (N4/C10-C14) and the second coordinating carboxylate group (O3/O4/ C16) are inclined to the pyrazine ring by 60.2 (3) and $89.1 (11)^{\circ}$, respectively. The two pyridine rings are inclined to one another by 75.4 (3) $^{\circ}$.

A view of the molecular structure of the title coordination polymer, showing the atom labelling [symmetry codes: (i) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$]. Displacement ellipsoids are drawn at the 50% probability level.

research communications

A view along the a axis of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.

3. Supramolecular features

In the crystal, the two-dimensional polymer networks lie parallel to the *bc* plane, as illustrated in Figs. 2 and 3. The networks are aligned back-to-back along the *a* axis, with the non-coordinating pyridine rings directed into the space between the networks (Fig. 4). Within the networks there are a number of $O-H \cdots O$ hydrogen bonds present, involving the water molecules and the carboxylate O atoms (Table 2 and Fig. 5). There are also $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds present within the network (Table 2).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom *et al.*, 2016) for the ligand H_2L gave eight hits. All of these structures have been mentioned in the *Chemical context* above. A search for cadmium complexes with the Cd atom coordinated by two N

Figure 3

A view along the c axis of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.

Figure 4

A view in projection down the c axis of the crystal packing of the title twodimensional coordination polymer. The C-bound H atoms have been omitted for clarity.

atoms, two water molecules and three O atoms, two of which are carboxylate O atoms, gave seven hits. One of these compounds, catena-[$(\mu_2$ -1,1'-(butane-1,4-diyl)bis(5,6-dimethyl-1*H*-benzimidazole)]bis(μ_2 -pyridine-2,6-dicarboxylato)tetraaquadicadmium dihydrate) [CSD refcode: FAVHIV; Jiao *et al.*, 2012] has a Cd₂O₂ unit formed about an inversion centre as in the title compound. In FAVHIV, the Cd···Cd distance and the angles Cd-O···Cd and O-Cd···O are, respectively, 4.0408 (5) Å, and 111.05 (8) and 68.95 (7)°, compared to

A view normal to plane $(1\overline{10})$ of the O-H···O hydrogen bonds (dashed lines; see Table 2) within the polymer network, involving the carboxylate O atoms (red balls) and the coordinating water molecules. The C atoms and C-bound H atoms of the ligand have been omitted for clarity.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	$[Cd(C_{16}H_8N_4O_4)(H_2O)_2]$
$M_{ m r}$	468.70
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	223
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.6854 (12), 7.0799 (6), 13.4537 (10)
β (°)	96.236 (9)
$V(Å^3)$	1579.9 (2)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.43
Crystal size (mm)	$0.30 \times 0.20 \times 0.01$
Data collection	
Diffractometer	Stoe IPDS 1 image plate
Absorption correction	Multi-scan (MULABS; Spek, 2009)
T_{\min}, T_{\max}	0.900, 1.00
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11782, 3056, 1781
R _{int}	0.129
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.038 0.063 0.75
No of reflections	3056
No. of parameters	257
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.53, -0.59

Computer programs: *EXPOSE*, *CELL* and *INTEGRATE* in *IPDS-I* (Stoe & Cie, 2004), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

3.8753 (8) Å, and 107.74 (13) and 72.26 (13) °, respectively, in the title compound. However, such an arrangement is extremely common for cadmium(II) complexes (over 600 hits in the CSD) and the bond lengths and angles vary enormously; for example the Cd···Cd distance varies from *ca* 3.0 to 4.3 Å, the Cd–O···Cd angle varies from *ca* 82 to 119° and the O–Cd···O angle from *ca* 60 to 90°.

5. Synthesis and crystallization

The synthesis of the ligand 5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylic acid (H_2L) has been reported previously (Alfonso *et al.*, 2001).

Synthesis of the title coordination polymer: H_2L (32 mg, 0.10 mmol) was added to an aqueous solution (25 ml) of CdCl₂·2H₂O (22 mg, 0.10 mmol). The colourless solution immediately obtained was stirred for 1 h at room temperature. The reaction mixture was then filtered and the filtrate allowed

to evaporate slowly at room temperature. After two weeks, small colourless plate-like crystals of the title compound were obtained, separated by filtration and dried in air (yield: 40 mg, 42.5%). Selected IR bands (KBr pellet, cm⁻¹): v 1630(m), 1598(vs), 1533(m), 1469(m), 1442(m), 1414(m), 1362(s), 1301(m), 1273(m), 1176(m), 1165(m), 1119(m), 1043(w), 992(w), 829(m), 789(m), 759(m), 675(m), 562(m), 513(m). Analysis for C₁₆H₁₂N₄O₆Cd (468.71): calculated: C 41.00, H 2.58, N 11.95%; found: C 40.70, H 2.43, N 11.80%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The water H atoms were located in a difference Fourier map and refined with distance restraints: O-H = 0.84 (2) and $H \cdots H = 1.35$ (2) Å, with $U_{iso}(H) =$ $1.5U_{eq}(O)$. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.94 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. The best crystal available was extremely thin (0.01 mm) and as the shape of the crystal was irregular it was not possible to carry out a numerical absorption correction. The displacement ellipsoids for two carboxylate O atoms (O2 and O4) and a water O atom (OW1) are large but attempts to split these atoms were not successful.

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

- Alfonso, M. & Stoeckli-Evans, H. (2016a). Acta Cryst. E72, 233-237.
- Alfonso, M. & Stoeckli-Evans, H. (2016b). Acta Cryst. E72, 1214– 1218.
- Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184–1188.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jiao, C., Geng, J., He, C. & Cui, G. (2012). J. Mol. Struct. 1020, 134– 141.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Neels, A., Alfonso, M., Mantero, D. G. & Stoeckli-Evans, H. (2003). *Chimia*, 57, 619–622.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.

supporting information

Acta Cryst. (2016). E72, 1297-1300 [https://doi.org/10.1107/S2056989016012858]

A two-dimensional Cd^{II} coordination polymer: poly[diaqua[μ_3 -5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato- $\kappa^5 O^2$: O^3 : O^3 , N^4 , N^5]cadmium]

Monserrat Alfonso and Helen Stoeckli-Evans

Computing details

Data collection: *EXPOSE* in *IPDS*-I (Stoe & Cie, 2004); cell refinement: *CELL* in *IPDS*-I (Stoe & Cie, 2004); data reduction: *INTEGRATE* in *IPDS*-I (Stoe & Cie, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Poly[diaqua[μ_3 -5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato- κ^5O^2 : O^3 : O^3 , N^4 , N^5]cadmium]

Crystal data

 $\begin{bmatrix} Cd(C_{16}H_8N_4O_4)(H_2O)_2 \end{bmatrix} \\ M_r = 468.70 \\ Monoclinic, P2_1/c \\ a = 16.6854 (12) Å \\ b = 7.0799 (6) Å \\ c = 13.4537 (10) Å \\ \beta = 96.236 (9)^{\circ} \\ V = 1579.9 (2) Å^3 \\ Z = 4 \end{bmatrix}$

Data collection

Stoe IPDS 1 image plate diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator φ rotation scans Absorption correction: multi-scan (MULABS; Spek, 2009) $T_{\min} = 0.900, T_{\max} = 1.00$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.063$ S = 0.753056 reflections 257 parameters 6 restraints F(000) = 928 $D_x = 1.970 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5000 reflections $\theta = 1.7-26.1^{\circ}$ $\mu = 1.43 \text{ mm}^{-1}$ T = 223 KPlate, colourless $0.30 \times 0.20 \times 0.01 \text{ mm}$

11782 measured reflections 3056 independent reflections 1781 reflections with $I > 2\sigma(I)$ $R_{int} = 0.129$ $\theta_{max} = 25.9^\circ, \theta_{min} = 2.5^\circ$ $h = -20 \rightarrow 20$ $k = -8 \rightarrow 8$ $l = -16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0062P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.59 \text{ e} \text{ Å}^{-3}$

Extinction correction: SHELXL2014 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00055 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	х	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.39911 (3)	0.63678 (6)	0.47689 (3)	0.01231 (13)	
01	0.4663 (2)	0.3932 (6)	0.5741 (2)	0.0160 (9)	
O2	0.4579 (2)	0.1638 (6)	0.6875 (3)	0.0266 (10)	
O3	0.3636 (2)	0.1259 (6)	0.8712 (2)	0.0207 (9)	
O4	0.3010 (3)	-0.0413 (6)	0.7454 (3)	0.0436 (14)	
O1W	0.4770 (3)	0.8162 (6)	0.5928 (3)	0.0412 (13)	
H1WA	0.520 (2)	0.780 (9)	0.623 (4)	0.062*	
H1WB	0.457 (3)	0.898 (7)	0.628 (4)	0.062*	
O2W	0.3837 (2)	0.8219 (5)	0.3341 (2)	0.0189 (10)	
H2WA	0.355 (2)	0.766 (7)	0.287 (3)	0.028*	
H2WB	0.4295 (16)	0.833 (8)	0.312 (3)	0.028*	
N1	0.3193 (3)	0.5188 (6)	0.6031 (3)	0.0130 (10)	
N2	0.2284 (3)	0.3495 (7)	0.7347 (3)	0.0156 (10)	
N3	0.2853 (2)	0.8351 (6)	0.5067 (3)	0.0131 (10)	
N4	0.0603 (3)	0.5341 (6)	0.6152 (3)	0.0222 (12)	
C1	0.2472 (3)	0.5920 (7)	0.6161 (3)	0.0096 (12)	
C2	0.2003 (3)	0.4982 (7)	0.6816 (4)	0.0128 (13)	
C3	0.3478 (3)	0.3673 (9)	0.6546 (3)	0.0100 (10)	
C4	0.3025 (3)	0.2842 (7)	0.7250 (4)	0.0102 (13)	
C5	0.2290 (3)	0.7774 (7)	0.5650 (4)	0.0122 (13)	
C6	0.1657 (3)	0.8955 (8)	0.5818 (3)	0.0186 (14)	
H6	0.1260	0.8536	0.6211	0.022*	
C7	0.1608 (4)	1.0747 (7)	0.5410 (4)	0.0196 (14)	
H7	0.1174	1.1544	0.5516	0.024*	
C8	0.2194 (3)	1.1351 (9)	0.4850 (3)	0.0166 (11)	
H8	0.2175	1.2573	0.4576	0.020*	
C9	0.2815 (3)	1.0138 (7)	0.4696 (4)	0.0156 (13)	
Н9	0.3224	1.0560	0.4322	0.019*	
C10	0.1146 (4)	0.5462 (7)	0.6958 (4)	0.0179 (14)	
C11	0.0946 (4)	0.5917 (8)	0.7907 (4)	0.0249 (15)	
H11	0.1347	0.6018	0.8453	0.030*	
C12	0.0141 (4)	0.6216 (10)	0.8025 (4)	0.0285 (14)	
H12	-0.0016	0.6492	0.8660	0.034*	
C13	-0.0426 (4)	0.6106 (9)	0.7204 (5)	0.0333 (16)	
H13	-0.0974	0.6328	0.7263	0.040*	

supporting information

C14	-0.0169 (4)	0.5661 (8)	0.6298 (5)	0.0294 (17)	
H14	-0.0560	0.5574	0.5741	0.035*	
C15	0.4309 (3)	0.3025 (7)	0.6364 (4)	0.0140 (14)	
C16	0.3259 (3)	0.1061 (8)	0.7857 (4)	0.0146 (13)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cd1	0.0136 (2)	0.01131 (19)	0.01235 (19)	0.0013 (3)	0.00290 (13)	0.0012 (2)
01	0.015 (2)	0.019 (2)	0.0148 (18)	-0.001 (2)	0.0050 (16)	0.0052 (18)
O2	0.023 (2)	0.026 (3)	0.034 (2)	0.013 (2)	0.0159 (18)	0.021 (2)
O3	0.032 (2)	0.019 (2)	0.0108 (18)	0.011 (2)	0.0008 (17)	-0.002 (2)
O4	0.064 (4)	0.015 (2)	0.042 (3)	-0.011 (2)	-0.039 (3)	0.003 (2)
O1W	0.029 (3)	0.032 (3)	0.057 (3)	0.010(2)	-0.018 (2)	-0.031 (2)
O2W	0.017 (2)	0.023 (3)	0.017 (2)	-0.003 (2)	-0.0011 (17)	0.0062 (17)
N1	0.012 (3)	0.017 (3)	0.010 (2)	0.003 (2)	0.003 (2)	-0.0037 (19)
N2	0.018 (3)	0.015 (2)	0.014 (2)	0.005 (3)	-0.0004 (19)	0.002 (2)
N3	0.014 (3)	0.007 (3)	0.018 (2)	0.002 (2)	0.0006 (19)	0.0031 (19)
N4	0.012 (3)	0.027 (3)	0.028 (3)	0.004 (2)	0.004 (2)	0.002 (2)
C1	0.005 (3)	0.017 (3)	0.008 (2)	0.001 (2)	0.004 (2)	-0.002 (2)
C2	0.010 (3)	0.014 (3)	0.014 (3)	-0.007 (3)	-0.002 (2)	-0.002 (2)
C3	0.013 (3)	0.010 (2)	0.007 (2)	-0.004 (3)	0.001 (2)	0.001 (3)
C4	0.012 (3)	0.010 (3)	0.009 (3)	-0.005 (3)	0.002 (2)	-0.003 (2)
C5	0.008 (3)	0.017 (3)	0.013 (3)	0.000 (3)	0.004 (2)	-0.001 (2)
C6	0.019 (3)	0.021 (4)	0.016 (3)	0.004 (3)	0.007 (2)	0.003 (3)
C7	0.023 (4)	0.015 (3)	0.021 (3)	0.011 (3)	0.003 (3)	-0.004 (2)
C8	0.027 (3)	0.007 (2)	0.016 (3)	0.004 (3)	0.003 (2)	0.001 (3)
C9	0.020 (4)	0.017 (3)	0.011 (3)	-0.002 (3)	0.006 (3)	0.001 (2)
C10	0.020 (4)	0.014 (3)	0.020 (3)	0.002 (3)	0.003 (3)	0.006 (2)
C11	0.025 (4)	0.024 (4)	0.026 (3)	0.002 (3)	0.009 (3)	0.004 (3)
C12	0.032 (4)	0.021 (3)	0.037 (3)	0.003 (4)	0.021 (3)	0.004 (3)
C13	0.021 (4)	0.022 (4)	0.060 (4)	0.003 (4)	0.017 (3)	0.002 (4)
C14	0.013 (4)	0.028 (4)	0.045 (4)	0.003 (3)	-0.004 (3)	0.006 (3)
C15	0.015 (4)	0.015 (3)	0.012 (3)	-0.003 (3)	0.002 (3)	-0.006 (2)
C16	0.016 (3)	0.012 (3)	0.017 (3)	0.005 (3)	0.005 (2)	0.002 (3)

Geometric parameters (Å, °)

Cd1—O1	2.371 (4)	N4—C14	1.344 (7)
Cd1—O3 ⁱ	2.377 (4)	C1—C2	1.407 (7)
Cd1—N1	2.418 (4)	C1—C5	1.498 (7)
Cd1—O1 ⁱⁱ	2.427 (4)	C2—C10	1.502 (8)
Cd1—N3	2.430 (4)	C3—C4	1.403 (7)
Cd1—O1W	2.301 (4)	C3—C15	1.506 (7)
Cd1—O2W	2.317 (3)	C4—C16	1.530 (7)
O1—C15	1.255 (6)	C5—C6	1.384 (7)
O1—Cd1 ⁱⁱ	2.427 (3)	C6—C7	1.381 (7)
O2—C15	1.253 (6)	С6—Н6	0.9400

supporting information

O3—C16	1.258 (6)	С7—С8	1.366 (7)
O3—Cd1 ⁱⁱⁱ	2.377 (4)	С7—Н7	0.9400
O4—C16	1.227 (6)	C8—C9	1.378 (7)
O1W—H1WA	0.82 (2)	C8—H8	0.9400
O1W—H1WB	0.837 (19)	С9—Н9	0.9400
O2W—H2WA	0.847 (19)	C10—C11	1.392 (7)
O2W—H2WB	0.852 (19)	C11—C12	1.386 (8)
N1—C3	1.335 (7)	C11—H11	0.9400
N1—C1	1.339 (6)	C12—C13	1.376 (8)
N2—C2	1 328 (7)	C12—H12	0.9400
$N_2 - C_4$	1.320(7) 1.341(7)	C13-C14	1 373 (8)
N3-C5	1.341(7) 1 351(6)	C13—H13	0.9400
N3 C9	1.351 (6)	C14 H14	0.9400
N4 C10	1.339(0) 1 338(7)	014	0.9400
N4—C10	1.558 (7)		
Cd1—O1—Cd1 ⁱⁱ	107.74 (13)	C1—C2—C10	125.1 (5)
O1W—Cd1—O3 ⁱ	157.41 (15)	N1—C3—C4	120.0 (5)
O1—Cd1—O1 ⁱⁱ	72.26 (13)	N1—C3—C15	116.3 (4)
O1—Cd1—N1	67.98 (13)	C4—C3—C15	123.6 (5)
N1—Cd1—N3	65.40 (14)	N2—C4—C3	119.4 (5)
O2W—Cd1—N3	78.01 (13)	N2—C4—C16	114.6 (4)
O2W—Cd1—O1 ⁱⁱ	80.65 (13)	C3—C4—C16	125.6 (5)
O1W—Cd1—O2W	104.67 (16)	N3—C5—C6	120.2 (5)
O1W—Cd1—O1	80.18 (15)	N3—C5—C1	114.3 (5)
01W—Cd1—N1	91.62 (16)	C6-C5-C1	1251(5)
O1W—Cd1—N3	87.87 (15)	C7—C6—C5	120.3(5)
$O1W - Cd1 - O1^{ii}$	76 59 (15)	C7—C6—H6	119.9
O^2W —Cd1— O^{3^i}	87.05 (13)	C5-C6-H6	119.9
$01-Cd1-03^{i}$	80 38 (12)	C8 - C7 - C6	119.4 (5)
$O3^{i}$ $Cd1$ $N1$	91 67 (13)	C8—C7—H7	120.3
$O_{3^{i}} - Cd_{1} - O_{1^{ii}}$	86 60 (12)	С6—С7—Н7	120.3
$O3^{i}$ Cd1 N3	11374(13)	$C_{7} - C_{8} - C_{9}$	120.3 118.9(5)
02W Cd1 N1	139 31 (15)	C7 - C8 - H8	120.6
02W - Cd1 - 01	150.65 (13)	C_{9} C_{8} H8	120.6
$N1 - Cd1 - O1^{ii}$	130.03(13) 130.01(14)	$N_{3} - C_{9} - C_{8}$	120.0 122.1(5)
O1 Cd1 N3	137.91(14) 131.34(12)	$N_3 = C_2 = C_3$	110.0
$O1^{ii}$ Cd1 N3	131.34(12) 140.40(14)	$C_{8} C_{9} H_{9}$	119.0
$C_1 = C_1 = C_1$	149.40(14) 120.8(3)	$N_{10} = C_{10} = C_{11}$	119.0
$C_{13} = O_{1} = C_{11}$	120.8(3) 131.4(4)	N4 = C10 = C11	123.3(3)
$C_{15} = O_{1} = C_{41}$	131.4(4)	$N_{+} C_{10} C_{2}$	110.9(5)
$C_{10} = 0.5 = C_{01}$	121.0(4)	$C_{11} = C_{10} = C_2$	119.7(3)
Cd1 O1W U1WP	124 (4)	C12— $C11$ — $C10$	118.2 (0)
	122 (4)		120.9
HIWA—OIW—HIWB	109 (3)		120.9
$C_{11} = O_2 W = H_2 WA$	111 (4)	C12 - C12 - C11	119.5 (5)
$U_{1} = U_{2} W = H_{2} W B$	109 (4)	C11 C12 H12	120.4
$H_2WA - O_2W - H_2WB$	104 (3)	C11—C12—H12	120.4
C3—NI—CI	121.2 (4)	C14—C13—C12	118.2 (6)
C3—N1—Cd1	116.7 (3)	C14—C13—H13	120.9

C1—N1—Cd1	121.9 (3)	C12—C13—H13	120.9
C2—N2—C4	119.7 (4)	N4—C14—C13	124.4 (6)
C5—N3—C9	119.1 (4)	N4—C14—H14	117.8
C5—N3—Cd1	121.8 (3)	C13—C14—H14	117.8
C9—N3—Cd1	118.9 (3)	O2-C15-O1	126.9 (5)
C10—N4—C14	116.5 (5)	O2—C15—C3	115.6 (5)
N1—C1—C2	117.9 (5)	O1—C15—C3	117.5 (5)
N1—C1—C5	114.8 (4)	O4—C16—O3	127.6 (5)
C2—C1—C5	127.0 (5)	O4—C16—C4	114.3 (5)
N2—C2—C1	121.6 (5)	O3—C16—C4	118.0 (5)
N2—C2—C10	113.3 (4)		
C3—N1—C1—C2	-3.4 (7)	C6—C7—C8—C9	1.0 (8)
Cd1—N1—C1—C2	171.5 (3)	C5—N3—C9—C8	-3.6(7)
C3—N1—C1—C5	171.2 (4)	Cd1—N3—C9—C8	-178.9 (4)
Cd1—N1—C1—C5	-13.9 (6)	C7—C8—C9—N3	1.2 (8)
C4—N2—C2—C1	-1.1 (8)	C14—N4—C10—C11	-0.9 (8)
C4—N2—C2—C10	176.2 (5)	C14—N4—C10—C2	176.1 (5)
N1—C1—C2—N2	4.7 (7)	N2-C2-C10-N4	-117.2 (5)
C5—C1—C2—N2	-169.2(5)	C1—C2—C10—N4	60.0 (7)
N1—C1—C2—C10	-172.3 (5)	N2-C2-C10-C11	59.9 (7)
C5—C1—C2—C10	13.8 (8)	C1—C2—C10—C11	-122.9(6)
C1—N1—C3—C4	-1.2 (7)	N4—C10—C11—C12	1.5 (8)
Cd1—N1—C3—C4	-176.3 (4)	C2-C10-C11-C12	-175.3 (5)
C1—N1—C3—C15	-177.7 (4)	C10-C11-C12-C13	-1.7 (9)
Cd1—N1—C3—C15	7.1 (5)	C11—C12—C13—C14	1.3 (10)
C2—N2—C4—C3	-3.6(7)	C10—N4—C14—C13	0.4 (9)
C2—N2—C4—C16	-176.7 (5)	C12—C13—C14—N4	-0.7 (10)
N1—C3—C4—N2	4.8 (8)	Cd1—O1—C15—O2	175.2 (4)
C15—C3—C4—N2	-178.9 (5)	Cd1 ⁱⁱ —O1—C15—O2	-2.5(8)
N1—C3—C4—C16	177.2 (5)	Cd1—O1—C15—C3	-6.1 (6)
C15—C3—C4—C16	-6.5 (8)	Cd1 ⁱⁱ —O1—C15—C3	176.2 (3)
C9—N3—C5—C6	3.7 (7)	N1—C3—C15—O2	177.9 (4)
Cd1—N3—C5—C6	178.9 (4)	C4—C3—C15—O2	1.5 (8)
C9—N3—C5—C1	-169.7 (4)	N1-C3-C15-O1	-0.9(7)
Cd1—N3—C5—C1	5.5 (6)	C4—C3—C15—O1	-177.3 (5)
N1—C1—C5—N3	5.2 (6)	Cd1 ⁱⁱⁱ —O3—C16—O4	1.6 (8)
C2-C1-C5-N3	179.3 (5)	Cd1 ⁱⁱⁱ —O3—C16—C4	177.4 (3)
N1-C1-C5-C6	-167.8 (5)	N2-C4-C16-O4	82.7 (6)
C2-C1-C5-C6	6.3 (9)	C3—C4—C16—O4	-90.0 (7)
N3—C5—C6—C7	-1.5 (8)	N2-C4-C16-O3	-93.7 (6)
C1—C5—C6—C7	171.1 (5)	C3—C4—C16—O3	93.6 (6)
С5—С6—С7—С8	-0.8 (8)		

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iii) x, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A	
01 <i>W</i> —H1 <i>WA</i> ···O3 ^{iv}	0.82 (2)	2.22 (3)	2.974 (6)	152 (5)	
$O1W$ — $H1WB$ ··· $O2^{v}$	0.84 (2)	2.05 (4)	2.805 (6)	150 (7)	
O2W— $H2WA$ ···O4 ⁱ	0.85 (2)	1.88 (3)	2.630 (6)	146 (5)	
O2 <i>W</i> —H2 <i>WB</i> ···O2 ⁱⁱ	0.85 (2)	1.88 (2)	2.692 (5)	159 (5)	
С9—Н9…О3 ^{vi}	0.94	2.52	3.245 (6)	134	
$C14$ — $H14$ ···· $N4^{vii}$	0.94	2.62	3.372 (8)	137	

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iv) -x+1, y+1/2, -z+3/2; (v) x, y+1, z; (vi) x, -y+3/2, z-1/2; (vii) -x, -y+1, -z+1.