Crystal structures of 2'-benzoyl-1'-(4-methylphenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3.3'-pyrrolizin]-2-one and 2'-(4-bromobenzoyl)-1'-(2-chlorophenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one

M. Chandrarekha,^a N. Srinivasan,^a P. Kottala Vijaya,^b A. Siva^b and **R. V. Krishnakumar**^a*

^aDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamil Nadu, India, and ^bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India. *Correspondence e-mail: mailtorvkk@yahoo.co.in

The two title compounds, C₂₈H₂₆N₂O₂, (I), and C₂₇H₂₂BrClN₂O₂, (II), differ in their substituents, viz.4-methylphenyl and benzoyl rings in (I) replaced by 2chlorophenyl and 4- bromobenzoyl, respectively, in (II). A significant difference between the two molecules is found in the deviation of the benzovl O atom from the least-squares plane of the ring to which it is attached [0.593 (4) and 0.131(3) Å, respectively], a fact which may be attributed to the different participation of the benzoyl O atoms as acceptors in their intermolecular C- $H \cdot \cdot O$ interactions. The chemical modifications in (I) and (II) do not seem to affect the type nor strength of the intermolecular $N-H\cdots N$ and $C-H\cdots O$ hydrogen bonds responsible for the two crystal structures, such that the aggregation of molecules appears similar in spite of the molecular changes.

СН₃

1. Chemical context

Pyrrolizine, a bicyclic ring system containing two fused pyrrole rings, is present in many herbs (Hoang et al., 2015) and displays a variety of biological activities such as anticonvulsant (Abbas et al., 2011), antiarrhythmic (Miyano et al., 1983), antiviral (Kadushkin et al., 1990), antibacterial (Sing et al., 2002) etc. Indole, a pharmacologically significant nucleus, is known for anti-inflammatory (Misra et al., 1996), antibacterial (Dandia et al., 1993) and antiviral (Giampieri et al., 2009) activities.

Ó (I) С ć

(II)

OPEN ACCESS

Accepted 19 October 2016

Received 19 August 2016

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

Keywords: crystal structure; indoline-3,3'pyrrolizin derivatives; hydrogen bonding.

CCDC references: 1503430; 1503429

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

The title compounds (I) and (II) are spiro compounds in which the pyrrolizine and indole rings are spiro-fused, in addition to having respective benzoyl/methylphenyl and bromobenzoyl/chlorophenyl substitutions. In the present work, the molecular and crystal structures of (I) and (II) are presented, and the differences in their molecular conformation and intermolecular interactions is discussed.

2. Structural commentary

Molecular diagrams of (I) and (II) are shown in Figs. 1 and 2, respectively. Both are dispiro compounds in which the pyrrolizine and indole rings are spiro-fused, and they differ in the benzoyl/methylphenyl and bromobenzoyl/chlorophenyl substitutions. The Cremer & Pople puckering parameters of the two fused five-membered pyrrole rings of the pyrrolzine ring system in (I) viz. N2-C9-C10-C11-C12 and N2-C2-C14-C13-C12 are, respectively, Q = 0.362 (4) Å, $\varphi = 264.4$ (5)° indicating a twist about C10–C11, and Q = 0.408 (3) Å, φ =67.9 (4)° conforming to an envelope on C14. The corresponding values in (II), Q = 0.378 (3) Å, $\varphi = 82.4$ (4)° and Q =0.423 (3) Å, $\varphi = 251.4$ (3)°, may differ slightly from those in (I) but they do not show a significant difference in the modes of puckering. The total puckering amplitude Q of the fused eightmembered pyrrolizine and the nine-membered indolone ring systems are respectively, 0.727 (3) and 0.129 (3) Å in (I) and 0.724 (2) and 0.065 (2) Å in (II), indicating that the atoms of the nine-membered indole ring system are nearly coplanar. In addition, the indole atom O1 remains coplanar with the rest of the atoms in both structures.

In both compounds, the spiro-fused ring systems tend to be rigid by remaining nearly perpendicular to each other, whereas the remaining substituted rings appear to be more 'compromising' towards hydrogen-bonding requirements, irrespective of their intra- or intermolecular nature. As an example, the free rotation of the benzoyl group in (II) allows

Figure 1

Displacement ellipsoid plot (50% probability level) of title compound (I), showing the atom-labelling scheme. H atoms have been omitted for clarity.

Table 1	
Hydrogen-bond geometry (Å, °) for (I).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C5-H5\cdots O2^{i}$	0.93	2.65	3.441 (4)	144
C19−H19···O2 ⁱⁱ	0.93	2.70	3.301 (5)	123
C20−H20···O2 ⁱⁱ	0.93	2.65	3.278 (4)	125
$N1-H1\cdots N2^{iii}$	0.86	2.40	3.232 (3)	163
$C7-H7\cdots O1^{iii}$	0.93	2.28	3.098 (4)	147
Symmetry codes: $-x + \frac{1}{2}, -y + 2, z - \frac{1}{2}$.	(i) $-x + \frac{1}{2}$	$-y+\frac{3}{2}, z;$	(ii) $-x + \frac{3}{4}, y +$	$-\frac{1}{4}, z - \frac{1}{4};$ (iii)

 Table 2

 Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C17 - H17 \cdots O2^{i}$	0.93	2.60	3.292 (3)	132
$C25-H25\cdots O2^{ii}$	0.93	2.61	3.327 (4)	134
$N1 - H1 \cdot \cdot \cdot N2^{iii}$	0.86	2.36	3.198 (3)	164
$C7-H7\cdots O1^{iii}$	0.93	2.47	3.235 (3)	139
C21-H21···O1	0.93	2.47	3.337 (3)	155

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 1, -y + 1, -z + 2; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

the formation of an intramolecular $C-H\cdots O$ hydrogen bond (Table 2, last entry) while the interaction is absent in (I).

A significant difference between the two structures is observed in the deviation of benzoyl atom O2 from the leastsquares plane of the C15–C21 atoms: 0.593 (4) in (I) and 0.131 (3) Å in (II). The larger deviation in (I) appears to be the result of the participation of O2 in three very weak (but cooperative) intermolecular C–H···O hydrogen bonds, all three coming from the same side of the plane (Table 1, three topmost entries and Fig. 3). In the structure of (II), instead, only two (competitive) C–H···O bonds involving O2 occur,

Figure 2

Displacement ellipsoid plot (50% probability level) of title compound (II), showing the atom-labelling scheme. H atoms have been omitted for clarity.

on opposite side of the plane (Table 2, two topmost entries and Fig. 4). These intermolecular interaction patterns exemplify a case where weak $C-H\cdots O$ hydrogen bonds can have noticeable effects on the molecular conformation.

3. Supramolecular features

Even if the differences in the substituents produce differences in lattice types, space group, cell metrics, *etc*, these molecular modifications do not seem to affect the type nor strength of the two relevant $N-H\cdots N$ and $C-H\cdots O$ intermolecular hydrogen bonds defining the crystal structures (Tables 1 and 2), which can thus be considered as essential for the crystal structure layout. In particular, those bonds involving C7 and N1 link glide-related molecules into similar one-dimensional strings along the shortest cell axis (Figs. 5 and 6). As already discussed, the other, relatively weaker, intermolecular C-

Figure 4

The two C-H···O bonds in (II) involving benzoyl O2 (Table 2, top two entries) on opposite sides of the benzoyl plane.

H···O hydrogen bonds involving the benzoyl atom O2 as acceptors have a profound effect on the molecular conformation of the molecules. Finally, a close O1···Br1 $(-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2})$ contact $[d_{O\cdots Br} = 3.192 (2) \text{ Å}]$ is present in structure (II), with no further significant Cl···Cl, Cl···Br, Br···Br or C-H··· π or π - π interactions present in either crystal structure.

Figure 6 One-dimensional strings of molecules of (II), along the *b* axis.

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{28}H_{26}N_2O_2$	$C_{27}H_{22}BrClN_2O_2$
$M_{\rm r}$	422.51	521.82
Crystal system, space group	Orthorhombic, Fdd2	Monoclinic, $P2_1/n$
Temperature (K)	295	295
a, b, c (Å)	36.030 (2), 24.2248 (16), 10.1301 (6)	10.7280 (4), 9.7793 (4), 22.6746 (9)
α, β, γ (°)	90, 90, 90	90, 98.972 (1), 90
$V(\dot{A}^3)$	8841.7 (9)	2349.74 (16)
Z	16	4
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu (\text{mm}^{-1})$	0.08	1.89
Crystal size (mm)	$0.26 \times 0.18 \times 0.15$	$0.25 \times 0.14 \times 0.12$
Data collection		
Diffractometer	Bruker SMART APEX CCD	Bruker SMARTAPEX CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	0.98, 0.99	0.89, 0.97
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	36903, 4649, 3325	22593, 4740, 3446
R _{int}	0.108	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.636	0.622
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.113, 0.98	0.039, 0.106, 1.03
No. of reflections	4649	4740
No. of parameters	291	298
No. of restraints	1	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.18, -0.14	0.64, -0.63
Absolute structure	Refined as a perfect inversion twin	-
Absolute structure parameter	0.5	-

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), PLUTON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.53, update February 2014; Groom *et al.*, 2016) for organic non-polymeric single-crystal structures revealed 27 structures of which only two bear a close relationship to the title compound (POXZIL and POXZOR; Fokas *et al.*, 1998). There are no other direct analogues of the title compounds, either in coordinated or uncoordinated form. In POXZOR, the deviation of the benzoyl atom O2 from the plane containing the rest of the atoms of the group is about 0.465 Å, similar to the case in (I), but the quality of the H-atom treatment in POXZOR precluded any meaningful comparison.

5. Synthesis and crystallization

The synthesis of (I) involved a mixture of (E)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (0.4 mmol) [for the synthesis of (II), (E)-1-(4-bromophenyl)-3-(2-chlorophenyl)prop-2-en-1-one (0.4 mmol)], isatin (0.4 mmol) and L-proline (0.4 mmol), which was dissolved in 5 ml of methanol, and 1 mol% of CMPTC (Chiral Multisite Phase Transfer Catalyst) was added and stirred at reflux temperature until the completion of reaction as indicated by TLC. After this step, the mixture was poured onto ice; the precipitate was filtered and recrystallized

from ethanol solution, to get the pure product without column chromatography.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. In both (I) and (II), the carbonbound H atoms were placed in calculated positions (C-H = 0.93-0.97 Å) and were included in the refinement in a ridingmodel approximation, with $U_{iso}(H)$ set at $1.2-1.5U_{eq}(C)$. Compound (I) was refined as an inversion twin.

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the School of Physics, Madurai Kamaraj University, Madurai, for access to the Cambridge Structural Database.

References

Abbas, S., Awadallah, F., Ibrahim, N., Gouda, A. & Shehata, B. (2011). *Med. Chem. Res.* **20**, 1015–1023.

Bruker (2009). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dandia, A., Sehgal, V. & Singh, P. (1993). *Indian J. Chem. Sect. B*, **32**, 1288–1291.
- Fokas, D., Ryan, W. J., Casebier, D. S. & Coffen, D. L. (1998). Tetrahedron Lett. **39**, 2235–2238.
- Giampieri, M., Balbi, A., Mazzei, M., La Colla, P., Ibba, C. & Loddo, R. (2009). *Antiviral Res.* 83, 179–185.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hoang, L. S., Tran, M. H., Lee, J. S., To, D. C., Nguyen, V. T., Kim, J. A., Lee, J. H., Woo, M. H. & Min, B. S. (2015). *Chem. Pharm. Bull.* 63, 481–484.
- Kadushkin, A. V., Nesterova, I. N., Golovko, T. V., Nikolaeva, I. S., Pushkina, T. V., Fomina, A. N., Sokolova, A. S., Chernov, V. A. & Granik, V. G. (1990). *Pharm. Chem. J.* 24, 875–881.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Misra, U., Hitkari, A., Saxena, A. K., Gurtu, S. & Shanker, K. (1996). *Eur. J. Med. Chem.* **31**, 629–634.
- Miyano, S., Morita, M. & Sato, F. (1983). EP patent No. EP89061A2. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Sheldrick, G. M. (2006). Acta Cryst. 771, 3–8.
- Singh, B., Sahu, P. M. & Singh, S. (2002). Fitoterapia, 73, 153-155.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2016). E72, 1637-1641 [https://doi.org/10.1107/S2056989016016741]

Crystal structures of 2'-benzoyl-1'-(4-methylphenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one and 2'-(4-bromobenzoyl)-1'-(2-chlorophenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one

M. Chandrarekha, N. Srinivasan, P. Kottala Vijaya, A. Siva and R. V. Krishnakumar

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS2013/1* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *PLUTON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) 2'-Benzoyl-1'-(4-methylphenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one

Crystal data

 $C_{28}H_{26}N_2O_2$ $M_r = 422.51$ Orthorhombic, *Fdd2* a = 36.030 (2) Å b = 24.2248 (16) Å c = 10.1301 (6) Å $V = 8841.7 (9) Å^3$ Z = 16 F(000) = 3584Data collection

Bruker SMART APEX CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.98, T_{max} = 0.99$ 36903 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.113$ S = 0.984649 reflections 291 parameters 1 restraint Hydrogen site location: inferred from neighbouring sites $D_x = 1.270 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3325 reflections $\theta = 2.0-26.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 295 KNeedle, colourless $0.26 \times 0.18 \times 0.15 \text{ mm}$

4649 independent reflections 3325 reflections with $I > 2\sigma(I)$ $R_{int} = 0.108$ $\theta_{max} = 26.9^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -45 \rightarrow 45$ $k = -30 \rightarrow 30$ $l = -11 \rightarrow 12$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0652P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00076 (15) Absolute structure: Refined as a perfect inversion twin

Absolute structure parameter: 0.5

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.27285 (7)	1.01345 (8)	-0.0201 (2)	0.0579 (6)	
02	0.31457 (6)	0.81610(7)	-0.0631 (2)	0.0509 (6)	
N1	0.25279 (7)	0.96268 (9)	-0.1968 (2)	0.0418 (6)	
H1	0.2547	0.9874	-0.2574	0.050*	
N2	0.23589 (7)	0.92646 (10)	0.1303 (2)	0.0429 (6)	
C1	0.26150 (8)	0.97090 (11)	-0.0689 (3)	0.0398 (7)	
C2	0.25557 (8)	0.91652 (11)	0.0062 (3)	0.0362 (6)	
C3	0.23874 (7)	0.88025 (11)	-0.0999 (3)	0.0358 (6)	
C4	0.22634 (8)	0.82631 (11)	-0.0999 (3)	0.0416 (7)	
H4	0.2247	0.8067	-0.0212	0.050*	
C5	0.21643 (9)	0.80184 (12)	-0.2170 (3)	0.0502 (8)	
H5	0.2079	0.7656	-0.2174	0.060*	
C6	0.21893 (11)	0.83025 (13)	-0.3325 (4)	0.0613 (10)	
H6	0.2123	0.8128	-0.4109	0.074*	
C7	0.23109 (10)	0.88454 (13)	-0.3362 (3)	0.0556 (9)	
H7	0.2330	0.9038	-0.4154	0.067*	
C8	0.24016 (8)	0.90845 (11)	-0.2186 (3)	0.0385 (6)	
C9	0.19502 (10)	0.92472 (16)	0.1279 (4)	0.0621 (9)	
H9A	0.1862	0.9034	0.0531	0.074*	
H9B	0.1848	0.9617	0.1227	0.074*	
C10	0.18444 (10)	0.89746 (17)	0.2557 (4)	0.0717 (11)	
H10A	0.1828	0.9243	0.3265	0.086*	
H10B	0.1608	0.8785	0.2476	0.086*	
C11	0.21532 (10)	0.85747 (14)	0.2801 (4)	0.0605 (9)	
H11A	0.2118	0.8238	0.2298	0.073*	
H11B	0.2171	0.8483	0.3731	0.073*	
C12	0.24949 (9)	0.88832 (12)	0.2339 (3)	0.0431 (7)	
H12	0.2593	0.9101	0.3076	0.052*	
C13	0.28144 (8)	0.85597 (11)	0.1704 (3)	0.0392 (6)	
H13	0.2707	0.8227	0.1309	0.047*	
C14	0.29306 (7)	0.89341 (10)	0.0576 (3)	0.0358 (6)	
H14	0.3077	0.9240	0.0937	0.043*	
C15	0.31537 (8)	0.86578 (11)	-0.0504 (3)	0.0371 (6)	
C16	0.33632 (8)	0.90084 (12)	-0.1443 (3)	0.0396 (7)	
C17	0.33895 (12)	0.88417 (14)	-0.2743 (3)	0.0659 (10)	

H17	0.3277	0.8516	-0.3016	0.079*
C18	0.35827 (14)	0.91583 (17)	-0.3632 (4)	0.0878 (15)
H18	0.3592	0.9052	-0.4513	0.105*
C19	0.37602 (11)	0.96247 (15)	-0.3241 (4)	0.0748 (12)
H19	0.3895	0.9832	-0.3849	0.090*
C20	0.37413 (10)	0.97879 (15)	-0.1964 (4)	0.0646 (10)
H20	0.3866	1.0104	-0.1691	0.078*
C21	0.35373 (9)	0.94869 (13)	-0.1071 (4)	0.0539 (8)
H21	0.3517	0.9610	-0.0204	0.065*
C22	0.31168 (8)	0.83740 (11)	0.2623 (3)	0.0422 (7)
C23	0.34826 (9)	0.85341 (14)	0.2504 (3)	0.0528 (8)
H23	0.3548	0.8785	0.1849	0.063*
C24	0.37553 (10)	0.83296 (15)	0.3336 (3)	0.0604 (9)
H24	0.4000	0.8444	0.3219	0.072*
C25	0.36741 (10)	0.79638 (13)	0.4324 (4)	0.0591 (9)
C26	0.33129 (12)	0.78139 (15)	0.4451 (4)	0.0812 (13)
H26	0.3247	0.7571	0.5123	0.097*
C27	0.30406 (11)	0.80081 (15)	0.3620 (4)	0.0717 (12)
H27	0.2798	0.7888	0.3738	0.086*
C28	0.39708 (13)	0.77479 (18)	0.5240 (5)	0.0886 (13)
H28A	0.3891	0.7404	0.5617	0.133*
H28B	0.4014	0.8011	0.5932	0.133*
H28C	0.4196	0.7691	0.4753	0.133*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0879 (17)	0.0324 (11)	0.0535 (14)	-0.0049 (11)	-0.0031 (12)	-0.0084 (10)
0.0626 (14)	0.0343 (11)	0.0557 (14)	0.0041 (9)	0.0017 (11)	-0.0077 (10)
0.0564 (15)	0.0294 (12)	0.0396 (14)	-0.0016 (10)	-0.0034 (12)	0.0051 (11)
0.0423 (14)	0.0501 (14)	0.0362 (13)	0.0055 (11)	0.0054 (11)	-0.0007 (12)
0.0459 (17)	0.0316 (14)	0.0418 (17)	0.0040 (12)	0.0038 (14)	-0.0050 (13)
0.0410 (16)	0.0315 (14)	0.0363 (15)	0.0007 (11)	0.0010 (12)	-0.0033 (12)
0.0367 (15)	0.0341 (14)	0.0366 (16)	0.0005 (11)	-0.0011 (12)	0.0011 (12)
0.0475 (17)	0.0360 (14)	0.0412 (18)	-0.0057 (13)	-0.0043 (14)	0.0077 (13)
0.061 (2)	0.0368 (15)	0.053 (2)	-0.0125 (14)	-0.0122 (16)	0.0033 (15)
0.089 (3)	0.0481 (18)	0.047 (2)	-0.0194 (17)	-0.0194 (19)	-0.0005 (16)
0.081 (2)	0.0445 (17)	0.0416 (18)	-0.0116 (16)	-0.0134 (17)	0.0076 (15)
0.0418 (16)	0.0317 (13)	0.0421 (15)	-0.0025 (12)	-0.0041 (13)	0.0034 (13)
0.044 (2)	0.087 (3)	0.055 (2)	0.0102 (18)	0.0091 (16)	0.001 (2)
0.051 (2)	0.095 (3)	0.069 (3)	-0.0107 (19)	0.0129 (19)	-0.005 (2)
0.061 (2)	0.065 (2)	0.055 (2)	-0.0094 (17)	0.0143 (18)	0.0090 (17)
0.0486 (17)	0.0467 (17)	0.0341 (15)	-0.0052 (14)	0.0018 (13)	-0.0039 (13)
0.0449 (16)	0.0350 (14)	0.0378 (15)	-0.0046 (12)	-0.0015 (13)	-0.0005 (12)
0.0389 (15)	0.0325 (13)	0.0360 (15)	-0.0032 (11)	-0.0007 (12)	-0.0027 (12)
0.0369 (15)	0.0356 (14)	0.0389 (15)	0.0012 (12)	-0.0051 (12)	-0.0056 (12)
0.0377 (15)	0.0410 (16)	0.0402 (16)	0.0061 (13)	0.0050 (13)	-0.0038 (12)
0.094 (3)	0.0537 (19)	0.050 (2)	-0.0063 (19)	0.020 (2)	-0.0125 (17)
	U^{11} 0.0879 (17) 0.0626 (14) 0.0564 (15) 0.0423 (14) 0.0459 (17) 0.0410 (16) 0.0367 (15) 0.0475 (17) 0.061 (2) 0.089 (3) 0.081 (2) 0.0418 (16) 0.044 (2) 0.051 (2) 0.061 (2) 0.0486 (17) 0.0449 (16) 0.0389 (15) 0.0369 (15) 0.0377 (15) 0.094 (3)	U^{11} U^{22} $0.0879 (17)$ $0.0324 (11)$ $0.0626 (14)$ $0.0343 (11)$ $0.0564 (15)$ $0.0294 (12)$ $0.0423 (14)$ $0.0501 (14)$ $0.0459 (17)$ $0.0316 (14)$ $0.0459 (17)$ $0.0315 (14)$ $0.0410 (16)$ $0.0315 (14)$ $0.0367 (15)$ $0.0341 (14)$ $0.0475 (17)$ $0.0360 (14)$ $0.061 (2)$ $0.0368 (15)$ $0.089 (3)$ $0.0481 (18)$ $0.081 (2)$ $0.0445 (17)$ $0.0418 (16)$ $0.0317 (13)$ $0.044 (2)$ $0.087 (3)$ $0.051 (2)$ $0.095 (3)$ $0.061 (2)$ $0.065 (2)$ $0.0486 (17)$ $0.0350 (14)$ $0.0389 (15)$ $0.0325 (13)$ $0.0369 (15)$ $0.0356 (14)$ $0.0377 (15)$ $0.0410 (16)$ $0.094 (3)$ $0.0537 (19)$	U^{11} U^{22} U^{33} $0.0879 (17)$ $0.0324 (11)$ $0.0535 (14)$ $0.0626 (14)$ $0.0343 (11)$ $0.0557 (14)$ $0.0564 (15)$ $0.0294 (12)$ $0.0396 (14)$ $0.0423 (14)$ $0.0501 (14)$ $0.0362 (13)$ $0.0459 (17)$ $0.0316 (14)$ $0.0418 (17)$ $0.0410 (16)$ $0.0315 (14)$ $0.0363 (15)$ $0.0367 (15)$ $0.0341 (14)$ $0.0366 (16)$ $0.0475 (17)$ $0.0360 (14)$ $0.0412 (18)$ $0.061 (2)$ $0.0368 (15)$ $0.053 (2)$ $0.089 (3)$ $0.0481 (18)$ $0.047 (2)$ $0.081 (2)$ $0.0445 (17)$ $0.0416 (18)$ $0.0418 (16)$ $0.0317 (13)$ $0.0421 (15)$ $0.044 (2)$ $0.087 (3)$ $0.055 (2)$ $0.051 (2)$ $0.065 (2)$ $0.055 (2)$ $0.0486 (17)$ $0.0467 (17)$ $0.0341 (15)$ $0.0389 (15)$ $0.0325 (13)$ $0.0360 (15)$ $0.0369 (15)$ $0.0356 (14)$ $0.0389 (15)$ $0.0377 (15)$ $0.0410 (16)$ $0.0402 (16)$ $0.094 (3)$ $0.0537 (19)$ $0.050 (2)$	U^{11} U^{22} U^{33} U^{12} 0.0879 (17)0.0324 (11)0.0535 (14) $-0.0049 (11)$ 0.0626 (14)0.0343 (11)0.0557 (14)0.0041 (9)0.0564 (15)0.0294 (12)0.0396 (14) $-0.0016 (10)$ 0.0423 (14)0.0501 (14)0.0362 (13)0.0055 (11)0.0459 (17)0.0316 (14)0.0418 (17)0.0040 (12)0.0410 (16)0.0315 (14)0.0363 (15)0.0007 (11)0.0367 (15)0.0341 (14)0.0366 (16)0.0005 (11)0.0475 (17)0.0360 (14)0.0412 (18) $-0.0057 (13)$ 0.061 (2)0.0368 (15)0.053 (2) $-0.0125 (14)$ 0.089 (3)0.0481 (18)0.047 (2) $-0.0194 (17)$ 0.081 (2)0.0445 (17)0.0416 (18) $-0.0116 (16)$ 0.044 (2)0.087 (3)0.055 (2) $0.0102 (18)$ 0.051 (2)0.095 (3)0.069 (3) $-0.0107 (19)$ 0.061 (2)0.065 (2) $0.055 (2)$ $-0.0032 (11)$ 0.044 (2)0.087 (17) $0.0341 (15)$ $-0.0032 (14)$ 0.051 (2)0.095 (3) $0.069 (3)$ $-0.0046 (12)$ 0.0389 (15)0.0325 (13) $0.0360 (15)$ $-0.0032 (11)$ 0.0369 (15)0.0356 (14) $0.0389 (15)$ $0.0012 (12)$ 0.0377 (15) $0.0410 (16)$ $0.0402 (16)$ $0.0061 (13)$ 0.094 (3) $0.0537 (19)$ $0.050 (2)$ $-0.0063 (19)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0879 (17)0.0324 (11)0.0535 (14) $-0.0049 (11)$ $-0.0031 (12)$ 0.0626 (14)0.0343 (11)0.0557 (14)0.0041 (9)0.0017 (11)0.0564 (15)0.0294 (12)0.0396 (14) $-0.0016 (10)$ $-0.0034 (12)$ 0.0423 (14)0.0501 (14)0.0362 (13)0.0055 (11)0.0054 (11)0.0459 (17)0.0316 (14)0.0418 (17)0.0040 (12)0.0038 (14)0.0410 (16)0.0315 (14)0.0363 (15)0.0007 (11)0.0010 (12)0.0367 (15)0.0341 (14)0.0366 (16)0.0005 (11) $-0.0011 (12)$ 0.0475 (17)0.0360 (14)0.0412 (18) $-0.0157 (13)$ $-0.0043 (14)$ 0.061 (2)0.0368 (15)0.053 (2) $-0.0125 (14)$ $-0.0122 (16)$ 0.089 (3)0.0481 (18)0.047 (2) $-0.0194 (17)$ $-0.0194 (17)$ 0.0418 (16)0.0317 (13)0.0421 (15) $-0.0025 (12)$ $-0.0041 (13)$ 0.044 (2)0.087 (3)0.055 (2) $0.0102 (18)$ $0.0091 (16)$ 0.051 (2)0.095 (3)0.069 (3) $-0.0107 (19)$ $0.0129 (19)$ 0.061 (2)0.065 (2) $0.055 (2)$ $-0.0025 (14)$ $0.0143 (18)$ 0.0486 (17) $0.0467 (17)$ $0.0341 (15)$ $-0.0032 (11)$ $-0.0015 (13)$ 0.0486 (17) $0.0325 (13)$ $0.0360 (15)$ $-0.0032 (11)$ $-0.0071 (12)$ 0.0369 (15) $0.0356 (14)$ $0.0389 (15)$ $0.0012 (12)$ $-0.0051 (12)$ 0.0369 (15) 0.03

C18	0.129 (4)	0.080 (3)	0.055 (2)	-0.005 (3)	0.043 (3)	-0.014 (2)
C19	0.082 (3)	0.057 (2)	0.085 (3)	0.0034 (19)	0.037 (2)	0.006 (2)
C20	0.058 (2)	0.059 (2)	0.077 (3)	-0.0122 (17)	0.0173 (19)	-0.003 (2)
C21	0.0531 (19)	0.0514 (18)	0.0570 (19)	-0.0089 (16)	0.0083 (16)	-0.0089 (16)
C22	0.0506 (17)	0.0346 (15)	0.0414 (16)	-0.0035 (12)	-0.0056 (14)	-0.0020 (13)
C23	0.051 (2)	0.066 (2)	0.0412 (18)	-0.0021 (16)	-0.0008 (15)	0.0062 (15)
C24	0.050(2)	0.078 (2)	0.052 (2)	0.0026 (17)	-0.0111 (16)	-0.0037 (19)
C25	0.071 (2)	0.0485 (17)	0.057 (2)	0.0037 (17)	-0.0218 (19)	-0.0026 (17)
C26	0.091 (3)	0.067 (2)	0.086 (3)	-0.023 (2)	-0.033 (2)	0.038 (2)
C27	0.065 (2)	0.071 (2)	0.079 (3)	-0.0256 (19)	-0.024 (2)	0.036 (2)
C28	0.095 (3)	0.084 (3)	0.086 (3)	0.013 (2)	-0.041 (3)	0.004 (2)

Geometric parameters (Å, °)

01—C1	1.214 (3)	C13—C22	1.502 (4)
O2—C15	1.211 (3)	C13—C14	1.518 (4)
N1-C1	1.348 (4)	C13—H13	0.9800
N1-C8	1.408 (3)	C14—C15	1.514 (4)
N1—H1	0.8600	C14—H14	0.9800
N2-C2	1.463 (4)	C15—C16	1.481 (4)
N2—C9	1.473 (4)	C16—C21	1.371 (4)
N2-C12	1.482 (4)	C16—C17	1.381 (4)
C1—C2	1.537 (4)	C17—C18	1.372 (5)
C2—C3	1.515 (4)	C17—H17	0.9300
C2—C14	1.552 (4)	C18—C19	1.357 (6)
C3—C4	1.381 (4)	C18—H18	0.9300
C3—C8	1.384 (4)	C19—C20	1.354 (6)
C4—C5	1.373 (4)	C19—H19	0.9300
C4—H4	0.9300	C20—C21	1.375 (5)
С5—С6	1.360 (5)	C20—H20	0.9300
С5—Н5	0.9300	C21—H21	0.9300
С6—С7	1.387 (4)	C22—C27	1.371 (5)
С6—Н6	0.9300	C22—C23	1.379 (4)
С7—С8	1.365 (5)	C23—C24	1.386 (5)
С7—Н7	0.9300	C23—H23	0.9300
C9—C10	1.503 (5)	C24—C25	1.369 (5)
С9—Н9А	0.9700	C24—H24	0.9300
С9—Н9В	0.9700	C25—C26	1.357 (5)
C10-C11	1.496 (5)	C25—C28	1.509 (5)
C10—H10A	0.9700	C26—C27	1.376 (5)
C10—H10B	0.9700	C26—H26	0.9300
C11—C12	1.515 (4)	C27—H27	0.9300
C11—H11A	0.9700	C28—H28A	0.9600
C11—H11B	0.9700	C28—H28B	0.9600
C12—C13	1.534 (4)	C28—H28C	0.9600
C12—H12	0.9800		
C1—N1—C8	111.3 (2)	C22—C13—C14	116.5 (2)

C1—N1—H1	124.3	C22—C13—C12	115.9 (2)
C8—N1—H1	124.3	C14—C13—C12	102.6 (2)
C2—N2—C9	117.7 (2)	C22—C13—H13	107.1
C2—N2—C12	110.2 (2)	C14—C13—H13	107.1
C9—N2—C12	108.9 (2)	C12—C13—H13	107.1
01—C1—N1	126.6 (3)	C15—C14—C13	115.2 (2)
O1—C1—C2	124.9 (3)	C15—C14—C2	112.3 (2)
N1 - C1 - C2	108.5 (2)	C13—C14—C2	103.2 (2)
N2-C2-C3	120.7(2)	C15—C14—H14	108.6
$N_{2} - C_{2} - C_{1}$	110.6(2)	C13—C14—H14	108.6
$C_{3}-C_{2}-C_{1}$	101.6(2)	C_{2} C_{14} H_{14}	108.6
N_{2} C2 C14	101.0(2) 101.1(2)	02 - C15 - C16	120.9(3)
C_{3} C_{2} C_{14}	101.1(2) 112(1(2))	02 - C15 - C14	120.2(3)
C1 - C2 - C14	112.1(2) 110.7(2)	C16-C15-C14	120.2(3) 1187(2)
$C_{4}^{-}C_{3}^{-}C_{8}^{-}$	110.7(2) 118.6(3)	$C_{10} = C_{15} = C_{14}$	110.7(2) 118.5(3)
C4 - C3 - C2	132.7(2)	$C_{21} - C_{10} - C_{17}$	110.5(3) 122.8(3)
C^{\ast} C^{\ast} C^{\ast} C^{\ast}	132.7(2) 108 4 (2)	$C_{21} = C_{10} = C_{15}$	122.0(3)
$C_{0} = C_{0} = C_{2}$	108.4(2) 110.5(2)	$C1^{-}$ $C1^{-}$ $C1^{-}$ $C1^{-}$	110.0(3)
$C_{5} = C_{4} = C_{5}$	119.3 (5)	$C_{18} = C_{17} = U_{17}$	119.0 (5)
$C_3 = C_4 = H_4$	120.5	C16 - C17 - H17	120.1
$C_3 - C_4 - H_4$	120.5	C10 - C12 - C17	120.1
$C_0 - C_3 - C_4$	120.5 (5)	C19 - C18 - C17	120.8 (4)
С6—С5—Н5	119.8	C19—C18—H18	119.6
С4—С5—Н5	119.8	C1/C18H18	119.6
C5—C6—C7	121.6 (3)	C20—C19—C18	119.9 (4)
С5—С6—Н6	119.2	C20—C19—H19	120.1
С7—С6—Н6	119.2	C18—C19—H19	120.1
C8—C7—C6	117.0 (3)	C19—C20—C21	120.0 (3)
С8—С7—Н7	121.5	C19—C20—H20	120.0
С6—С7—Н7	121.5	C21—C20—H20	120.0
C7—C8—C3	122.7 (3)	C16—C21—C20	120.8 (3)
C7—C8—N1	127.6 (3)	C16—C21—H21	119.6
C3—C8—N1	109.7 (3)	C20—C21—H21	119.6
N2—C9—C10	104.6 (3)	C27—C22—C23	116.0 (3)
N2—C9—H9A	110.8	C27—C22—C13	120.3 (3)
С10—С9—Н9А	110.8	C23—C22—C13	123.7 (3)
N2—C9—H9B	110.8	C22—C23—C24	121.6 (3)
С10—С9—Н9В	110.8	C22—C23—H23	119.2
Н9А—С9—Н9В	108.9	C24—C23—H23	119.2
C11—C10—C9	103.8 (3)	C25—C24—C23	121.7 (3)
C11-C10-H10A	111.0	C25—C24—H24	119.2
C9—C10—H10A	111.0	C23—C24—H24	119.2
C11—C10—H10B	111.0	C26—C25—C24	116.6 (3)
C9—C10—H10B	111.0	C26—C25—C28	121.9 (4)
H10A—C10—H10B	109.0	C24—C25—C28	121.5 (4)
C10-C11-C12	103.5 (3)	C25—C26—C27	122.3 (4)
C10-C11-H11A	111.1	C25—C26—H26	118.8
C12—C11—H11A	111.1	C27—C26—H26	118.8
C10—C11—H11B	111.1	C22—C27—C26	121.9 (4)
			· /

C12—C11—H11B	111.1	С22—С27—Н27	119.0
H11A—C11—H11B	109.0	С26—С27—Н27	119.0
N2—C12—C11	104.9 (3)	C25—C28—H28A	109.5
N2—C12—C13	105.6 (2)	C25—C28—H28B	109.5
C11—C12—C13	119.2 (2)	H28A—C28—H28B	109.5
N2—C12—H12	108.9	C25—C28—H28C	109.5
С11—С12—Н12	108.9	H28A—C28—H28C	109.5
С13—С12—Н12	108.9	H28B-C28-H28C	109.5
	100.9		109.0
C8-N1-C1-01	-179.4(3)	C11—C12—C13—C22	-92.7(4)
C8-N1-C1-C2	19(3)	N_{2} C_{12} C_{13} C_{14}	21.7(3)
C9-N2-C2-C3	-289(4)	C_{11} C_{12} C_{13} C_{14}	1393(3)
$C_{12} = N_{2} = C_{2} = C_{3}$	969(3)	C^{22} C^{13} C^{14} C^{15}	713(3)
$C_{12} = N_2 = C_2 = C_1$	89 4 (3)	C_{12} C_{13} C_{14} C_{15}	-1610(2)
$C_{12} = N_{2} = C_{2} = C_{1}$	$-144 \ 8 \ (2)$	$C_{12}^{22} - C_{13}^{13} - C_{14}^{14} - C_{2}^{23}$	-165.9(2)
$C_{12} = 112 = 02 = 01$	-1532(2)	$C_{22} = C_{13} = C_{14} = C_2$	-383(3)
$C_{3} = N_{2} = C_{2} = C_{14}$	-27.5(3)	$N_2 = C_1 = C_1 = C_2$	165.2(2)
C12 - N2 - C2 - C14	27.3(3)	$R_2 = C_2 = C_1 4 = C_{15}$	103.2(2)
OI - CI - C2 - N2	40.3(4) -124.8(2)	C_{3} C_{2} C_{14} C_{15}	-77.5(3)
NI = CI = C2 = N2	-134.0(2)	C1 - C2 - C14 - C13	-77.3(3)
01 - C1 - C2 - C3	1/5.9 (5)	$N_2 - C_2 - C_1 4 - C_{13}$	40.5(2)
NI = CI = C2 = C3	-5.4(3)	$C_{3} - C_{2} - C_{14} - C_{13}$	-89.5 (3)
01 - C1 - C2 - C14	-64.8(3)	CI = C2 = CI4 = CI3	157.8(2)
NI - CI - C2 - C14	113.9 (3)	C13 - C14 - C15 - O2	19.7 (4)
N2—C2—C3—C4	-56.6 (4)	C2_C14_C15_O2	-98.0 (3)
C1—C2—C3—C4	-179.3 (3)	C13—C14—C15—C16	-163.7 (2)
C14—C2—C3—C4	62.4 (4)	C2-C14-C15-C16	78.6 (3)
N2—C2—C3—C8	129.8 (3)	O2—C15—C16—C21	-146.6(3)
C1—C2—C3—C8	7.1 (3)	C14—C15—C16—C21	36.8 (4)
C14—C2—C3—C8	-111.2 (3)	O2—C15—C16—C17	32.3 (4)
C8—C3—C4—C5	1.2 (4)	C14—C15—C16—C17	-144.3 (3)
C2—C3—C4—C5	-172.0 (3)	C21—C16—C17—C18	-0.9 (6)
C3—C4—C5—C6	0.3 (5)	C15—C16—C17—C18	-179.9 (4)
C4—C5—C6—C7	-0.7 (6)	C16-C17-C18-C19	2.4 (7)
C5—C6—C7—C8	-0.5 (6)	C17—C18—C19—C20	-1.3 (7)
C6—C7—C8—C3	2.1 (5)	C18—C19—C20—C21	-1.2 (6)
C6-C7-C8-N1	-179.5 (3)	C17—C16—C21—C20	-1.6(5)
C4—C3—C8—C7	-2.4 (5)	C15—C16—C21—C20	177.3 (3)
C2—C3—C8—C7	172.2 (3)	C19—C20—C21—C16	2.6 (6)
C4—C3—C8—N1	178.9 (3)	C14—C13—C22—C27	-176.0 (3)
C2—C3—C8—N1	-6.4 (3)	C12—C13—C22—C27	63.2 (4)
C1—N1—C8—C7	-175.7 (3)	C14—C13—C22—C23	1.4 (4)
C1—N1—C8—C3	2.9 (3)	C12—C13—C22—C23	-119.4(3)
C2—N2—C9—C10	141.9 (3)	C27—C22—C23—C24	0.8 (5)
C12 - N2 - C9 - C10	15.5 (3)	C_{13} C_{22} C_{23} C_{24}	-176.7(3)
N2-C9-C10-C11	-33.1 (4)	C22-C23-C24-C25	-0.7(5)
C9-C10-C11-C12	37.9 (4)	C_{23} C_{24} C_{25} C_{26}	-0.3(5)
C_{2} N2 C_{12} C_{11}	-122.7(3)	C_{23} C_{24} C_{25} C_{28}	-1792(3)
C9-N2-C12-C11	80(3)	C_{24} C_{25} C_{26} C_{27}	12.6
C, 112 C12 C11	··· (·)		··- (0)

C2—N2—C12—C13	4.1 (3)	C28—C25—C26—C27	-179.9 (4)
C9—N2—C12—C13	134.7 (3)	C23—C22—C27—C26	0.1 (6)
C10-C11-C12-N2	-28.3 (3)	C13—C22—C27—C26	177.7 (4)
C10-C11-C12-C13	-146.2 (3)	C25—C26—C27—C22	-1.2 (7)
N2-C12-C13-C22	149.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
C5—H5…O2 ⁱ	0.93	2.65	3.441 (4)	144
C19—H19…O2 ⁱⁱ	0.93	2.70	3.301 (5)	123
C20—H20…O2 ⁱⁱ	0.93	2.65	3.278 (4)	125
N1—H1····N2 ⁱⁱⁱ	0.86	2.40	3.232 (3)	163
C7—H7····O1 ⁱⁱⁱ	0.93	2.28	3.098 (4)	147

Symmetry codes: (i) -x+1/2, -y+3/2, z; (ii) -x+3/4, y+1/4, z-1/4; (iii) -x+1/2, -y+2, z-1/2.

(II) 2'-(4-Bromobenzoyl)-1'-(2-chlorophenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one

Crystal data

C₂₇H₂₂BrClN₂O₂ $M_r = 521.82$ Monoclinic, $P2_1/n$ a = 10.7280 (4) Åb = 9.7793 (4) Å *c* = 22.6746 (9) Å $\beta = 98.972 (1)^{\circ}$ $V = 2349.74 (16) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD	4740 independent reflections
diffractometer	3446 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.029$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.3^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
(SADABS; Bruker, 2009)	$h = -13 \rightarrow 13$
$T_{\min} = 0.89, \ T_{\max} = 0.97$	$k = -12 \rightarrow 12$
22593 measured reflections	$l = -28 \rightarrow 25$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.034740 reflections 298 parameters 0 restraints

F(000) = 1064 $D_{\rm x} = 1.475 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3446 reflections $\theta = 2.0-26.0^{\circ}$ $\mu = 1.89 \text{ mm}^{-1}$ T = 295 KNeedle, colourless $0.25 \times 0.14 \times 0.12 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0526P)^2 + 0.9581P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.07782 (3)	1.20198 (4)	0.80288 (2)	0.06695 (15)	
Cl1	0.77846 (8)	0.56854 (9)	1.02506 (3)	0.0637 (2)	
01	0.63821 (17)	0.92263 (17)	0.73698 (7)	0.0378 (4)	
O2	0.57612 (18)	0.8610 (2)	0.95502 (8)	0.0471 (5)	
N1	0.72258 (19)	1.10554 (19)	0.79346 (9)	0.0312 (5)	
H1	0.7099	1.1686	0.7668	0.037*	
N2	0.82778 (19)	0.78758 (19)	0.82501 (9)	0.0305 (5)	
C1	0.6915 (2)	0.9728 (2)	0.78339 (10)	0.0283 (5)	
C2	0.7382 (2)	0.8914 (2)	0.84101 (10)	0.0266 (5)	
C3	0.7894 (2)	1.0043 (2)	0.88401 (10)	0.0272 (5)	
C4	0.8386 (2)	1.0042 (3)	0.94381 (11)	0.0364 (6)	
H4	0.8452	0.9230	0.9654	0.044*	
C5	0.8783 (3)	1.1264 (3)	0.97153 (12)	0.0419 (7)	
Н5	0.9118	1.1271	1.0119	0.050*	
C6	0.8685 (3)	1.2472 (3)	0.93957 (12)	0.0393 (6)	
H6	0.8962	1.3282	0.9587	0.047*	
C7	0.8182 (3)	1.2497 (2)	0.87969 (11)	0.0350 (6)	
H7	0.8115	1.3309	0.8581	0.042*	
C8	0.7784 (2)	1.1277 (2)	0.85324 (10)	0.0278 (5)	
C9	0.9619 (3)	0.8258 (3)	0.82865 (15)	0.0489 (7)	
H9A	0.9835	0.8996	0.8570	0.059*	
H9B	0.9803	0.8543	0.7899	0.059*	
C10	1.0337 (3)	0.6969 (3)	0.84945 (15)	0.0517 (8)	
H10A	1.1173	0.7183	0.8704	0.062*	
H10B	1.0414	0.6371	0.8161	0.062*	
C11	0.9524 (2)	0.6323 (3)	0.89115 (13)	0.0458 (7)	
H11A	0.9675	0.6747	0.9303	0.055*	
H11B	0.9684	0.5349	0.8954	0.055*	
C12	0.8189 (2)	0.6601 (2)	0.85977 (10)	0.0283 (5)	
H12	0.7919	0.5849	0.8322	0.034*	
C13	0.7161 (2)	0.6880 (2)	0.89799 (10)	0.0265 (5)	
H13	0.7562	0.7282	0.9358	0.032*	
C14	0.6354 (2)	0.7997 (2)	0.86225 (10)	0.0262 (5)	
H14	0.5834	0.7582	0.8275	0.031*	
C15	0.5499 (2)	0.8689 (2)	0.90140 (11)	0.0298 (5)	
C16	0.4334 (2)	0.9432 (2)	0.87449 (11)	0.0313 (5)	
C17	0.3551 (2)	0.9935 (3)	0.91299 (12)	0.0406 (6)	
H17	0.3749	0.9766	0.9537	0.049*	
C18	0.2489 (3)	1.0680 (3)	0.89154 (13)	0.0470 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

0.1969	1.1008	0.9175	0.056*
0.2204 (2)	1.0934 (3)	0.83125 (13)	0.0430 (7)
0.2941 (3)	1.0426 (3)	0.79221 (13)	0.0510 (8)
0.2730	1.0587	0.7515	0.061*
0.4005 (3)	0.9672 (3)	0.81402 (12)	0.0431 (7)
0.4505	0.9321	0.7876	0.052*
0.6459 (2)	0.5618 (2)	0.91200 (11)	0.0344 (6)
0.5596 (3)	0.4974 (3)	0.86931 (15)	0.0517 (7)
0.5428	0.5342	0.8311	0.062*
0.4973 (3)	0.3791 (4)	0.88206 (19)	0.0724 (10)
0.4393	0.3376	0.8527	0.087*
0.5221 (4)	0.3242 (4)	0.9380 (2)	0.0744 (12)
0.4804	0.2450	0.9466	0.089*
0.6058 (3)	0.3830(3)	0.98101 (17)	0.0630 (10)
0.6217	0.3450	1.0190	0.076*
0.6681 (3)	0.5007 (3)	0.96804 (13)	0.0434 (7)
	0.1969 0.2204 (2) 0.2941 (3) 0.2730 0.4005 (3) 0.4505 0.6459 (2) 0.5596 (3) 0.5428 0.4973 (3) 0.4393 0.5221 (4) 0.4804 0.6058 (3) 0.6217 0.6681 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04738 (19)	0.0747 (3)	0.0810 (3)	0.02523 (17)	0.01691 (17)	0.02584 (19)
Cl1	0.0790 (6)	0.0694 (5)	0.0416 (4)	0.0123 (4)	0.0053 (4)	0.0191 (4)
O1	0.0523 (11)	0.0352 (10)	0.0250 (10)	-0.0092 (8)	0.0030 (8)	0.0001 (8)
O2	0.0537 (12)	0.0633 (13)	0.0253 (10)	0.0179 (10)	0.0087 (8)	0.0015 (9)
N1	0.0468 (12)	0.0211 (10)	0.0254 (11)	0.0009 (9)	0.0049 (9)	0.0051 (8)
N2	0.0343 (11)	0.0227 (10)	0.0366 (12)	0.0016 (9)	0.0127 (9)	0.0015 (9)
C1	0.0334 (12)	0.0286 (13)	0.0243 (12)	-0.0004 (10)	0.0087 (10)	0.0003 (10)
C2	0.0339 (12)	0.0206 (12)	0.0258 (12)	0.0011 (10)	0.0061 (10)	0.0017 (9)
C3	0.0321 (12)	0.0211 (12)	0.0280 (12)	0.0025 (10)	0.0034 (10)	-0.0002 (10)
C4	0.0485 (15)	0.0274 (13)	0.0308 (14)	-0.0036 (12)	-0.0015 (11)	0.0027 (11)
C5	0.0513 (16)	0.0397 (16)	0.0313 (15)	-0.0010 (13)	-0.0039 (12)	-0.0037 (12)
C6	0.0477 (15)	0.0273 (13)	0.0426 (16)	-0.0048 (12)	0.0061 (12)	-0.0099 (12)
C7	0.0486 (15)	0.0203 (12)	0.0374 (15)	0.0016 (11)	0.0103 (12)	0.0016 (11)
C8	0.0333 (12)	0.0228 (12)	0.0285 (13)	0.0020 (10)	0.0086 (10)	-0.0019 (10)
C9	0.0403 (15)	0.0387 (16)	0.073 (2)	-0.0053 (12)	0.0263 (15)	0.0014 (14)
C10	0.0353 (14)	0.0495 (18)	0.071 (2)	0.0010 (13)	0.0122 (14)	-0.0018 (15)
C11	0.0386 (15)	0.0458 (17)	0.0521 (18)	0.0064 (13)	0.0042 (13)	0.0085 (14)
C12	0.0351 (13)	0.0215 (12)	0.0282 (13)	0.0005 (10)	0.0046 (10)	0.0003 (10)
C13	0.0326 (12)	0.0208 (12)	0.0263 (12)	0.0007 (9)	0.0050 (10)	0.0017 (9)
C14	0.0314 (12)	0.0232 (12)	0.0241 (12)	-0.0005 (10)	0.0051 (9)	-0.0003 (9)
C15	0.0350 (13)	0.0255 (13)	0.0300 (14)	-0.0014 (10)	0.0086 (10)	-0.0012 (10)
C16	0.0344 (13)	0.0286 (13)	0.0316 (14)	0.0005 (10)	0.0072 (10)	-0.0026 (10)
C17	0.0447 (15)	0.0470 (16)	0.0315 (14)	0.0062 (13)	0.0106 (11)	-0.0032 (12)
C18	0.0455 (16)	0.0503 (18)	0.0487 (18)	0.0137 (14)	0.0187 (13)	-0.0024 (14)
C19	0.0355 (14)	0.0411 (16)	0.0534 (18)	0.0087 (12)	0.0104 (12)	0.0103 (13)
C20	0.0442 (16)	0.071 (2)	0.0386 (16)	0.0147 (15)	0.0092 (13)	0.0115 (15)
C21	0.0421 (15)	0.0562 (18)	0.0330 (15)	0.0135 (13)	0.0120 (12)	-0.0020 (13)
C22	0.0391 (14)	0.0252 (13)	0.0417 (15)	0.0021 (11)	0.0147 (12)	0.0036 (11)

C23 C24	0.0572 (18)	0.0378 (16)	0.0604 (19)	-0.0119(14) -0.0265(18)	0.0100 (15)	-0.0032(14) -0.011(2)
C25	0.082 (3)	0.0393 (19)	0.113 (3)	-0.0122(18)	0.050 (3)	0.013 (2)
C26	0.079 (2)	0.0428 (19)	0.077 (2)	0.0060 (18)	0.043 (2)	0.0208 (17)
C27	0.0505 (16)	0.0317 (14)	0.0530 (18)	0.0096 (13)	0.0237 (13)	0.0100 (13)

Geometric parameters (Å, °)

Br1—C19	1.891 (3)	C11—H11A	0.9700	
Cl1—C27	1.743 (3)	C11—H11B	0.9700	
01—C1	1.220 (3)	C12—C13	1.530 (3)	
O2—C15	1.207 (3)	C12—H12	0.9800	
N1-C1	1.351 (3)	C13—C22	1.505 (3)	
N1—C8	1.411 (3)	C13—C14	1.542 (3)	
N1—H1	0.8600	C13—H13	0.9800	
N2—C9	1.476 (3)	C14—C15	1.530 (3)	
N2—C2	1.482 (3)	C14—H14	0.9800	
N2-C12	1.486 (3)	C15—C16	1.492 (3)	
C1—C2	1.545 (3)	C16—C21	1.382 (3)	
C2—C3	1.518 (3)	C16—C17	1.392 (3)	
C2-C14	1.555 (3)	C17—C18	1.375 (4)	
C3—C4	1.376 (3)	C17—H17	0.9300	
C3—C8	1.390 (3)	C18—C19	1.376 (4)	
C4—C5	1.386 (4)	C18—H18	0.9300	
C4—H4	0.9300	C19—C20	1.369 (4)	
C5—C6	1.381 (4)	C20—C21	1.383 (4)	
С5—Н5	0.9300	C20—H20	0.9300	
С6—С7	1.381 (4)	C21—H21	0.9300	
С6—Н6	0.9300	C22—C23	1.383 (4)	
С7—С8	1.373 (3)	C22—C27	1.391 (4)	
С7—Н7	0.9300	C23—C24	1.388 (4)	
C9—C10	1.514 (4)	C23—H23	0.9300	
С9—Н9А	0.9700	C24—C25	1.366 (6)	
С9—Н9В	0.9700	C24—H24	0.9300	
C10—C11	1.520 (4)	C25—C26	1.347 (5)	
C10—H10A	0.9700	C25—H25	0.9300	
C10—H10B	0.9700	C26—C27	1.385 (4)	
C11—C12	1.521 (3)	C26—H26	0.9300	
C1—N1—C8	111.52 (19)	N2—C12—H12	109.1	
C1—N1—H1	124.2	C11—C12—H12	109.1	
C8—N1—H1	124.2	C13—C12—H12	109.1	
C9—N2—C2	118.47 (19)	C22—C13—C12	113.70 (19)	
C9—N2—C12	108.97 (19)	C22—C13—C14	115.66 (19)	
C2—N2—C12	110.33 (17)	C12—C13—C14	102.94 (18)	
01—C1—N1	127.1 (2)	С22—С13—Н13	108.1	
O1—C1—C2	124.7 (2)	C12—C13—H13	108.1	
N1-C1-C2	108.25 (19)	C14—C13—H13	108.1	

N2—C2—C3	118.18 (19)	C15—C14—C13	110.26 (19)
N2—C2—C1	106.45 (18)	C15—C14—C2	116.27 (18)
C3—C2—C1	101.86 (18)	C13—C14—C2	101.78 (18)
N2-C2-C14	101.48 (17)	C15—C14—H14	109.4
C3—C2—C14	115.06 (19)	C13—C14—H14	109.4
C1—C2—C14	114.00 (19)	C2—C14—H14	109.4
C4—C3—C8	119.0 (2)	O2—C15—C16	119.5 (2)
C4—C3—C2	132.6 (2)	O2—C15—C14	119.3 (2)
C8—C3—C2	108.38 (19)	C16—C15—C14	121.2 (2)
C3—C4—C5	119.3 (2)	C21—C16—C17	118.4 (2)
C3—C4—H4	120.3	C21—C16—C15	123.9 (2)
С5—С4—Н4	120.3	C17—C16—C15	117.7 (2)
C6—C5—C4	120.4(2)	C18 - C17 - C16	120.9(3)
С6—С5—Н5	119.8	C18—C17—H17	119.6
C4	119.8	C_{16} C_{17} H_{17}	119.6
$C_{5} - C_{6} - C_{7}$	121.2(2)	C17 - C18 - C19	119.6
C5-C6-H6	119.4	C17 - C18 - H18	120.3
C7—C6—H6	119.4	C19-C18-H18	120.3
C8 - C7 - C6	117.1 117.5(2)	C_{20} C_{19} C_{18} C_{18}	120.9 121.0(2)
C8—C7—H7	121.3	C_{20} C_{19} B_{r1}	121.0(2) 1201(2)
С6—С7—Н7	121.3	C18— $C19$ — $Br1$	120.1(2) 118.8(2)
C7-C8-C3	121.5	C19 - C20 - C21	110.0(2) 119.3(3)
C7 - C8 - N1	122.0(2) 127.6(2)	C_{19} C_{20} C_{21} C_{20} H_{20}	120.3
$C_3 = C_8 = N_1$	127.0(2) 109.8(2)	C_{21} C_{20} H_{20}	120.3
$N_{2}^{-}C_{9}^{-}C_{10}^{-}$	109.8(2) 104.5(2)	$C_{21} = C_{20} = H_{20}$	120.3 121.0(2)
$N_2 = C_2 = C_1 C_1 C_2$	110.8	$C_{10} = C_{21} = C_{20}$	121.0 (2)
C_{10} C_{9} H_{9A}	110.8	$C_{10} = C_{21} = H_{21}$	119.5
$N_2 C_0 H_0 R$	110.8	$C_{20} = C_{21} = H_{21}$	119.5
$C_{10} C_{0} H_{0}B$	110.8	$C_{23} = C_{22} = C_{27}$	110.4(3)
	108.0	$C_{23} = C_{22} = C_{13}$	121.9(2) 121.7(2)
$C_{0} C_{10} C_{11}$	103.1(2)	$C_{27} = C_{22} = C_{13}$	121.7(2) 121.7(3)
C_{2} C_{10} H_{10A}	103.1(2)	$C_{22} = C_{23} = C_{24}$	121.7(3)
C_{1} C_{10} H_{10A}	111.1	C22—C23—H23	119.2
C10 H10A	111.1	C_{24} C_{25} C	119.2
С11 С10 Ц10Р	111.1	$C_{25} = C_{24} = C_{25}$	119.4 (4)
	111.1	C_{23} C_{24} H_{24}	120.3
HI0A - CI0 - HI0B	109.1	C_{23} C_{24} H_{24}	120.5
C10 - C11 - U11A	105.0 (2)	$C_{20} = C_{23} = C_{24}$	121.0 (5)
CIQ_CII_HIIA	111.2	C20-C25-H25	119.5
CI2—CII—HIIA	111.2	C_{24} C_{25} H_{25}	119.5
CIQ_CII_HIIB	111.2	$C_{25} = C_{26} = C_{27}$	119.4 (3)
CI2—CII—HIIB	111.2	C25—C26—H26	120.3
HIIA—CII—HIIB	109.1	C2/—C26—H26	120.3
N2-C12-C11	105.35 (19)	C26-C27-C22	122.1 (3)
N2—C12—C13	105.19 (18)	C26—C27—C11	116.9 (2)
C11—C12—C13	118.5 (2)	C22—C27—C11	120.9 (2)
C9 N1 C1 O1	177 A(2)	N2 C12 C12 C14	24.7(2)
$C_{0} = N_{1} = C_{1} = C_{1}$	1/.4(2)	$N_2 - C_{12} - C_{13} - C_{14}$	24.7(2)
CO-NI-CI-CZ	-4.1 (3)	U11 - U12 - U13 - U14	142.1 (2)

C9—N2—C2—C3	-25.9 (3)	C22—C13—C14—C15	71.0 (2)
C12—N2—C2—C3	100.6 (2)	C12—C13—C14—C15	-164.34 (18)
C9—N2—C2—C1	87.7 (3)	C22—C13—C14—C2	-164.97 (19)
C12—N2—C2—C1	-145.73 (19)	C12—C13—C14—C2	-40.4 (2)
C9—N2—C2—C14	-152.7 (2)	N2-C2-C14-C15	160.34 (19)
C12—N2—C2—C14	-26.2 (2)	C3—C2—C14—C15	31.5 (3)
O1—C1—C2—N2	58.4 (3)	C1—C2—C14—C15	-85.7 (2)
N1—C1—C2—N2	-120.2 (2)	N2-C2-C14-C13	40.5 (2)
O1—C1—C2—C3	-177.2 (2)	C3—C2—C14—C13	-88.3 (2)
N1—C1—C2—C3	4.2 (2)	C1—C2—C14—C13	154.52 (19)
O1—C1—C2—C14	-52.7 (3)	C13—C14—C15—O2	20.2 (3)
N1-C1-C2-C14	128.7 (2)	C2-C14-C15-O2	-94.9 (3)
N2-C2-C3-C4	-68.0 (3)	C13-C14-C15-C16	-158.4 (2)
C1—C2—C3—C4	175.8 (3)	C2-C14-C15-C16	86.4 (3)
C14—C2—C3—C4	52.0 (3)	O2-C15-C16-C21	174.7 (3)
N2-C2-C3-C8	113.3 (2)	C14-C15-C16-C21	-6.7 (4)
C1—C2—C3—C8	-2.9 (2)	O2-C15-C16-C17	-3.9 (4)
C14—C2—C3—C8	-126.7 (2)	C14—C15—C16—C17	174.7 (2)
C8—C3—C4—C5	-1.3 (4)	C21—C16—C17—C18	-1.4 (4)
C2—C3—C4—C5	-179.9 (2)	C15—C16—C17—C18	177.3 (2)
C3—C4—C5—C6	0.1 (4)	C16—C17—C18—C19	-0.3 (4)
C4—C5—C6—C7	0.5 (4)	C17—C18—C19—C20	1.8 (5)
C5—C6—C7—C8	0.0 (4)	C17-C18-C19-Br1	-177.5 (2)
C6—C7—C8—C3	-1.3 (4)	C18-C19-C20-C21	-1.4 (5)
C6—C7—C8—N1	178.9 (2)	Br1-C19-C20-C21	177.8 (2)
C4—C3—C8—C7	1.9 (4)	C17—C16—C21—C20	1.7 (4)
C2—C3—C8—C7	-179.2 (2)	C15-C16-C21-C20	-176.8 (3)
C4—C3—C8—N1	-178.2 (2)	C19—C20—C21—C16	-0.4 (5)
C2—C3—C8—N1	0.7 (3)	C12—C13—C22—C23	-73.0 (3)
C1—N1—C8—C7	-177.9 (2)	C14—C13—C22—C23	45.8 (3)
C1—N1—C8—C3	2.2 (3)	C12—C13—C22—C27	104.4 (3)
C2-N2-C9-C10	144.5 (2)	C14—C13—C22—C27	-136.8 (2)
C12—N2—C9—C10	17.3 (3)	C27—C22—C23—C24	0.9 (4)
N2-C9-C10-C11	-34.6 (3)	C13—C22—C23—C24	178.4 (3)
C9—C10—C11—C12	38.6 (3)	C22—C23—C24—C25	-0.3 (5)
C9—N2—C12—C11	6.9 (3)	C23—C24—C25—C26	0.0 (6)
C2—N2—C12—C11	-124.8 (2)	C24—C25—C26—C27	-0.3 (5)
C9—N2—C12—C13	132.8 (2)	C25—C26—C27—C22	0.9 (5)
C2—N2—C12—C13	1.2 (2)	C25—C26—C27—Cl1	-178.2 (3)
C10—C11—C12—N2	-28.2 (3)	C23—C22—C27—C26	-1.2 (4)
C10—C11—C12—C13	-145.4 (2)	C13—C22—C27—C26	-178.7 (2)
N2-C12-C13-C22	150.6 (2)	C23—C22—C27—Cl1	177.9 (2)
C11—C12—C13—C22	-92.0 (3)	C13—C22—C27—Cl1	0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17…O2 ⁱ	0.93	2.60	3.292 (3)	132

C25—H25···O2 ⁱⁱ	0.93	2.61	3.327 (4)	134
N1—H1···N2 ⁱⁱⁱ	0.86	2.36	3.198 (3)	164
C7—H7···O1 ⁱⁱⁱ	0.93	2.47	3.235 (3)	139
C21—H21…O1	0.93	2.47	3.337 (3)	155

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) -*x*+3/2, *y*+1/2, -*z*+3/2.